mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-12-26 03:14:35 +00:00
799a1cb13b
* convert : support Mixtral as LLAMA arch
* convert : fix n_ff typo
* llama : model loading
* ggml : sync latest ggml_mul_mat_id
* llama : update graph to support MoE
* llama : fix cur -> cur_expert
* llama : first working version
* llama : fix expert weighting in the FFN
* ggml : ggml_get_rows support 2D indexing [n_tokens, n_experts] (cpu only)
* ggml : add n_as argument to ggml_mul_mat_id
* ggml : fix ggml_get_rows to take into account ne02 / ne11
* metal : add more general support for ggml_get_rows + tests
* llama : add basic support for offloading moe with CUDA
* metal : add/mul/div use general kernel when src1 not cont
* metal : reduce the kernel launches for ggml_mul_mat_id
* ggml : get_rows : support non-contiguos tensors with gaps, generalize up to 3D
* ggml : update get_rows f16 and q
* cuda : support non-contiguous src1 in get_rows
* llama : offload missing ffn_moe_silu
* metal : fix ggml_get_rows to work with non-cont src1
* metal : add indirect mat-vec kernels for all quantization types
* llama : do not quantize expert gating tensors
* llama : add n_expert and n_expert_used to hparams + change quants
* test-backend-ops : add moe test
* cuda : fix get_rows when ncols is odd
* convert : determine n_ctx correctly
* metal : fix ggml_mul_mat_id for F32
* test-backend-ops : make experts more evenly probable (test_moe)
* test-backend-ops : cleanup, add moe test for batches
* test-backend-ops : add cpy from f32 -> all types test
* test-backend-ops : fix dequantize block offset
* llama : fix hard-coded number of experts
* test-backend-ops : simplify and disable slow tests to avoid CI timeout
* test-backend-ops : disable MOE test with thread sanitizer
* cuda : fix mul_mat_id with multi gpu
* convert : use 1e6 rope_freq_base for mixtral
* convert : fix style
* convert : support safetensors format
* gguf-py : bump version
* metal : add cpy f16 -> f32 kernel
* metal : fix binary ops for ne10 % 4 != 0
* test-backend-ops : add one more sum_rows test
* ggml : do not use BLAS with ggml_mul_mat_id
* convert-hf : support for mixtral-instruct (#4428)
* convert : typo fix, add additional hyperparameters, use LLaMA arch for Mixtral-instruct
* convert : use sentencepiece tokenizer for Mixtral-instruct
* convert : make flake8 happy
* metal : fix soft_max kernels
ref: 1914017863
* metal : limit kernels to not use more than the allowed threads
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: Radek Pilar <github@mrkva.eu>
283 lines
13 KiB
Python
283 lines
13 KiB
Python
from __future__ import annotations
|
|
|
|
from typing import Sequence
|
|
|
|
from .constants import MODEL_ARCH, MODEL_TENSOR, MODEL_TENSORS, TENSOR_NAMES
|
|
|
|
|
|
class TensorNameMap:
|
|
mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
|
|
# Token embeddings
|
|
MODEL_TENSOR.TOKEN_EMBD: (
|
|
"gpt_neox.embed_in", # gptneox
|
|
"transformer.wte", # gpt2 gpt-j mpt refact qwen
|
|
"transformer.word_embeddings", # falcon
|
|
"word_embeddings", # bloom
|
|
"model.embed_tokens", # llama-hf
|
|
"tok_embeddings", # llama-pth
|
|
"embeddings.word_embeddings", # bert
|
|
"language_model.embedding.word_embeddings", # persimmon
|
|
),
|
|
|
|
# Token type embeddings
|
|
MODEL_TENSOR.TOKEN_TYPES: (
|
|
"embeddings.token_type_embeddings", # bert
|
|
),
|
|
|
|
# Normalization of token embeddings
|
|
MODEL_TENSOR.TOKEN_EMBD_NORM: (
|
|
"word_embeddings_layernorm", # bloom
|
|
),
|
|
|
|
# Position embeddings
|
|
MODEL_TENSOR.POS_EMBD: (
|
|
"transformer.wpe", # gpt2
|
|
"embeddings.position_embeddings", # bert
|
|
),
|
|
|
|
# Output
|
|
MODEL_TENSOR.OUTPUT: (
|
|
"embed_out", # gptneox
|
|
"lm_head", # gpt2 mpt falcon llama-hf baichuan qwen
|
|
"output", # llama-pth bloom
|
|
"word_embeddings_for_head", # persimmon
|
|
),
|
|
|
|
# Output norm
|
|
MODEL_TENSOR.OUTPUT_NORM: (
|
|
"gpt_neox.final_layer_norm", # gptneox
|
|
"transformer.ln_f", # gpt2 gpt-j falcon
|
|
"model.norm", # llama-hf baichuan
|
|
"norm", # llama-pth
|
|
"embeddings.LayerNorm", # bert
|
|
"transformer.norm_f", # mpt
|
|
"ln_f", # refact bloom qwen
|
|
"language_model.encoder.final_layernorm", # persimmon
|
|
),
|
|
|
|
# Rope frequencies
|
|
MODEL_TENSOR.ROPE_FREQS: (
|
|
"rope.freqs", # llama-pth
|
|
),
|
|
}
|
|
|
|
block_mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
|
|
# Attention norm
|
|
MODEL_TENSOR.ATTN_NORM: (
|
|
"gpt_neox.layers.{bid}.input_layernorm", # gptneox
|
|
"transformer.h.{bid}.ln_1", # gpt2 gpt-j refact qwen
|
|
"transformer.blocks.{bid}.norm_1", # mpt
|
|
"transformer.h.{bid}.input_layernorm", # falcon7b
|
|
"h.{bid}.input_layernorm", # bloom
|
|
"transformer.h.{bid}.ln_mlp", # falcon40b
|
|
"model.layers.{bid}.input_layernorm", # llama-hf
|
|
"layers.{bid}.attention_norm", # llama-pth
|
|
"encoder.layer.{bid}.attention.output.LayerNorm", # bert
|
|
"language_model.encoder.layers.{bid}.input_layernorm", # persimmon
|
|
"model.layers.{bid}.ln1", # yi
|
|
),
|
|
|
|
# Attention norm 2
|
|
MODEL_TENSOR.ATTN_NORM_2: (
|
|
"transformer.h.{bid}.ln_attn", # falcon40b
|
|
),
|
|
|
|
# Attention query-key-value
|
|
MODEL_TENSOR.ATTN_QKV: (
|
|
"gpt_neox.layers.{bid}.attention.query_key_value", # gptneox
|
|
"transformer.h.{bid}.attn.c_attn", # gpt2 qwen
|
|
"transformer.blocks.{bid}.attn.Wqkv", # mpt
|
|
"transformer.h.{bid}.self_attention.query_key_value", # falcon
|
|
"h.{bid}.self_attention.query_key_value", # bloom
|
|
"language_model.encoder.layers.{bid}.self_attention.query_key_value", # persimmon
|
|
),
|
|
|
|
# Attention query
|
|
MODEL_TENSOR.ATTN_Q: (
|
|
"model.layers.{bid}.self_attn.q_proj", # llama-hf
|
|
"layers.{bid}.attention.wq", # llama-pth
|
|
"encoder.layer.{bid}.attention.self.query", # bert
|
|
"transformer.h.{bid}.attn.q_proj", # gpt-j
|
|
),
|
|
|
|
# Attention key
|
|
MODEL_TENSOR.ATTN_K: (
|
|
"model.layers.{bid}.self_attn.k_proj", # llama-hf
|
|
"layers.{bid}.attention.wk", # llama-pth
|
|
"encoder.layer.{bid}.attention.self.key", # bert
|
|
"transformer.h.{bid}.attn.k_proj", # gpt-j
|
|
),
|
|
|
|
# Attention value
|
|
MODEL_TENSOR.ATTN_V: (
|
|
"model.layers.{bid}.self_attn.v_proj", # llama-hf
|
|
"layers.{bid}.attention.wv", # llama-pth
|
|
"encoder.layer.{bid}.attention.self.value", # bert
|
|
"transformer.h.{bid}.attn.v_proj", # gpt-j
|
|
),
|
|
|
|
# Attention output
|
|
MODEL_TENSOR.ATTN_OUT: (
|
|
"gpt_neox.layers.{bid}.attention.dense", # gptneox
|
|
"transformer.h.{bid}.attn.c_proj", # gpt2 refact qwen
|
|
"transformer.blocks.{bid}.attn.out_proj", # mpt
|
|
"transformer.h.{bid}.self_attention.dense", # falcon
|
|
"h.{bid}.self_attention.dense", # bloom
|
|
"model.layers.{bid}.self_attn.o_proj", # llama-hf
|
|
"layers.{bid}.attention.wo", # llama-pth
|
|
"encoder.layer.{bid}.attention.output.dense", # bert
|
|
"transformer.h.{bid}.attn.out_proj", # gpt-j
|
|
"language_model.encoder.layers.{bid}.self_attention.dense", # persimmon
|
|
),
|
|
|
|
# Rotary embeddings
|
|
MODEL_TENSOR.ATTN_ROT_EMBD: (
|
|
"model.layers.{bid}.self_attn.rotary_emb.inv_freq", # llama-hf
|
|
"layers.{bid}.attention.inner_attention.rope.freqs", # llama-pth
|
|
),
|
|
|
|
# Feed-forward norm
|
|
MODEL_TENSOR.FFN_NORM: (
|
|
"gpt_neox.layers.{bid}.post_attention_layernorm", # gptneox
|
|
"transformer.h.{bid}.ln_2", # gpt2 refact qwen
|
|
"h.{bid}.post_attention_layernorm", # bloom
|
|
"transformer.blocks.{bid}.norm_2", # mpt
|
|
"model.layers.{bid}.post_attention_layernorm", # llama-hf
|
|
"layers.{bid}.ffn_norm", # llama-pth
|
|
"encoder.layer.{bid}.output.LayerNorm", # bert
|
|
"language_model.encoder.layers.{bid}.post_attention_layernorm", # persimmon
|
|
"model.layers.{bid}.ln2", # yi
|
|
),
|
|
|
|
MODEL_TENSOR.FFN_GATE_INP: (
|
|
"layers.{bid}.feed_forward.gate", # mixtral
|
|
"model.layers.{bid}.block_sparse_moe.gate", # mixtral
|
|
),
|
|
|
|
# Feed-forward up
|
|
MODEL_TENSOR.FFN_UP: (
|
|
"gpt_neox.layers.{bid}.mlp.dense_h_to_4h", # gptneox
|
|
"transformer.h.{bid}.mlp.c_fc", # gpt2
|
|
"transformer.blocks.{bid}.ffn.up_proj", # mpt
|
|
"transformer.h.{bid}.mlp.dense_h_to_4h", # falcon
|
|
"h.{bid}.mlp.dense_h_to_4h", # bloom
|
|
"model.layers.{bid}.mlp.up_proj", # llama-hf refact
|
|
"layers.{bid}.feed_forward.w3", # llama-pth
|
|
"encoder.layer.{bid}.intermediate.dense", # bert
|
|
"transformer.h.{bid}.mlp.fc_in", # gpt-j
|
|
"language_model.encoder.layers.{bid}.mlp.dense_h_to_4h", # persimmon
|
|
"transformer.h.{bid}.mlp.w1", # qwen
|
|
),
|
|
|
|
MODEL_TENSOR.FFN_UP_EXP: (
|
|
"layers.{bid}.feed_forward.experts.{xid}.w3", # mixtral
|
|
"model.layers.{bid}.block_sparse_moe.experts.{xid}.w3", # mixtral
|
|
),
|
|
|
|
# Feed-forward gate
|
|
MODEL_TENSOR.FFN_GATE: (
|
|
"model.layers.{bid}.mlp.gate_proj", # llama-hf refact
|
|
"layers.{bid}.feed_forward.w1", # llama-pth
|
|
"transformer.h.{bid}.mlp.w2", # qwen
|
|
),
|
|
|
|
MODEL_TENSOR.FFN_GATE_EXP: (
|
|
"layers.{bid}.feed_forward.experts.{xid}.w1", # mixtral
|
|
"model.layers.{bid}.block_sparse_moe.experts.{xid}.w1", # mixtral
|
|
),
|
|
|
|
# Feed-forward down
|
|
MODEL_TENSOR.FFN_DOWN: (
|
|
"gpt_neox.layers.{bid}.mlp.dense_4h_to_h", # gptneox
|
|
"transformer.h.{bid}.mlp.c_proj", # gpt2 refact qwen
|
|
"transformer.blocks.{bid}.ffn.down_proj", # mpt
|
|
"transformer.h.{bid}.mlp.dense_4h_to_h", # falcon
|
|
"h.{bid}.mlp.dense_4h_to_h", # bloom
|
|
"model.layers.{bid}.mlp.down_proj", # llama-hf
|
|
"layers.{bid}.feed_forward.w2", # llama-pth
|
|
"encoder.layer.{bid}.output.dense", # bert
|
|
"transformer.h.{bid}.mlp.fc_out", # gpt-j
|
|
"language_model.encoder.layers.{bid}.mlp.dense_4h_to_h", # persimmon
|
|
),
|
|
|
|
MODEL_TENSOR.FFN_DOWN_EXP: (
|
|
"layers.{bid}.feed_forward.experts.{xid}.w2", # mixtral
|
|
"model.layers.{bid}.block_sparse_moe.experts.{xid}.w2", # mixtral
|
|
),
|
|
|
|
MODEL_TENSOR.ATTN_Q_NORM: (
|
|
"language_model.encoder.layers.{bid}.self_attention.q_layernorm",
|
|
),
|
|
|
|
MODEL_TENSOR.ATTN_K_NORM: (
|
|
"language_model.encoder.layers.{bid}.self_attention.k_layernorm",
|
|
),
|
|
|
|
MODEL_TENSOR.ROPE_FREQS: (
|
|
"language_model.encoder.layers.{bid}.self_attention.rotary_emb.inv_freq", # persimmon
|
|
),
|
|
}
|
|
|
|
mapping: dict[str, tuple[MODEL_TENSOR, str]]
|
|
|
|
def __init__(self, arch: MODEL_ARCH, n_blocks: int):
|
|
self.mapping = {}
|
|
for tensor, keys in self.mappings_cfg.items():
|
|
if tensor not in MODEL_TENSORS[arch]:
|
|
continue
|
|
tensor_name = TENSOR_NAMES[tensor]
|
|
self.mapping[tensor_name] = (tensor, tensor_name)
|
|
for key in keys:
|
|
self.mapping[key] = (tensor, tensor_name)
|
|
for bid in range(n_blocks):
|
|
for tensor, keys in self.block_mappings_cfg.items():
|
|
if tensor not in MODEL_TENSORS[arch]:
|
|
continue
|
|
# TODO: make this configurable
|
|
n_experts = 8
|
|
for xid in range(n_experts):
|
|
tensor_name = TENSOR_NAMES[tensor].format(bid = bid, xid = xid)
|
|
self.mapping[tensor_name] = (tensor, tensor_name)
|
|
for key in keys:
|
|
key = key.format(bid = bid, xid = xid)
|
|
self.mapping[key] = (tensor, tensor_name)
|
|
|
|
def get_type_and_name(self, key: str, try_suffixes: Sequence[str] = ()) -> tuple[MODEL_TENSOR, str] | None:
|
|
result = self.mapping.get(key)
|
|
if result is not None:
|
|
return result
|
|
for suffix in try_suffixes:
|
|
if key.endswith(suffix):
|
|
result = self.mapping.get(key[:-len(suffix)])
|
|
if result is not None:
|
|
return result[0], result[1] + suffix
|
|
return None
|
|
|
|
def get_name(self, key: str, try_suffixes: Sequence[str] = ()) -> str | None:
|
|
result = self.get_type_and_name(key, try_suffixes = try_suffixes)
|
|
if result is None:
|
|
return None
|
|
return result[1]
|
|
|
|
def get_type(self, key: str, try_suffixes: Sequence[str] = ()) -> MODEL_TENSOR | None:
|
|
result = self.get_type_and_name(key, try_suffixes = try_suffixes)
|
|
if result is None:
|
|
return None
|
|
return result[0]
|
|
|
|
def __getitem__(self, key: str) -> str:
|
|
try:
|
|
return self.mapping[key][1]
|
|
except KeyError:
|
|
raise KeyError(key)
|
|
|
|
def __contains__(self, key: str) -> bool:
|
|
return key in self.mapping
|
|
|
|
def __repr__(self) -> str:
|
|
return repr(self.mapping)
|
|
|
|
|
|
def get_tensor_name_map(arch: MODEL_ARCH, n_blocks: int) -> TensorNameMap:
|
|
return TensorNameMap(arch, n_blocks)
|