mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-12-25 10:54:36 +00:00
dc07dc492e
* convert: Fix permute calls and method/func definitions * Cleanups for gguf-py * Minor types cleanups. * Initial implementation of handling merges and special tokens * convert: Handle special tokens and merges in vocab only mode convert: Vocab only mode no longer requires loading model tensors * gguf: Refactor tensor name mapping * convert: Fix type hint for special_token_types in SpecialVocab * Use common special vocab handling in various conversion scripts * First pass at implementing suggested changes * Second pass * gguf: SpecialVocab: Fix issue with special token content not in a dict gguf: SpecialVocab: Allow skipping handling of merges * convert-falcon-hf-to-gguf: Support --vocab-only option, bail out if no tokenizer.json * convert-gptneox-hf-to-gguf and convert: Only handle merges for BPE tokenizer * gguf: SpecialVocab: Actually set load_merges in object * Uniform args parsing and vocab only mode for convert examples * convert.py: Set gpt2 as tokenizer model when using BPE * Squish last type warning in gguf.py - yay!
278 lines
8.3 KiB
Python
Executable File
278 lines
8.3 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
# HF llama --> gguf conversion
|
|
|
|
import gguf
|
|
import os
|
|
import sys
|
|
import struct
|
|
import json
|
|
import numpy as np
|
|
import torch
|
|
import argparse
|
|
|
|
from typing import Any, List, Optional, TypeAlias
|
|
from pathlib import Path
|
|
from sentencepiece import SentencePieceProcessor
|
|
|
|
#NDArray = np.ndarray[Any, Any]
|
|
# compatible with python < 3.9
|
|
NDArray: 'TypeAlias' = 'np.ndarray[Any, Any]'
|
|
|
|
# reverse HF permute back to original pth layout
|
|
# https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/convert_llama_weights_to_hf.py
|
|
|
|
|
|
def reverse_hf_permute(weights: NDArray, n_head: int, n_kv_head: Optional[int] = None) -> NDArray:
|
|
if n_kv_head is not None and n_head != n_kv_head:
|
|
n_head //= n_kv_head
|
|
|
|
return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
|
|
.swapaxes(1, 2)
|
|
.reshape(weights.shape))
|
|
|
|
|
|
def count_model_parts(dir_model: str) -> int:
|
|
num_parts = 0
|
|
|
|
for filename in os.listdir(dir_model):
|
|
if filename.startswith("pytorch_model-"):
|
|
num_parts += 1
|
|
|
|
if num_parts > 0:
|
|
print("gguf: found " + str(num_parts) + " model parts")
|
|
|
|
return num_parts
|
|
|
|
|
|
def parse_args() -> argparse.Namespace:
|
|
parser = argparse.ArgumentParser(description="Convert a HuggingFace LLaMA model to a GGML compatible file")
|
|
parser.add_argument("--vocab-only", action="store_true", help="extract only the vocab")
|
|
parser.add_argument("--outfile", type=Path, help="path to write to; default: based on input")
|
|
parser.add_argument("model", type=Path, help="directory containing model file, or model file itself (*.bin)")
|
|
parser.add_argument("ftype", type=int, choices=[0, 1], help="output format - use 0 for float32, 1 for float16", default = 1)
|
|
return parser.parse_args()
|
|
|
|
args = parse_args()
|
|
|
|
dir_model = args.model
|
|
ftype = args.ftype
|
|
if not dir_model.is_dir():
|
|
print(f'Error: {args.model} is not a directory', file = sys.stderr)
|
|
sys.exit(1)
|
|
|
|
# possible tensor data types
|
|
# ftype == 0 -> float32
|
|
# ftype == 1 -> float16
|
|
|
|
# map from ftype to string
|
|
ftype_str = ["f32", "f16"]
|
|
|
|
if args.outfile is not None:
|
|
fname_out = args.outfile
|
|
else:
|
|
# output in the same directory as the model by default
|
|
fname_out = dir_model / f'ggml-model-{ftype_str[ftype]}.gguf'
|
|
|
|
print("gguf: loading model "+dir_model.name)
|
|
|
|
with open(dir_model / "config.json", "r", encoding="utf-8") as f:
|
|
hparams = json.load(f)
|
|
|
|
if hparams["architectures"][0] != "LlamaForCausalLM":
|
|
print("Model architecture not supported: " + hparams["architectures"][0])
|
|
|
|
sys.exit()
|
|
|
|
# get number of model parts
|
|
num_parts = count_model_parts(dir_model)
|
|
|
|
ARCH=gguf.MODEL_ARCH.LLAMA
|
|
gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH])
|
|
|
|
print("gguf: get model metadata")
|
|
|
|
block_count = hparams["num_hidden_layers"]
|
|
head_count = hparams["num_attention_heads"]
|
|
|
|
if "num_key_value_heads" in hparams:
|
|
head_count_kv = hparams["num_key_value_heads"]
|
|
else:
|
|
head_count_kv = head_count
|
|
|
|
if "_name_or_path" in hparams:
|
|
hf_repo = hparams["_name_or_path"]
|
|
else:
|
|
hf_repo = ""
|
|
|
|
if "max_sequence_length" in hparams:
|
|
ctx_length = hparams["max_sequence_length"]
|
|
elif "max_position_embeddings" in hparams:
|
|
ctx_length = hparams["max_position_embeddings"]
|
|
else:
|
|
print("gguf: can not find ctx length parameter.")
|
|
|
|
sys.exit()
|
|
|
|
|
|
gguf_writer.add_name(dir_model.name)
|
|
gguf_writer.add_source_hf_repo(hf_repo)
|
|
gguf_writer.add_tensor_data_layout("Meta AI original pth")
|
|
gguf_writer.add_context_length(ctx_length)
|
|
gguf_writer.add_embedding_length(hparams["hidden_size"])
|
|
gguf_writer.add_block_count(block_count)
|
|
gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
|
|
gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
|
|
gguf_writer.add_head_count(head_count)
|
|
gguf_writer.add_head_count_kv(head_count_kv)
|
|
gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
|
|
|
|
if "rope_scaling" in hparams and hparams["rope_scaling"] != None and "factor" in hparams["rope_scaling"]:
|
|
if "type" in hparams["rope_scaling"]:
|
|
if hparams["rope_scaling"]["type"] == "linear":
|
|
gguf_writer.add_rope_scale_linear(hparams["rope_scaling"]["factor"])
|
|
|
|
|
|
# TOKENIZATION
|
|
|
|
print("gguf: get tokenizer metadata")
|
|
|
|
tokens: List[bytes] = []
|
|
scores: List[float] = []
|
|
toktypes: List[int] = []
|
|
|
|
tokenizer_model_file = dir_model / 'tokenizer.model'
|
|
if not tokenizer_model_file.is_file():
|
|
print(f'Error: Missing {tokenizer_model_file}', file = sys.stderr)
|
|
sys.exit(1)
|
|
|
|
# vocab type sentencepiece
|
|
print("gguf: get sentencepiece tokenizer vocab, scores and token types")
|
|
|
|
tokenizer = SentencePieceProcessor(str(tokenizer_model_file))
|
|
|
|
for i in range(tokenizer.vocab_size()):
|
|
text: bytes
|
|
score: float
|
|
|
|
piece = tokenizer.id_to_piece(i)
|
|
text = piece.encode("utf-8")
|
|
score = tokenizer.get_score(i)
|
|
|
|
toktype = 1 # defualt to normal token type
|
|
if tokenizer.is_unknown(i):
|
|
toktype = 2
|
|
if tokenizer.is_control(i):
|
|
toktype = 3
|
|
|
|
# toktype = 4 is user-defined = tokens from added_tokens.json
|
|
|
|
if tokenizer.is_unused(i):
|
|
toktype = 5
|
|
if tokenizer.is_byte(i):
|
|
toktype = 6
|
|
|
|
tokens.append(text)
|
|
scores.append(score)
|
|
toktypes.append(toktype)
|
|
|
|
added_tokens_file = dir_model / 'added_tokens.json'
|
|
if added_tokens_file.is_file():
|
|
with open(added_tokens_file, "r", encoding="utf-8") as f:
|
|
addtokens_json = json.load(f)
|
|
|
|
print("gguf: get added tokens")
|
|
|
|
for key in addtokens_json:
|
|
tokens.append( key.encode("utf-8") )
|
|
scores.append(-1000.0)
|
|
toktypes.append(4) # user-defined token type
|
|
|
|
|
|
gguf_writer.add_tokenizer_model("llama")
|
|
gguf_writer.add_token_list(tokens)
|
|
gguf_writer.add_token_scores(scores)
|
|
gguf_writer.add_token_types(toktypes)
|
|
|
|
special_vocab = gguf.SpecialVocab(dir_model)
|
|
special_vocab.add_to_gguf(gguf_writer)
|
|
|
|
# TENSORS
|
|
|
|
tensor_map = gguf.get_tensor_name_map(ARCH,block_count)
|
|
|
|
# tensor info
|
|
print("gguf: get tensor metadata")
|
|
|
|
if num_parts == 0:
|
|
part_names = iter(("pytorch_model.bin",))
|
|
else:
|
|
part_names = (
|
|
f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1)
|
|
)
|
|
|
|
for part_name in part_names:
|
|
if args.vocab_only:
|
|
break
|
|
print("gguf: loading model part '" + part_name + "'")
|
|
model_part = torch.load(f"{dir_model}/{part_name}", map_location="cpu")
|
|
|
|
for name in model_part.keys():
|
|
data = model_part[name]
|
|
|
|
# we don't need these
|
|
if name.endswith(".rotary_emb.inv_freq"):
|
|
continue
|
|
|
|
old_dtype = data.dtype
|
|
|
|
# convert any unsupported data types to float32
|
|
if data.dtype != torch.float16 and data.dtype != torch.float32:
|
|
data = data.to(torch.float32)
|
|
|
|
data = data.squeeze().numpy()
|
|
|
|
# reverse permute these
|
|
if name.endswith(".q_proj.weight"):
|
|
data = reverse_hf_permute(data, head_count)
|
|
if name.endswith(".k_proj.weight"):
|
|
data = reverse_hf_permute(data, head_count, head_count_kv)
|
|
|
|
# map tensor names
|
|
new_name = tensor_map.get_name(name, try_suffixes = (".weight", ".bias"))
|
|
if new_name is None:
|
|
print("Can not map tensor '" + name + "'")
|
|
sys.exit()
|
|
|
|
n_dims = len(data.shape)
|
|
data_dtype = data.dtype
|
|
|
|
# if f32 desired, convert any float16 to float32
|
|
if ftype == 0 and data_dtype == np.float16:
|
|
data = data.astype(np.float32)
|
|
|
|
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
|
|
if ftype == 1 and data_dtype == np.float16 and n_dims == 1:
|
|
data = data.astype(np.float32)
|
|
|
|
# if f16 desired, convert any float32 2-dim weight tensors to float16
|
|
if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
|
|
data = data.astype(np.float16)
|
|
|
|
print(new_name + ", n_dims = " + str(n_dims) + ", " + str(old_dtype) + " --> " + str(data.dtype))
|
|
|
|
gguf_writer.add_tensor(new_name, data)
|
|
|
|
|
|
print("gguf: write header")
|
|
gguf_writer.write_header_to_file()
|
|
print("gguf: write metadata")
|
|
gguf_writer.write_kv_data_to_file()
|
|
if not args.vocab_only:
|
|
print("gguf: write tensors")
|
|
gguf_writer.write_tensors_to_file()
|
|
|
|
gguf_writer.close()
|
|
|
|
print(f"gguf: model successfully exported to '{fname_out}'")
|
|
print("")
|