mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-11-11 13:30:35 +00:00
3fd62a6b1c
* py : type-check all Python scripts with Pyright * server-tests : use trailing slash in openai base_url * server-tests : add more type annotations * server-tests : strip "chat" from base_url in oai_chat_completions * server-tests : model metadata is a dict * ci : disable pip cache in type-check workflow The cache is not shared between branches, and it's 250MB in size, so it would become quite a big part of the 10GB cache limit of the repo. * py : fix new type errors from master branch * tests : fix test-tokenizer-random.py Apparently, gcc applies optimisations even when pre-processing, which confuses pycparser. * ci : only show warnings and errors in python type-check The "information" level otherwise has entries from 'examples/pydantic_models_to_grammar.py', which could be confusing for someone trying to figure out what failed, considering that these messages can safely be ignored even though they look like errors.
447 lines
19 KiB
Python
Executable File
447 lines
19 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
from __future__ import annotations
|
|
|
|
import logging
|
|
import argparse
|
|
import os
|
|
import struct
|
|
import sys
|
|
from enum import IntEnum
|
|
from pathlib import Path
|
|
|
|
import numpy as np
|
|
|
|
if 'NO_LOCAL_GGUF' not in os.environ:
|
|
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
|
|
import gguf
|
|
|
|
logger = logging.getLogger("ggml-to-gguf")
|
|
|
|
|
|
class GGMLFormat(IntEnum):
|
|
GGML = 0
|
|
GGMF = 1
|
|
GGJT = 2
|
|
|
|
|
|
class GGMLFType(IntEnum):
|
|
ALL_F32 = 0
|
|
MOSTLY_F16 = 1
|
|
MOSTLY_Q4_0 = 2
|
|
MOSTLY_Q4_1 = 3
|
|
MOSTLY_Q4_1_SOME_F16 = 4
|
|
MOSTLY_Q8_0 = 7
|
|
MOSTLY_Q5_0 = 8
|
|
MOSTLY_Q5_1 = 9
|
|
MOSTLY_Q2_K = 10
|
|
MOSTLY_Q3_K_S = 11
|
|
MOSTLY_Q3_K_M = 12
|
|
MOSTLY_Q3_K_L = 13
|
|
MOSTLY_Q4_K_S = 14
|
|
MOSTLY_Q4_K_M = 15
|
|
MOSTLY_Q5_K_S = 16
|
|
MOSTLY_Q5_K_M = 17
|
|
MOSTLY_Q6_K = 18
|
|
|
|
|
|
class Hyperparameters:
|
|
def __init__(self):
|
|
self.n_vocab = self.n_embd = self.n_mult = self.n_head = 0
|
|
self.n_layer = self.n_rot = self.n_ff = 0
|
|
self.ftype = GGMLFType.ALL_F32
|
|
|
|
def set_n_ff(self, model):
|
|
ff_tensor_idx = model.tensor_map.get(b'layers.0.feed_forward.w1.weight')
|
|
assert ff_tensor_idx is not None, 'Missing layer 0 FF tensor'
|
|
ff_tensor = model.tensors[ff_tensor_idx]
|
|
self.n_ff = ff_tensor.dims[1]
|
|
|
|
def load(self, data, offset):
|
|
(
|
|
self.n_vocab,
|
|
self.n_embd,
|
|
self.n_mult,
|
|
self.n_head,
|
|
self.n_layer,
|
|
self.n_rot,
|
|
ftype,
|
|
) = struct.unpack('<7I', data[offset:offset + (4 * 7)])
|
|
try:
|
|
self.ftype = GGMLFType(ftype)
|
|
except ValueError:
|
|
raise ValueError(f'Invalid ftype {ftype}')
|
|
return 4 * 7
|
|
|
|
def __str__(self):
|
|
return f'<Hyperparameters: n_vocab={self.n_vocab}, n_embd={self.n_embd}, n_mult={self.n_mult}, n_head={self.n_head}, n_layer={self.n_layer}, n_rot={self.n_rot}, n_ff={self.n_ff}, ftype={self.ftype.name}>'
|
|
|
|
|
|
class Vocab:
|
|
def __init__(self, load_scores = True):
|
|
self.items = []
|
|
self.load_scores = load_scores
|
|
|
|
def load(self, data, offset, n_vocab):
|
|
orig_offset = offset
|
|
for _ in range(n_vocab):
|
|
itemlen = struct.unpack('<I', data[offset:offset + 4])[0]
|
|
assert itemlen < 4096, 'Absurd vocab item length'
|
|
offset += 4
|
|
item_text = bytes(data[offset:offset + itemlen])
|
|
offset += itemlen
|
|
if self.load_scores:
|
|
item_score = struct.unpack('<f', data[offset:offset + 4])[0]
|
|
offset += 4
|
|
else:
|
|
item_score = 0.0
|
|
self.items.append((item_text, item_score))
|
|
return offset - orig_offset
|
|
|
|
|
|
class Tensor:
|
|
def __init__(self, use_padding = True):
|
|
self.name = None
|
|
self.dims: tuple[int, ...] = ()
|
|
self.dtype = None
|
|
self.start_offset = 0
|
|
self.len_bytes = np.int64(0)
|
|
self.use_padding = use_padding
|
|
|
|
def load(self, data, offset):
|
|
orig_offset = offset
|
|
(n_dims, name_len, dtype) = struct.unpack('<3I', data[offset:offset + 12])
|
|
assert n_dims >= 0 and n_dims <= 4, f'Invalid tensor dimensions {n_dims}'
|
|
assert name_len < 4096, 'Absurd tensor name length'
|
|
quant = gguf.GGML_QUANT_SIZES.get(dtype)
|
|
assert quant is not None, 'Unknown tensor type'
|
|
(blksize, tysize) = quant
|
|
offset += 12
|
|
self.dtype= dtype
|
|
self.dims = struct.unpack(f'<{n_dims}I', data[offset:offset + (4 * n_dims)])
|
|
offset += 4 * n_dims
|
|
self.name = bytes(data[offset:offset + name_len])
|
|
offset += name_len
|
|
pad = ((offset + 31) & ~31) - offset if self.use_padding else 0
|
|
offset += pad
|
|
n_elems = np.prod(self.dims)
|
|
n_bytes = np.int64(np.int64(n_elems) * np.int64(tysize)) // np.int64(blksize)
|
|
self.start_offset = offset
|
|
self.len_bytes = n_bytes
|
|
offset += n_bytes
|
|
return offset - orig_offset
|
|
|
|
|
|
class GGMLModel:
|
|
def __init__(self):
|
|
self.hyperparameters = None
|
|
self.vocab = None
|
|
self.tensor_map = {}
|
|
self.tensors = []
|
|
|
|
def validate_header(self, data, offset):
|
|
magic = bytes(data[offset:offset + 4])
|
|
if magic == b'GGUF':
|
|
raise ValueError('File is already in GGUF format.')
|
|
if magic == b'lmgg':
|
|
self.file_format = GGMLFormat.GGML
|
|
self.format_version = 1
|
|
return 4
|
|
version = struct.unpack('<I', data[offset + 4:offset + 8])[0]
|
|
if magic == b'fmgg':
|
|
if version != 1:
|
|
raise ValueError(f'Cannot handle unexpected GGMF file version {version}')
|
|
self.file_format = GGMLFormat.GGMF
|
|
self.format_version = version
|
|
return 8
|
|
if magic == b'tjgg':
|
|
if version < 1 or version > 3:
|
|
raise ValueError(f'Cannot handle unexpected GGJT file version {version}')
|
|
self.file_format = GGMLFormat.GGJT
|
|
self.format_version = version
|
|
return 8
|
|
raise ValueError(f"Unexpected file magic {magic!r}! This doesn't look like a GGML format file.")
|
|
|
|
def validate_conversion(self, ftype):
|
|
err = ''
|
|
if (self.file_format < GGMLFormat.GGJT or self.format_version < 2):
|
|
if ftype not in (GGMLFType.ALL_F32, GGMLFType.MOSTLY_F16):
|
|
err = 'Quantizations changed in GGJTv2. Can only convert unquantized GGML files older than GGJTv2.'
|
|
elif (self.file_format == GGMLFormat.GGJT and self.format_version == 2):
|
|
if ftype in (GGMLFType.MOSTLY_Q4_0, GGMLFType.MOSTLY_Q4_1,
|
|
GGMLFType.MOSTLY_Q4_1_SOME_F16, GGMLFType.MOSTLY_Q8_0):
|
|
err = 'Q4 and Q8 quantizations changed in GGJTv3.'
|
|
if len(err) > 0:
|
|
raise ValueError(f'{err} Sorry, your {self.file_format.name}v{self.format_version} file of type {ftype.name} is not eligible for conversion.')
|
|
|
|
def load(self, data, offset):
|
|
offset += self.validate_header(data, offset)
|
|
hp = Hyperparameters()
|
|
offset += hp.load(data, offset)
|
|
logger.info(f'* File format: {self.file_format.name}v{self.format_version} with ftype {hp.ftype.name}')
|
|
self.validate_conversion(hp.ftype)
|
|
vocab = Vocab(load_scores = self.file_format > GGMLFormat.GGML)
|
|
offset += vocab.load(data, offset, hp.n_vocab)
|
|
tensors: list[Tensor] = []
|
|
tensor_map = {}
|
|
while offset < len(data):
|
|
tensor = Tensor(use_padding = self.file_format > GGMLFormat.GGMF)
|
|
offset += tensor.load(data, offset)
|
|
tensor_map[tensor.name] = len(tensors)
|
|
tensors.append(tensor)
|
|
self.hyperparameters = hp
|
|
self.vocab = vocab
|
|
self.tensors = tensors
|
|
self.tensor_map = tensor_map
|
|
hp.set_n_ff(self)
|
|
return offset
|
|
|
|
|
|
class GGMLToGGUF:
|
|
def __init__(self, ggml_model, data, cfg, params_override = None, vocab_override = None, special_vocab = None):
|
|
hp = ggml_model.hyperparameters
|
|
self.model = ggml_model
|
|
self.data = data
|
|
self.cfg = cfg
|
|
self.params_override = params_override
|
|
self.vocab_override = vocab_override
|
|
self.special_vocab = special_vocab
|
|
if params_override is not None:
|
|
n_kv_head = params_override.n_head_kv
|
|
else:
|
|
if cfg.gqa == 1:
|
|
n_kv_head = hp.n_head
|
|
else:
|
|
gqa = float(cfg.gqa)
|
|
n_kv_head = None
|
|
for x in range(1, 256):
|
|
if float(hp.n_head) / float(x) == gqa:
|
|
n_kv_head = x
|
|
assert n_kv_head is not None, "Couldn't determine n_kv_head from GQA param"
|
|
logger.info(f'- Guessed n_kv_head = {n_kv_head} based on GQA {cfg.gqa}')
|
|
self.n_kv_head = n_kv_head
|
|
self.name_map = gguf.get_tensor_name_map(gguf.MODEL_ARCH.LLAMA, ggml_model.hyperparameters.n_layer)
|
|
|
|
def save(self):
|
|
logger.info('* Preparing to save GGUF file')
|
|
gguf_writer = gguf.GGUFWriter(
|
|
self.cfg.output,
|
|
gguf.MODEL_ARCH_NAMES[gguf.MODEL_ARCH.LLAMA],
|
|
use_temp_file = False)
|
|
self.add_params(gguf_writer)
|
|
self.add_vocab(gguf_writer)
|
|
if self.special_vocab is not None:
|
|
self.special_vocab.add_to_gguf(gguf_writer)
|
|
self.add_tensors(gguf_writer)
|
|
logger.info(" gguf: write header")
|
|
gguf_writer.write_header_to_file()
|
|
logger.info(" gguf: write metadata")
|
|
gguf_writer.write_kv_data_to_file()
|
|
logger.info(" gguf: write tensors")
|
|
gguf_writer.write_tensors_to_file()
|
|
gguf_writer.close()
|
|
|
|
def add_params(self, gguf_writer):
|
|
hp = self.model.hyperparameters
|
|
cfg = self.cfg
|
|
if cfg.desc is not None:
|
|
desc = cfg.desc
|
|
else:
|
|
desc = f'converted from legacy {self.model.file_format.name}v{self.model.format_version} {hp.ftype.name} format'
|
|
try:
|
|
# Filenames aren't necessarily valid UTF8.
|
|
name = cfg.name if cfg.name is not None else cfg.input.name
|
|
except UnicodeDecodeError:
|
|
name = None
|
|
logger.info('* Adding model parameters and KV items')
|
|
if name is not None:
|
|
gguf_writer.add_name(name)
|
|
gguf_writer.add_description(desc)
|
|
gguf_writer.add_file_type(int(hp.ftype))
|
|
if self.params_override is not None:
|
|
po = self.params_override
|
|
assert po.n_embd == hp.n_embd, 'Model hyperparams mismatch'
|
|
assert po.n_layer == hp.n_layer, 'Model hyperparams mismatch'
|
|
assert po.n_head == hp.n_head, 'Model hyperparams mismatch'
|
|
gguf_writer.add_context_length (po.n_ctx)
|
|
gguf_writer.add_embedding_length (po.n_embd)
|
|
gguf_writer.add_block_count (po.n_layer)
|
|
gguf_writer.add_feed_forward_length (po.n_ff)
|
|
gguf_writer.add_rope_dimension_count(po.n_embd // po.n_head)
|
|
gguf_writer.add_head_count (po.n_head)
|
|
gguf_writer.add_head_count_kv (po.n_head_kv)
|
|
gguf_writer.add_layer_norm_rms_eps (po.f_norm_eps)
|
|
return
|
|
gguf_writer.add_context_length(cfg.context_length)
|
|
gguf_writer.add_embedding_length(hp.n_embd)
|
|
gguf_writer.add_block_count(hp.n_layer)
|
|
gguf_writer.add_feed_forward_length(hp.n_ff)
|
|
gguf_writer.add_rope_dimension_count(hp.n_embd // hp.n_head)
|
|
gguf_writer.add_head_count(hp.n_head)
|
|
gguf_writer.add_head_count_kv(self.n_kv_head)
|
|
gguf_writer.add_layer_norm_rms_eps(float(cfg.eps))
|
|
|
|
def add_vocab(self, gguf_writer):
|
|
hp = self.model.hyperparameters
|
|
gguf_writer.add_tokenizer_model('llama')
|
|
gguf_writer.add_tokenizer_pre('default')
|
|
tokens = []
|
|
scores = []
|
|
toktypes = []
|
|
if self.vocab_override is not None:
|
|
vo = self.vocab_override
|
|
logger.info('* Adding vocab item(s)')
|
|
for (idx, (vbytes, score, ttype)) in enumerate(vo.all_tokens()):
|
|
tokens.append(vbytes)
|
|
scores.append(score)
|
|
toktypes.append(ttype)
|
|
assert len(tokens) == hp.n_vocab, \
|
|
f'Override vocab has a different number of items than hyperparameters - override = {len(tokens)} but n_vocab={hp.n_vocab}'
|
|
gguf_writer.add_token_list(tokens)
|
|
gguf_writer.add_token_scores(scores)
|
|
if len(toktypes) > 0:
|
|
gguf_writer.add_token_types(toktypes)
|
|
return
|
|
logger.info(f'* Adding {hp.n_vocab} vocab item(s)')
|
|
assert len(self.model.vocab.items) >= 3, 'Cannot handle unexpectedly short model vocab'
|
|
for (tokid, (vbytes, vscore)) in enumerate(self.model.vocab.items):
|
|
tt = 1 # Normal
|
|
# Special handling for UNK, BOS, EOS tokens.
|
|
if tokid <= 2:
|
|
if tokid == 0:
|
|
vbytes = b'<unk>'
|
|
tt = 2
|
|
elif tokid == 1:
|
|
vbytes = b'<s>'
|
|
tt = 3
|
|
else:
|
|
vbytes = b'</s>'
|
|
tt = 3
|
|
elif len(vbytes) == 0:
|
|
tt = 3 # Control
|
|
elif tokid >= 3 and tokid <= 258 and len(vbytes) == 1:
|
|
vbytes = bytes(f'<0x{vbytes[0]:02X}>', encoding = 'UTF-8')
|
|
tt = 6 # Byte
|
|
else:
|
|
vbytes = vbytes.replace(b' ', b'\xe2\x96\x81')
|
|
toktypes.append(tt)
|
|
tokens.append(vbytes)
|
|
scores.append(vscore)
|
|
gguf_writer.add_token_list(tokens)
|
|
gguf_writer.add_token_scores(scores)
|
|
gguf_writer.add_token_types(toktypes)
|
|
gguf_writer.add_unk_token_id(0)
|
|
gguf_writer.add_bos_token_id(1)
|
|
gguf_writer.add_eos_token_id(2)
|
|
|
|
def add_tensors(self, gguf_writer):
|
|
tensor_map = self.name_map
|
|
data = self.data
|
|
logger.info(f'* Adding {len(self.model.tensors)} tensor(s)')
|
|
for tensor in self.model.tensors:
|
|
name = str(tensor.name, 'UTF-8')
|
|
mapped_name = tensor_map.get_name(name, try_suffixes = (".weight", ".bias"))
|
|
assert mapped_name is not None, f'Bad name {name}'
|
|
tempdims = list(tensor.dims[:])
|
|
if len(tempdims) > 1:
|
|
temp = tempdims[1]
|
|
tempdims[1] = tempdims[0]
|
|
tempdims[0] = temp
|
|
gguf_writer.add_tensor(
|
|
mapped_name,
|
|
data[tensor.start_offset:tensor.start_offset + tensor.len_bytes],
|
|
raw_shape = tempdims,
|
|
raw_dtype = tensor.dtype)
|
|
|
|
|
|
def handle_metadata(cfg, hp):
|
|
import examples.convert_legacy_llama as convert
|
|
|
|
assert cfg.model_metadata_dir.is_dir(), 'Metadata dir is not a directory'
|
|
hf_config_path = cfg.model_metadata_dir / "config.json"
|
|
orig_config_path = cfg.model_metadata_dir / "params.json"
|
|
# We pass a fake model here. "original" mode will check the shapes of some
|
|
# tensors if information is missing in the .json file: other than that, the
|
|
# model data isn't used so this should be safe (at least for now).
|
|
fakemodel = {
|
|
'tok_embeddings.weight': convert.LazyTensor.__new__(convert.LazyTensor),
|
|
'layers.0.feed_forward.w1.weight': convert.LazyTensor.__new__(convert.LazyTensor),
|
|
}
|
|
fakemodel['tok_embeddings.weight'].shape = [hp.n_vocab]
|
|
fakemodel['layers.0.feed_forward.w1.weight'].shape = [hp.n_ff]
|
|
if hf_config_path.exists():
|
|
params = convert.Params.loadHFTransformerJson(fakemodel, hf_config_path)
|
|
elif orig_config_path.exists():
|
|
params = convert.Params.loadOriginalParamsJson(fakemodel, orig_config_path)
|
|
else:
|
|
raise ValueError('Unable to load metadata')
|
|
vocab_path = Path(cfg.vocab_dir if cfg.vocab_dir is not None else cfg.model_metadata_dir)
|
|
vocab_factory = convert.VocabFactory(vocab_path)
|
|
vocab, special_vocab = vocab_factory.load_vocab(cfg.vocabtype.split(","), cfg.model_metadata_dir)
|
|
convert.check_vocab_size(params, vocab)
|
|
return params, vocab, special_vocab
|
|
|
|
|
|
def handle_args():
|
|
parser = argparse.ArgumentParser(description = 'Convert GGML models to GGUF')
|
|
parser.add_argument('--input', '-i', type = Path, required = True,
|
|
help = 'Input GGMLv3 filename')
|
|
parser.add_argument('--output', '-o', type = Path, required = True,
|
|
help ='Output GGUF filename')
|
|
parser.add_argument('--name',
|
|
help = 'Set model name')
|
|
parser.add_argument('--desc',
|
|
help = 'Set model description')
|
|
parser.add_argument('--gqa', type = int, default = 1,
|
|
help = 'grouped-query attention factor (use 8 for LLaMA2 70B)')
|
|
parser.add_argument('--eps', default = '5.0e-06',
|
|
help = 'RMS norm eps: Use 1e-6 for LLaMA1 and OpenLLaMA, use 1e-5 for LLaMA2')
|
|
parser.add_argument('--context-length', '-c', type=int, default = 2048,
|
|
help = 'Default max context length: LLaMA1 is typically 2048, LLaMA2 is typically 4096')
|
|
parser.add_argument('--model-metadata-dir', '-m', type = Path,
|
|
help ='Load HuggingFace/.pth vocab and metadata from the specified directory')
|
|
parser.add_argument("--vocab-dir", type=Path,
|
|
help="directory containing tokenizer.model, if separate from model file - only meaningful with --model-metadata-dir")
|
|
parser.add_argument("--vocabtype", default="spm,hfft",
|
|
help="vocab format - only meaningful with --model-metadata-dir and/or --vocab-dir (default: spm,hfft)")
|
|
parser.add_argument("--verbose", action="store_true", help="increase output verbosity")
|
|
return parser.parse_args()
|
|
|
|
|
|
def main():
|
|
cfg = handle_args()
|
|
logging.basicConfig(level=logging.DEBUG if cfg.verbose else logging.INFO)
|
|
logger.info(f'* Using config: {cfg}')
|
|
logger.warning('=== WARNING === Be aware that this conversion script is best-effort. Use a native GGUF model if possible. === WARNING ===')
|
|
if cfg.model_metadata_dir is None and (cfg.gqa == 1 or cfg.eps == '5.0e-06'):
|
|
logger.info('- Note: If converting LLaMA2, specifying "--eps 1e-5" is required. 70B models also need "--gqa 8".')
|
|
data = np.memmap(cfg.input, mode = 'r')
|
|
model = GGMLModel()
|
|
logger.info('* Scanning GGML input file')
|
|
offset = model.load(data, 0) # noqa
|
|
logger.info(f'* GGML model hyperparameters: {model.hyperparameters}')
|
|
vocab_override = None
|
|
params_override = None
|
|
special_vocab = None
|
|
if cfg.model_metadata_dir is not None:
|
|
(params_override, vocab_override, special_vocab) = handle_metadata(cfg, model.hyperparameters)
|
|
logger.info('!! Note: When overriding params the --gqa, --eps and --context-length options are ignored.')
|
|
logger.info(f'* Overriding params: {params_override}')
|
|
logger.info(f'* Overriding vocab: {vocab_override}')
|
|
logger.info(f'* Special vocab: {special_vocab}')
|
|
else:
|
|
logger.warning('\n=== WARNING === Special tokens may not be converted correctly. Use --model-metadata-dir if possible === WARNING ===\n')
|
|
if model.file_format == GGMLFormat.GGML:
|
|
logger.info('! This is a very old GGML file that does not contain vocab scores. Strongly recommend using model metadata!')
|
|
converter = GGMLToGGUF(
|
|
model, data, cfg,
|
|
params_override = params_override,
|
|
vocab_override = vocab_override,
|
|
special_vocab = special_vocab
|
|
)
|
|
converter.save()
|
|
logger.info(f'* Successful completion. Output saved to: {cfg.output}')
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|