mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-12-26 03:14:35 +00:00
35a84916fb
The prompt cache constitutes a nice speed up when using the same prompt prefix across multiple evaluations, but when using it, it will also be updated, which is not always desirable. One use case is to have a large prompt containing some context and usage rules, and a second part containing variable data of the problem being studied. In this case it's desirable to be able to save the first part once, and to always reuse it as-is without updating it with the second part. The new argument --prompt-cache-ro enables this read-only mode on the prompt cache. The prompt's contents that match the cache are loaded from the cache but the rest is not modified. This allowed to reduce a total analysis time from 112s to 49.7s here, without having to backup and restore a copy of the prompt, which takes significant time at 500 MB. Signed-off-by: Willy Tarreau <w@1wt.eu>
643 lines
25 KiB
C++
643 lines
25 KiB
C++
// Defines sigaction on msys:
|
|
#ifndef _GNU_SOURCE
|
|
#define _GNU_SOURCE
|
|
#endif
|
|
|
|
#include "common.h"
|
|
#include "llama.h"
|
|
#include "build-info.h"
|
|
|
|
#include <cassert>
|
|
#include <cinttypes>
|
|
#include <cmath>
|
|
#include <cstdio>
|
|
#include <cstring>
|
|
#include <ctime>
|
|
#include <fstream>
|
|
#include <iostream>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
|
|
#include <signal.h>
|
|
#include <unistd.h>
|
|
#elif defined (_WIN32)
|
|
#define WIN32_LEAN_AND_MEAN
|
|
#define NOMINMAX
|
|
#include <windows.h>
|
|
#include <signal.h>
|
|
#endif
|
|
|
|
static console_state con_st;
|
|
static llama_context ** g_ctx;
|
|
|
|
static bool is_interacting = false;
|
|
|
|
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32)
|
|
void sigint_handler(int signo) {
|
|
if (signo == SIGINT) {
|
|
if (!is_interacting) {
|
|
is_interacting=true;
|
|
} else {
|
|
console_cleanup(con_st);
|
|
printf("\n");
|
|
llama_print_timings(*g_ctx);
|
|
_exit(130);
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
int main(int argc, char ** argv) {
|
|
gpt_params params;
|
|
|
|
if (gpt_params_parse(argc, argv, params) == false) {
|
|
return 1;
|
|
}
|
|
|
|
// save choice to use color for later
|
|
// (note for later: this is a slightly awkward choice)
|
|
con_st.use_color = params.use_color;
|
|
con_st.multiline_input = params.multiline_input;
|
|
console_init(con_st);
|
|
atexit([]() { console_cleanup(con_st); });
|
|
|
|
if (params.perplexity) {
|
|
printf("\n************\n");
|
|
printf("%s: please use the 'perplexity' tool for perplexity calculations\n", __func__);
|
|
printf("************\n\n");
|
|
|
|
return 0;
|
|
}
|
|
|
|
if (params.embedding) {
|
|
printf("\n************\n");
|
|
printf("%s: please use the 'embedding' tool for embedding calculations\n", __func__);
|
|
printf("************\n\n");
|
|
|
|
return 0;
|
|
}
|
|
|
|
if (params.n_ctx > 2048) {
|
|
fprintf(stderr, "%s: warning: model does not support context sizes greater than 2048 tokens (%d specified);"
|
|
"expect poor results\n", __func__, params.n_ctx);
|
|
}
|
|
|
|
fprintf(stderr, "%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT);
|
|
|
|
if (params.seed < 0) {
|
|
params.seed = time(NULL);
|
|
}
|
|
|
|
fprintf(stderr, "%s: seed = %d\n", __func__, params.seed);
|
|
|
|
std::mt19937 rng(params.seed);
|
|
if (params.random_prompt) {
|
|
params.prompt = gpt_random_prompt(rng);
|
|
}
|
|
|
|
llama_init_backend();
|
|
|
|
llama_context * ctx;
|
|
g_ctx = &ctx;
|
|
|
|
// load the model and apply lora adapter, if any
|
|
ctx = llama_init_from_gpt_params(params);
|
|
if (ctx == NULL) {
|
|
fprintf(stderr, "%s: error: unable to load model\n", __func__);
|
|
return 1;
|
|
}
|
|
|
|
// print system information
|
|
{
|
|
fprintf(stderr, "\n");
|
|
fprintf(stderr, "system_info: n_threads = %d / %d | %s\n",
|
|
params.n_threads, std::thread::hardware_concurrency(), llama_print_system_info());
|
|
}
|
|
|
|
// determine the maximum memory usage needed to do inference for the given n_batch and n_predict parameters
|
|
// uncomment the "used_mem" line in llama.cpp to see the results
|
|
if (params.mem_test) {
|
|
{
|
|
const std::vector<llama_token> tmp(params.n_batch, llama_token_bos());
|
|
llama_eval(ctx, tmp.data(), tmp.size(), 0, params.n_threads);
|
|
}
|
|
|
|
{
|
|
const std::vector<llama_token> tmp = { 0, };
|
|
llama_eval(ctx, tmp.data(), tmp.size(), params.n_predict - 1, params.n_threads);
|
|
}
|
|
|
|
llama_print_timings(ctx);
|
|
llama_free(ctx);
|
|
|
|
return 0;
|
|
}
|
|
|
|
// export the cgraph and exit
|
|
if (params.export_cgraph) {
|
|
llama_eval_export(ctx, "llama.ggml");
|
|
llama_free(ctx);
|
|
|
|
return 0;
|
|
}
|
|
|
|
std::string path_session = params.path_prompt_cache;
|
|
std::vector<llama_token> session_tokens;
|
|
|
|
if (!path_session.empty()) {
|
|
fprintf(stderr, "%s: attempting to load saved session from '%s'\n", __func__, path_session.c_str());
|
|
|
|
// fopen to check for existing session
|
|
FILE * fp = std::fopen(path_session.c_str(), "rb");
|
|
if (fp != NULL) {
|
|
std::fclose(fp);
|
|
|
|
session_tokens.resize(params.n_ctx);
|
|
size_t n_token_count_out = 0;
|
|
if (!llama_load_session_file(ctx, path_session.c_str(), session_tokens.data(), session_tokens.capacity(), &n_token_count_out)) {
|
|
fprintf(stderr, "%s: error: failed to load session file '%s'\n", __func__, path_session.c_str());
|
|
return 1;
|
|
}
|
|
session_tokens.resize(n_token_count_out);
|
|
llama_set_rng_seed(ctx, params.seed);
|
|
|
|
fprintf(stderr, "%s: loaded a session with prompt size of %d tokens\n", __func__, (int) session_tokens.size());
|
|
} else {
|
|
fprintf(stderr, "%s: session file does not exist, will create\n", __func__);
|
|
}
|
|
}
|
|
|
|
// tokenize the prompt
|
|
std::vector<llama_token> embd_inp;
|
|
|
|
if (params.interactive_first || params.instruct || !params.prompt.empty() || session_tokens.empty()) {
|
|
// Add a space in front of the first character to match OG llama tokenizer behavior
|
|
params.prompt.insert(0, 1, ' ');
|
|
|
|
embd_inp = ::llama_tokenize(ctx, params.prompt, true);
|
|
} else {
|
|
embd_inp = session_tokens;
|
|
}
|
|
|
|
const int n_ctx = llama_n_ctx(ctx);
|
|
|
|
if ((int) embd_inp.size() > n_ctx - 4) {
|
|
fprintf(stderr, "%s: error: prompt is too long (%d tokens, max %d)\n", __func__, (int) embd_inp.size(), n_ctx - 4);
|
|
return 1;
|
|
}
|
|
|
|
// debug message about similarity of saved session, if applicable
|
|
size_t n_matching_session_tokens = 0;
|
|
if (session_tokens.size()) {
|
|
for (llama_token id : session_tokens) {
|
|
if (n_matching_session_tokens >= embd_inp.size() || id != embd_inp[n_matching_session_tokens]) {
|
|
break;
|
|
}
|
|
n_matching_session_tokens++;
|
|
}
|
|
if (params.prompt.empty() && n_matching_session_tokens == embd_inp.size()) {
|
|
fprintf(stderr, "%s: using full prompt from session file\n", __func__);
|
|
} else if (n_matching_session_tokens >= embd_inp.size()) {
|
|
fprintf(stderr, "%s: session file has exact match for prompt!\n", __func__);
|
|
} else if (n_matching_session_tokens < (embd_inp.size() / 2)) {
|
|
fprintf(stderr, "%s: warning: session file has low similarity to prompt (%zu / %zu tokens); will mostly be reevaluated\n",
|
|
__func__, n_matching_session_tokens, embd_inp.size());
|
|
} else {
|
|
fprintf(stderr, "%s: session file matches %zu / %zu tokens of prompt\n",
|
|
__func__, n_matching_session_tokens, embd_inp.size());
|
|
}
|
|
}
|
|
|
|
// if we will use the cache for the full prompt without reaching the end of the cache, force
|
|
// reevaluation of the last token token to recalculate the cached logits
|
|
if (!embd_inp.empty() && n_matching_session_tokens == embd_inp.size() &&
|
|
session_tokens.size() > embd_inp.size()) {
|
|
session_tokens.resize(embd_inp.size() - 1);
|
|
}
|
|
|
|
// number of tokens to keep when resetting context
|
|
if (params.n_keep < 0 || params.n_keep > (int) embd_inp.size() || params.instruct) {
|
|
params.n_keep = (int)embd_inp.size();
|
|
}
|
|
|
|
// prefix & suffix for instruct mode
|
|
const auto inp_pfx = ::llama_tokenize(ctx, "\n\n### Instruction:\n\n", true);
|
|
const auto inp_sfx = ::llama_tokenize(ctx, "\n\n### Response:\n\n", false);
|
|
|
|
// in instruct mode, we inject a prefix and a suffix to each input by the user
|
|
if (params.instruct) {
|
|
params.interactive_first = true;
|
|
params.antiprompt.push_back("### Instruction:\n\n");
|
|
}
|
|
|
|
// enable interactive mode if interactive start is specified
|
|
if (params.interactive_first) {
|
|
params.interactive = true;
|
|
}
|
|
|
|
// determine newline token
|
|
auto llama_token_newline = ::llama_tokenize(ctx, "\n", false);
|
|
|
|
if (params.verbose_prompt) {
|
|
fprintf(stderr, "\n");
|
|
fprintf(stderr, "%s: prompt: '%s'\n", __func__, params.prompt.c_str());
|
|
fprintf(stderr, "%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size());
|
|
for (int i = 0; i < (int) embd_inp.size(); i++) {
|
|
fprintf(stderr, "%6d -> '%s'\n", embd_inp[i], llama_token_to_str(ctx, embd_inp[i]));
|
|
}
|
|
if (params.n_keep > 0) {
|
|
fprintf(stderr, "%s: static prompt based on n_keep: '", __func__);
|
|
for (int i = 0; i < params.n_keep; i++) {
|
|
fprintf(stderr, "%s", llama_token_to_str(ctx, embd_inp[i]));
|
|
}
|
|
fprintf(stderr, "'\n");
|
|
}
|
|
fprintf(stderr, "\n");
|
|
}
|
|
|
|
if (params.interactive) {
|
|
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
|
|
struct sigaction sigint_action;
|
|
sigint_action.sa_handler = sigint_handler;
|
|
sigemptyset (&sigint_action.sa_mask);
|
|
sigint_action.sa_flags = 0;
|
|
sigaction(SIGINT, &sigint_action, NULL);
|
|
#elif defined (_WIN32)
|
|
auto console_ctrl_handler = +[](DWORD ctrl_type) -> BOOL {
|
|
return (ctrl_type == CTRL_C_EVENT) ? (sigint_handler(SIGINT), true) : false;
|
|
};
|
|
SetConsoleCtrlHandler(static_cast<PHANDLER_ROUTINE>(console_ctrl_handler), true);
|
|
#endif
|
|
|
|
fprintf(stderr, "%s: interactive mode on.\n", __func__);
|
|
|
|
if (params.antiprompt.size()) {
|
|
for (auto antiprompt : params.antiprompt) {
|
|
fprintf(stderr, "Reverse prompt: '%s'\n", antiprompt.c_str());
|
|
}
|
|
}
|
|
|
|
if (!params.input_prefix.empty()) {
|
|
fprintf(stderr, "Input prefix: '%s'\n", params.input_prefix.c_str());
|
|
}
|
|
|
|
if (!params.input_suffix.empty()) {
|
|
fprintf(stderr, "Input suffix: '%s'\n", params.input_suffix.c_str());
|
|
}
|
|
}
|
|
fprintf(stderr, "sampling: repeat_last_n = %d, repeat_penalty = %f, presence_penalty = %f, frequency_penalty = %f, top_k = %d, tfs_z = %f, top_p = %f, typical_p = %f, temp = %f, mirostat = %d, mirostat_lr = %f, mirostat_ent = %f\n",
|
|
params.repeat_last_n, params.repeat_penalty, params.presence_penalty, params.frequency_penalty, params.top_k, params.tfs_z, params.top_p, params.typical_p, params.temp, params.mirostat, params.mirostat_eta, params.mirostat_tau);
|
|
fprintf(stderr, "generate: n_ctx = %d, n_batch = %d, n_predict = %d, n_keep = %d\n", n_ctx, params.n_batch, params.n_predict, params.n_keep);
|
|
fprintf(stderr, "\n\n");
|
|
|
|
// TODO: replace with ring-buffer
|
|
std::vector<llama_token> last_n_tokens(n_ctx);
|
|
std::fill(last_n_tokens.begin(), last_n_tokens.end(), 0);
|
|
|
|
if (params.interactive) {
|
|
const char *control_message;
|
|
if (con_st.multiline_input) {
|
|
control_message = " - To return control to LLaMa, end your input with '\\'.\n"
|
|
" - To return control without starting a new line, end your input with '/'.\n";
|
|
} else {
|
|
control_message = " - Press Return to return control to LLaMa.\n"
|
|
" - To return control without starting a new line, end your input with '/'.\n"
|
|
" - If you want to submit another line, end your input with '\\'.\n";
|
|
}
|
|
fprintf(stderr, "== Running in interactive mode. ==\n"
|
|
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32)
|
|
" - Press Ctrl+C to interject at any time.\n"
|
|
#endif
|
|
"%s\n", control_message);
|
|
|
|
is_interacting = params.interactive_first;
|
|
}
|
|
|
|
bool is_antiprompt = false;
|
|
bool input_echo = true;
|
|
bool need_to_save_session = !path_session.empty() && n_matching_session_tokens < embd_inp.size();
|
|
|
|
int n_past = 0;
|
|
int n_remain = params.n_predict;
|
|
int n_consumed = 0;
|
|
int n_session_consumed = 0;
|
|
|
|
// the first thing we will do is to output the prompt, so set color accordingly
|
|
console_set_color(con_st, CONSOLE_COLOR_PROMPT);
|
|
|
|
std::vector<llama_token> embd;
|
|
|
|
while ((n_remain != 0 && !is_antiprompt) || params.interactive) {
|
|
// predict
|
|
if (embd.size() > 0) {
|
|
// infinite text generation via context swapping
|
|
// if we run out of context:
|
|
// - take the n_keep first tokens from the original prompt (via n_past)
|
|
// - take half of the last (n_ctx - n_keep) tokens and recompute the logits in batches
|
|
if (n_past + (int) embd.size() > n_ctx) {
|
|
const int n_left = n_past - params.n_keep;
|
|
|
|
// always keep the first token - BOS
|
|
n_past = std::max(1, params.n_keep);
|
|
|
|
// insert n_left/2 tokens at the start of embd from last_n_tokens
|
|
embd.insert(embd.begin(), last_n_tokens.begin() + n_ctx - n_left/2 - embd.size(), last_n_tokens.end() - embd.size());
|
|
|
|
// stop saving session if we run out of context
|
|
path_session.clear();
|
|
|
|
//printf("\n---\n");
|
|
//printf("resetting: '");
|
|
//for (int i = 0; i < (int) embd.size(); i++) {
|
|
// printf("%s", llama_token_to_str(ctx, embd[i]));
|
|
//}
|
|
//printf("'\n");
|
|
//printf("\n---\n");
|
|
}
|
|
|
|
// try to reuse a matching prefix from the loaded session instead of re-eval (via n_past)
|
|
if (n_session_consumed < (int) session_tokens.size()) {
|
|
size_t i = 0;
|
|
for ( ; i < embd.size(); i++) {
|
|
if (embd[i] != session_tokens[n_session_consumed]) {
|
|
session_tokens.resize(n_session_consumed);
|
|
break;
|
|
}
|
|
|
|
n_past++;
|
|
n_session_consumed++;
|
|
|
|
if (n_session_consumed >= (int) session_tokens.size()) {
|
|
++i;
|
|
break;
|
|
}
|
|
}
|
|
if (i > 0) {
|
|
embd.erase(embd.begin(), embd.begin() + i);
|
|
}
|
|
}
|
|
|
|
// evaluate tokens in batches
|
|
// embd is typically prepared beforehand to fit within a batch, but not always
|
|
for (int i = 0; i < (int) embd.size(); i += params.n_batch) {
|
|
int n_eval = (int) embd.size() - i;
|
|
if (n_eval > params.n_batch) {
|
|
n_eval = params.n_batch;
|
|
}
|
|
if (llama_eval(ctx, &embd[i], n_eval, n_past, params.n_threads)) {
|
|
fprintf(stderr, "%s : failed to eval\n", __func__);
|
|
return 1;
|
|
}
|
|
n_past += n_eval;
|
|
}
|
|
|
|
if (embd.size() > 0 && !path_session.empty()) {
|
|
session_tokens.insert(session_tokens.end(), embd.begin(), embd.end());
|
|
n_session_consumed = session_tokens.size();
|
|
}
|
|
}
|
|
|
|
embd.clear();
|
|
|
|
if ((int) embd_inp.size() <= n_consumed && !is_interacting) {
|
|
// out of user input, sample next token
|
|
const float temp = params.temp;
|
|
const int32_t top_k = params.top_k <= 0 ? llama_n_vocab(ctx) : params.top_k;
|
|
const float top_p = params.top_p;
|
|
const float tfs_z = params.tfs_z;
|
|
const float typical_p = params.typical_p;
|
|
const int32_t repeat_last_n = params.repeat_last_n < 0 ? n_ctx : params.repeat_last_n;
|
|
const float repeat_penalty = params.repeat_penalty;
|
|
const float alpha_presence = params.presence_penalty;
|
|
const float alpha_frequency = params.frequency_penalty;
|
|
const int mirostat = params.mirostat;
|
|
const float mirostat_tau = params.mirostat_tau;
|
|
const float mirostat_eta = params.mirostat_eta;
|
|
const bool penalize_nl = params.penalize_nl;
|
|
|
|
// optionally save the session on first sample (for faster prompt loading next time)
|
|
if (!path_session.empty() && need_to_save_session && !params.prompt_cache_ro) {
|
|
need_to_save_session = false;
|
|
llama_save_session_file(ctx, path_session.c_str(), session_tokens.data(), session_tokens.size());
|
|
}
|
|
|
|
llama_token id = 0;
|
|
|
|
{
|
|
auto logits = llama_get_logits(ctx);
|
|
auto n_vocab = llama_n_vocab(ctx);
|
|
|
|
// Apply params.logit_bias map
|
|
for (auto it = params.logit_bias.begin(); it != params.logit_bias.end(); it++) {
|
|
logits[it->first] += it->second;
|
|
}
|
|
|
|
std::vector<llama_token_data> candidates;
|
|
candidates.reserve(n_vocab);
|
|
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
|
|
candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
|
|
}
|
|
|
|
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
|
|
|
|
// Apply penalties
|
|
float nl_logit = logits[llama_token_nl()];
|
|
auto last_n_repeat = std::min(std::min((int)last_n_tokens.size(), repeat_last_n), n_ctx);
|
|
llama_sample_repetition_penalty(ctx, &candidates_p,
|
|
last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
|
|
last_n_repeat, repeat_penalty);
|
|
llama_sample_frequency_and_presence_penalties(ctx, &candidates_p,
|
|
last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
|
|
last_n_repeat, alpha_frequency, alpha_presence);
|
|
if (!penalize_nl) {
|
|
logits[llama_token_nl()] = nl_logit;
|
|
}
|
|
|
|
if (temp <= 0) {
|
|
// Greedy sampling
|
|
id = llama_sample_token_greedy(ctx, &candidates_p);
|
|
} else {
|
|
if (mirostat == 1) {
|
|
static float mirostat_mu = 2.0f * mirostat_tau;
|
|
const int mirostat_m = 100;
|
|
llama_sample_temperature(ctx, &candidates_p, temp);
|
|
id = llama_sample_token_mirostat(ctx, &candidates_p, mirostat_tau, mirostat_eta, mirostat_m, &mirostat_mu);
|
|
} else if (mirostat == 2) {
|
|
static float mirostat_mu = 2.0f * mirostat_tau;
|
|
llama_sample_temperature(ctx, &candidates_p, temp);
|
|
id = llama_sample_token_mirostat_v2(ctx, &candidates_p, mirostat_tau, mirostat_eta, &mirostat_mu);
|
|
} else {
|
|
// Temperature sampling
|
|
llama_sample_top_k(ctx, &candidates_p, top_k, 1);
|
|
llama_sample_tail_free(ctx, &candidates_p, tfs_z, 1);
|
|
llama_sample_typical(ctx, &candidates_p, typical_p, 1);
|
|
llama_sample_top_p(ctx, &candidates_p, top_p, 1);
|
|
llama_sample_temperature(ctx, &candidates_p, temp);
|
|
id = llama_sample_token(ctx, &candidates_p);
|
|
}
|
|
}
|
|
// printf("`%d`", candidates_p.size);
|
|
|
|
last_n_tokens.erase(last_n_tokens.begin());
|
|
last_n_tokens.push_back(id);
|
|
}
|
|
|
|
// replace end of text token with newline token when in interactive mode
|
|
if (id == llama_token_eos() && params.interactive && !params.instruct) {
|
|
id = llama_token_newline.front();
|
|
if (params.antiprompt.size() != 0) {
|
|
// tokenize and inject first reverse prompt
|
|
const auto first_antiprompt = ::llama_tokenize(ctx, params.antiprompt.front(), false);
|
|
embd_inp.insert(embd_inp.end(), first_antiprompt.begin(), first_antiprompt.end());
|
|
}
|
|
}
|
|
|
|
// add it to the context
|
|
embd.push_back(id);
|
|
|
|
// echo this to console
|
|
input_echo = true;
|
|
|
|
// decrement remaining sampling budget
|
|
--n_remain;
|
|
} else {
|
|
// some user input remains from prompt or interaction, forward it to processing
|
|
while ((int) embd_inp.size() > n_consumed) {
|
|
embd.push_back(embd_inp[n_consumed]);
|
|
last_n_tokens.erase(last_n_tokens.begin());
|
|
last_n_tokens.push_back(embd_inp[n_consumed]);
|
|
++n_consumed;
|
|
if ((int) embd.size() >= params.n_batch) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// display text
|
|
if (input_echo) {
|
|
for (auto id : embd) {
|
|
printf("%s", llama_token_to_str(ctx, id));
|
|
}
|
|
fflush(stdout);
|
|
}
|
|
// reset color to default if we there is no pending user input
|
|
if (input_echo && (int)embd_inp.size() == n_consumed) {
|
|
console_set_color(con_st, CONSOLE_COLOR_DEFAULT);
|
|
}
|
|
|
|
// if not currently processing queued inputs;
|
|
if ((int) embd_inp.size() <= n_consumed) {
|
|
|
|
// check for reverse prompt
|
|
if (params.antiprompt.size()) {
|
|
std::string last_output;
|
|
for (auto id : last_n_tokens) {
|
|
last_output += llama_token_to_str(ctx, id);
|
|
}
|
|
|
|
is_antiprompt = false;
|
|
// Check if each of the reverse prompts appears at the end of the output.
|
|
// If we're not running interactively, the reverse prompt might be tokenized with some following characters
|
|
// so we'll compensate for that by widening the search window a bit.
|
|
for (std::string & antiprompt : params.antiprompt) {
|
|
size_t extra_padding = params.interactive ? 0 : 2;
|
|
size_t search_start_pos = last_output.length() > static_cast<size_t>(antiprompt.length() + extra_padding)
|
|
? last_output.length() - static_cast<size_t>(antiprompt.length() + extra_padding)
|
|
: 0;
|
|
|
|
if (last_output.find(antiprompt.c_str(), search_start_pos) != std::string::npos) {
|
|
if (params.interactive) {
|
|
is_interacting = true;
|
|
console_set_color(con_st, CONSOLE_COLOR_USER_INPUT);
|
|
}
|
|
is_antiprompt = true;
|
|
fflush(stdout);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (n_past > 0 && is_interacting) {
|
|
if (params.instruct) {
|
|
printf("\n> ");
|
|
}
|
|
|
|
std::string buffer;
|
|
if (!params.input_prefix.empty()) {
|
|
buffer += params.input_prefix;
|
|
printf("%s", buffer.c_str());
|
|
}
|
|
|
|
std::string line;
|
|
bool another_line = true;
|
|
do {
|
|
another_line = console_readline(con_st, line);
|
|
buffer += line;
|
|
} while (another_line);
|
|
|
|
// done taking input, reset color
|
|
console_set_color(con_st, CONSOLE_COLOR_DEFAULT);
|
|
|
|
// Add tokens to embd only if the input buffer is non-empty
|
|
// Entering a empty line lets the user pass control back
|
|
if (buffer.length() > 1) {
|
|
// append input suffix if any
|
|
if (!params.input_suffix.empty()) {
|
|
buffer += params.input_suffix;
|
|
printf("%s", params.input_suffix.c_str());
|
|
}
|
|
|
|
// instruct mode: insert instruction prefix
|
|
if (params.instruct && !is_antiprompt) {
|
|
n_consumed = embd_inp.size();
|
|
embd_inp.insert(embd_inp.end(), inp_pfx.begin(), inp_pfx.end());
|
|
}
|
|
|
|
auto line_inp = ::llama_tokenize(ctx, buffer, false);
|
|
embd_inp.insert(embd_inp.end(), line_inp.begin(), line_inp.end());
|
|
|
|
// instruct mode: insert response suffix
|
|
if (params.instruct) {
|
|
embd_inp.insert(embd_inp.end(), inp_sfx.begin(), inp_sfx.end());
|
|
}
|
|
|
|
n_remain -= line_inp.size();
|
|
}
|
|
|
|
input_echo = false; // do not echo this again
|
|
}
|
|
|
|
if (n_past > 0) {
|
|
is_interacting = false;
|
|
}
|
|
}
|
|
|
|
// end of text token
|
|
if (!embd.empty() && embd.back() == llama_token_eos()) {
|
|
if (params.instruct) {
|
|
is_interacting = true;
|
|
} else {
|
|
fprintf(stderr, " [end of text]\n");
|
|
break;
|
|
}
|
|
}
|
|
|
|
// In interactive mode, respect the maximum number of tokens and drop back to user input when reached.
|
|
if (params.interactive && n_remain <= 0 && params.n_predict != -1) {
|
|
n_remain = params.n_predict;
|
|
is_interacting = true;
|
|
}
|
|
}
|
|
|
|
if (!path_session.empty() && params.prompt_cache_all && !params.prompt_cache_ro) {
|
|
fprintf(stderr, "\n%s: saving final output to session file '%s'\n", __func__, path_session.c_str());
|
|
llama_save_session_file(ctx, path_session.c_str(), session_tokens.data(), session_tokens.size());
|
|
}
|
|
|
|
llama_print_timings(ctx);
|
|
llama_free(ctx);
|
|
|
|
return 0;
|
|
}
|