mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-10 02:31:46 +00:00
d13edb17ed
ggml-ci
52 lines
1.7 KiB
Plaintext
52 lines
1.7 KiB
Plaintext
#include "out-prod.cuh"
|
|
|
|
#include <cstdint>
|
|
|
|
void ggml_cuda_out_prod(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
const ggml_tensor * src1 = dst->src[1];
|
|
|
|
GGML_TENSOR_BINARY_OP_LOCALS
|
|
|
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
|
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
|
GGML_ASSERT(dst->type == GGML_TYPE_F32);
|
|
GGML_ASSERT(ggml_is_contiguous(src0));
|
|
GGML_ASSERT(ggml_is_contiguous(dst));
|
|
|
|
GGML_ASSERT(ne01 == ne11);
|
|
GGML_ASSERT(ne0 == ne00);
|
|
GGML_ASSERT(ne1 == ne10);
|
|
|
|
GGML_ASSERT(ne2 == src0->ne[2]);
|
|
GGML_ASSERT(ne2 == src1->ne[2]);
|
|
GGML_ASSERT(ne3 == src0->ne[3]);
|
|
GGML_ASSERT(ne3 == src1->ne[3]);
|
|
|
|
const float * src0_d = (const float *) src0->data;
|
|
const float * src1_d = (const float *) src1->data;
|
|
float * dst_d = (float *) dst->data;
|
|
|
|
cudaStream_t stream = ctx.stream();
|
|
cublasHandle_t handle = ctx.cublas_handle();
|
|
|
|
const float alpha = 1.0f;
|
|
const float beta = 0.0f;
|
|
|
|
GGML_ASSERT(ne2 == 1);
|
|
GGML_ASSERT(ne3 == 1);
|
|
CUBLAS_CHECK(cublasSetStream(handle, stream));
|
|
|
|
const bool src1_T = ggml_is_transposed(src1);
|
|
const cublasOperation_t src1_cublas_op = src1_T ? CUBLAS_OP_N : CUBLAS_OP_T;
|
|
const int64_t ldb = (src1_T ? nb10 : nb11) / sizeof(float);
|
|
GGML_ASSERT( (src1_T ? nb11 : nb10) == sizeof(float));
|
|
|
|
CUBLAS_CHECK(
|
|
cublasSgemm(handle, CUBLAS_OP_N, src1_cublas_op,
|
|
ne0, ne1, ne01,
|
|
&alpha, src0_d, ne00,
|
|
src1_d, ldb,
|
|
&beta, dst_d, ne0));
|
|
}
|