mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-11-11 21:39:52 +00:00
241 lines
8.4 KiB
Plaintext
241 lines
8.4 KiB
Plaintext
#include "unary.cuh"
|
|
|
|
static __global__ void gelu_f32(const float * x, float * dst, const int k) {
|
|
const float GELU_COEF_A = 0.044715f;
|
|
const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
|
|
const int i = blockDim.x*blockIdx.x + threadIdx.x;
|
|
|
|
if (i >= k) {
|
|
return;
|
|
}
|
|
|
|
float xi = x[i];
|
|
dst[i] = 0.5f*xi*(1.0f + tanhf(SQRT_2_OVER_PI*xi*(1.0f + GELU_COEF_A*xi*xi)));
|
|
}
|
|
|
|
static __global__ void gelu_quick_f32(const float * x, float * dst, int k) {
|
|
const float GELU_QUICK_COEF = -1.702f;
|
|
const int i = blockDim.x*blockIdx.x + threadIdx.x;
|
|
if (i >= k) {
|
|
return;
|
|
}
|
|
dst[i] = x[i] * (1.0f / (1.0f + expf(GELU_QUICK_COEF * x[i])));
|
|
}
|
|
|
|
static __global__ void silu_f32(const float * x, float * dst, const int k) {
|
|
const int i = blockDim.x*blockIdx.x + threadIdx.x;
|
|
|
|
if (i >= k) {
|
|
return;
|
|
}
|
|
dst[i] = x[i] / (1.0f + expf(-x[i]));
|
|
}
|
|
|
|
static __global__ void tanh_f32(const float * x, float * dst, int k) {
|
|
const int i = blockDim.x*blockIdx.x + threadIdx.x;
|
|
if (i >= k) {
|
|
return;
|
|
}
|
|
dst[i] = tanhf(x[i]);
|
|
}
|
|
|
|
static __global__ void relu_f32(const float * x, float * dst, const int k) {
|
|
const int i = blockDim.x*blockIdx.x + threadIdx.x;
|
|
|
|
if (i >= k) {
|
|
return;
|
|
}
|
|
dst[i] = fmaxf(x[i], 0);
|
|
}
|
|
|
|
static __global__ void hardsigmoid_f32(const float * x, float * dst, const int k) {
|
|
const int i = blockDim.x*blockIdx.x + threadIdx.x;
|
|
|
|
if (i >= k) {
|
|
return;
|
|
}
|
|
dst[i] = fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f));
|
|
}
|
|
|
|
static __global__ void hardswish_f32(const float * x, float * dst, const int k) {
|
|
const int i = blockDim.x*blockIdx.x + threadIdx.x;
|
|
|
|
if (i >= k) {
|
|
return;
|
|
}
|
|
dst[i] = x[i] * fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f));
|
|
}
|
|
|
|
static __global__ void leaky_relu_f32(const float * x, float * dst, const int k, const float negative_slope) {
|
|
const int i = blockDim.x*blockIdx.x + threadIdx.x;
|
|
if (i >= k) {
|
|
return;
|
|
}
|
|
dst[i] = fmaxf(x[i], 0) + fminf(x[i], 0.0f) * negative_slope;
|
|
}
|
|
|
|
static __global__ void sqr_f32(const float * x, float * dst, const int k) {
|
|
const int i = blockDim.x*blockIdx.x + threadIdx.x;
|
|
|
|
if (i >= k) {
|
|
return;
|
|
}
|
|
dst[i] = x[i] * x[i];
|
|
}
|
|
|
|
static void gelu_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
|
|
const int num_blocks = (k + CUDA_GELU_BLOCK_SIZE - 1) / CUDA_GELU_BLOCK_SIZE;
|
|
gelu_f32<<<num_blocks, CUDA_GELU_BLOCK_SIZE, 0, stream>>>(x, dst, k);
|
|
}
|
|
|
|
static void gelu_quick_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
|
|
const int num_blocks = (k + CUDA_GELU_BLOCK_SIZE - 1) / CUDA_GELU_BLOCK_SIZE;
|
|
gelu_quick_f32<<<num_blocks, CUDA_GELU_BLOCK_SIZE, 0, stream>>>(x, dst, k);
|
|
}
|
|
|
|
static void silu_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
|
|
const int num_blocks = (k + CUDA_SILU_BLOCK_SIZE - 1) / CUDA_SILU_BLOCK_SIZE;
|
|
silu_f32<<<num_blocks, CUDA_SILU_BLOCK_SIZE, 0, stream>>>(x, dst, k);
|
|
}
|
|
|
|
static void tanh_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
|
|
const int num_blocks = (k + CUDA_TANH_BLOCK_SIZE - 1) / CUDA_TANH_BLOCK_SIZE;
|
|
tanh_f32<<<num_blocks, CUDA_TANH_BLOCK_SIZE, 0, stream>>>(x, dst, k);
|
|
}
|
|
|
|
static void relu_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
|
|
const int num_blocks = (k + CUDA_RELU_BLOCK_SIZE - 1) / CUDA_RELU_BLOCK_SIZE;
|
|
relu_f32<<<num_blocks, CUDA_RELU_BLOCK_SIZE, 0, stream>>>(x, dst, k);
|
|
}
|
|
|
|
static void hardsigmoid_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
|
|
const int num_blocks = (k + CUDA_HARDSIGMOID_BLOCK_SIZE - 1) / CUDA_HARDSIGMOID_BLOCK_SIZE;
|
|
hardsigmoid_f32<<<num_blocks, CUDA_HARDSIGMOID_BLOCK_SIZE, 0, stream>>>(x, dst, k);
|
|
}
|
|
|
|
static void hardswish_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
|
|
const int num_blocks = (k + CUDA_HARDSWISH_BLOCK_SIZE - 1) / CUDA_HARDSWISH_BLOCK_SIZE;
|
|
hardswish_f32<<<num_blocks, CUDA_HARDSWISH_BLOCK_SIZE, 0, stream>>>(x, dst, k);
|
|
}
|
|
|
|
static void leaky_relu_f32_cuda(const float * x, float * dst, const int k, const float negative_slope, cudaStream_t stream) {
|
|
const int num_blocks = (k + CUDA_RELU_BLOCK_SIZE - 1) / CUDA_RELU_BLOCK_SIZE;
|
|
leaky_relu_f32<<<num_blocks, CUDA_RELU_BLOCK_SIZE, 0, stream>>>(x, dst, k, negative_slope);
|
|
}
|
|
|
|
static void sqr_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
|
|
const int num_blocks = (k + CUDA_SQR_BLOCK_SIZE - 1) / CUDA_SQR_BLOCK_SIZE;
|
|
sqr_f32<<<num_blocks, CUDA_SQR_BLOCK_SIZE, 0, stream>>>(x, dst, k);
|
|
}
|
|
|
|
void ggml_cuda_op_gelu(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
const float * src0_d = (const float *)src0->data;
|
|
float * dst_d = (float *)dst->data;
|
|
cudaStream_t stream = ctx.stream();
|
|
|
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
|
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
|
|
|
gelu_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
|
|
}
|
|
|
|
void ggml_cuda_op_silu(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
const float * src0_d = (const float *)src0->data;
|
|
float * dst_d = (float *)dst->data;
|
|
cudaStream_t stream = ctx.stream();
|
|
|
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
|
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
|
|
|
silu_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
|
|
}
|
|
|
|
void ggml_cuda_op_gelu_quick(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
const float * src0_d = (const float *)src0->data;
|
|
float * dst_d = (float *)dst->data;
|
|
cudaStream_t stream = ctx.stream();
|
|
|
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
|
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
|
|
|
gelu_quick_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
|
|
}
|
|
|
|
void ggml_cuda_op_tanh(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
const float * src0_d = (const float *)src0->data;
|
|
float * dst_d = (float *)dst->data;
|
|
cudaStream_t stream = ctx.stream();
|
|
|
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
|
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
|
|
|
tanh_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
|
|
}
|
|
|
|
void ggml_cuda_op_relu(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
const float * src0_d = (const float *)src0->data;
|
|
float * dst_d = (float *)dst->data;
|
|
cudaStream_t stream = ctx.stream();
|
|
|
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
|
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
|
|
|
relu_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
|
|
}
|
|
|
|
void ggml_cuda_op_hardsigmoid(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
const float * src0_d = (const float *)src0->data;
|
|
float * dst_d = (float *)dst->data;
|
|
cudaStream_t stream = ctx.stream();
|
|
|
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
|
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
|
|
|
hardsigmoid_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
|
|
}
|
|
|
|
void ggml_cuda_op_hardswish(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
const float * src0_d = (const float *)src0->data;
|
|
float * dst_d = (float *)dst->data;
|
|
cudaStream_t stream = ctx.stream();
|
|
|
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
|
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
|
|
|
hardswish_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
|
|
}
|
|
|
|
void ggml_cuda_op_leaky_relu(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
const float * src0_d = (const float *)src0->data;
|
|
float * dst_d = (float *)dst->data;
|
|
cudaStream_t stream = ctx.stream();
|
|
|
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
|
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
|
|
|
float negative_slope;
|
|
memcpy(&negative_slope, dst->op_params, sizeof(float));
|
|
|
|
leaky_relu_f32_cuda(src0_d, dst_d, ggml_nelements(src0), negative_slope, stream);
|
|
}
|
|
|
|
void ggml_cuda_op_sqr(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
const float * src0_d = (const float *)src0->data;
|
|
float * dst_d = (float *)dst->data;
|
|
cudaStream_t stream = ctx.stream();
|
|
|
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
|
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
|
|
|
sqr_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
|
|
}
|