mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-12-28 04:14:35 +00:00
436 lines
16 KiB
C
436 lines
16 KiB
C
#include "ggml-backend.h"
|
|
#include <assert.h>
|
|
#include <stdarg.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
|
|
#define UNUSED(x) (void)(x)
|
|
|
|
// backend buffer
|
|
|
|
struct ggml_buffer ggml_backend_alloc_buffer(struct ggml_backend * backend, size_t size, size_t max_tensors) {
|
|
struct ggml_buffer buffer;
|
|
buffer.mem_size = ggml_tensor_overhead() * max_tensors;
|
|
buffer.mem_buffer = malloc(buffer.mem_size);
|
|
buffer.backend = backend;
|
|
size += 128 * max_tensors; // alignment overhead
|
|
buffer.backend_buffer = backend->interface->alloc_buffer(backend->context, size);
|
|
return buffer;
|
|
}
|
|
|
|
void ggml_backend_free_buffer(struct ggml_buffer * buffer) {
|
|
struct ggml_backend * backend = buffer->backend;
|
|
backend->interface->free_buffer(backend->context, buffer->backend_buffer);
|
|
free(buffer->mem_buffer);
|
|
}
|
|
|
|
// backend copy
|
|
|
|
static bool ggml_are_same_layout(const struct ggml_tensor * a, const struct ggml_tensor * b) {
|
|
if (a->type != b->type) {
|
|
return false;
|
|
}
|
|
for (int i = 0; i < GGML_MAX_DIMS; i++) {
|
|
if (a->ne[i] != b->ne[i]) {
|
|
return false;
|
|
}
|
|
if (a->nb[i] != b->nb[i]) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void ggml_backend_cpy_tensor(struct ggml_tensor * dst, struct ggml_tensor * src) {
|
|
//printf("src: %s ne: [%d %d %d %d] nb: [%d %d %d %d]\n", src->name, (int)src->ne[0], (int)src->ne[1], (int)src->ne[2], (int)src->ne[3], (int)src->nb[0], (int)src->nb[1], (int)src->nb[2], (int)src->nb[3]);
|
|
//printf("dst: %s ne: [%d %d %d %d] nb: [%d %d %d %d]\n", dst->name, (int)dst->ne[0], (int)dst->ne[1], (int)dst->ne[2], (int)dst->ne[3], (int)dst->nb[0], (int)dst->nb[1], (int)dst->nb[2], (int)dst->nb[3]);
|
|
GGML_ASSERT(ggml_are_same_layout(src, dst) && "cannot copy tensors with different layouts");
|
|
|
|
// printf("cpy tensor %s from %s to %s (%lu bytes)\n", src->name, ggml_backend_name(src->backend), ggml_backend_name(dst->backend), ggml_nbytes(src));
|
|
|
|
if (src == dst) {
|
|
return;
|
|
}
|
|
|
|
if (dst->backend->interface->cpy_tensor_from != NULL) {
|
|
dst->backend->interface->cpy_tensor_from(dst->backend->context, src, dst);
|
|
} else if (src->backend->interface->cpy_tensor_to != NULL) {
|
|
src->backend->interface->cpy_tensor_to(src->backend->context, src, dst);
|
|
} else {
|
|
// not ideal, but shouldn't be hit when copying from/to CPU
|
|
// TODO: print a performance warning in debug builds
|
|
size_t nbytes = ggml_nbytes(src);
|
|
void * data = malloc(nbytes);
|
|
ggml_backend_get_tensor(src, data, 0, nbytes);
|
|
ggml_backend_set_tensor(dst, data, 0, nbytes);
|
|
free(data);
|
|
}
|
|
}
|
|
|
|
// backend CPU
|
|
|
|
struct ggml_backend_cpu_context {
|
|
int n_threads;
|
|
void * work_data;
|
|
size_t work_size;
|
|
};
|
|
|
|
static const char * ggml_backend_cpu_name(ggml_backend_context_t ctx) {
|
|
return "CPU";
|
|
|
|
UNUSED(ctx);
|
|
}
|
|
|
|
static void ggml_backend_cpu_free_context(ggml_backend_context_t ctx) {
|
|
struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)ctx;
|
|
free(cpu_ctx->work_data);
|
|
free(ctx);
|
|
}
|
|
|
|
struct cpu_backend_buffer {
|
|
void * data;
|
|
size_t offset;
|
|
size_t size;
|
|
};
|
|
|
|
static const size_t TENSOR_ALIGNMENT = 64; // should be enough for AVX 512
|
|
|
|
static size_t aligned_offset(const void * buffer, size_t offset, size_t alignment) {
|
|
assert(alignment && !(alignment & (alignment - 1))); // power of 2
|
|
size_t align = (alignment - (((uintptr_t)buffer + offset) % alignment)) % alignment;
|
|
return offset + align;
|
|
}
|
|
|
|
static ggml_backend_buffer_t ggml_backend_cpu_alloc_buffer(ggml_backend_context_t ctx, size_t size) {
|
|
struct cpu_backend_buffer * buffer = malloc(sizeof(struct cpu_backend_buffer));
|
|
buffer->data = malloc(size);
|
|
buffer->offset = aligned_offset(buffer->data, 0, TENSOR_ALIGNMENT);
|
|
buffer->size = size;
|
|
return buffer;
|
|
|
|
UNUSED(ctx);
|
|
}
|
|
|
|
static void ggml_backend_cpu_free_buffer(ggml_backend_context_t ctx, ggml_backend_buffer_t buffer) {
|
|
struct cpu_backend_buffer * cpu_buffer = (struct cpu_backend_buffer *)buffer;
|
|
free(cpu_buffer->data);
|
|
free(cpu_buffer);
|
|
|
|
UNUSED(ctx);
|
|
}
|
|
|
|
static void ggml_backend_cpu_reset_buffer(ggml_backend_context_t ctx, ggml_backend_buffer_t buffer) {
|
|
struct cpu_backend_buffer * cpu_buffer = (struct cpu_backend_buffer *)buffer;
|
|
cpu_buffer->offset = aligned_offset(cpu_buffer->data, 0, TENSOR_ALIGNMENT);
|
|
|
|
UNUSED(ctx);
|
|
}
|
|
|
|
static void ggml_backend_cpu_alloc_tensor(ggml_backend_context_t ctx, ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
|
|
struct cpu_backend_buffer * cpu_buffer = (struct cpu_backend_buffer *)buffer;
|
|
|
|
// TODO: make this error recoverable
|
|
if (cpu_buffer->offset + ggml_nbytes(tensor) > cpu_buffer->size) {
|
|
fprintf(stderr, "%s: not enough space in the buffer (needed %zu, available %zu)\n",
|
|
__func__, ggml_nbytes(tensor), cpu_buffer->size - cpu_buffer->offset);
|
|
GGML_ASSERT(false);
|
|
}
|
|
|
|
tensor->data = (char*)cpu_buffer->data + cpu_buffer->offset;
|
|
cpu_buffer->offset = aligned_offset(cpu_buffer->data, cpu_buffer->offset + ggml_nbytes(tensor), TENSOR_ALIGNMENT);
|
|
|
|
UNUSED(ctx);
|
|
}
|
|
|
|
static void ggml_backend_cpu_set_tensor_async(ggml_backend_context_t ctx, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
|
|
GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
|
|
GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
|
|
|
|
memcpy((char *)tensor->data + offset, data, size);
|
|
|
|
UNUSED(ctx);
|
|
}
|
|
|
|
static void ggml_backend_cpu_get_tensor_async(ggml_backend_context_t ctx, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
|
|
GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds");
|
|
GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
|
|
|
|
memcpy(data, (const char *)tensor->data + offset, size);
|
|
|
|
UNUSED(ctx);
|
|
}
|
|
|
|
static void ggml_backend_cpu_synchronize(ggml_backend_context_t ctx) {
|
|
UNUSED(ctx);
|
|
}
|
|
|
|
static void ggml_backend_cpu_cpy_tensor_from(ggml_backend_context_t ctx, struct ggml_tensor * src, struct ggml_tensor * dst) {
|
|
ggml_backend_get_tensor(src, dst->data, 0, ggml_nbytes(src));
|
|
|
|
UNUSED(ctx);
|
|
}
|
|
|
|
static void ggml_backend_cpu_cpy_tensor_to(ggml_backend_context_t ctx, struct ggml_tensor * src, struct ggml_tensor * dst) {
|
|
ggml_backend_set_tensor_async(dst, src->data, 0, ggml_nbytes(src));
|
|
|
|
UNUSED(ctx);
|
|
}
|
|
|
|
struct ggml_backend_cpu_plan {
|
|
struct ggml_cplan cplan;
|
|
struct ggml_cgraph cgraph;
|
|
};
|
|
|
|
static ggml_graph_plan_t ggml_backend_cpu_graph_plan_create(ggml_backend_context_t ctx, struct ggml_cgraph * cgraph) {
|
|
struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)ctx;
|
|
|
|
struct ggml_backend_cpu_plan * cpu_plan = malloc(sizeof(struct ggml_backend_cpu_plan));
|
|
|
|
cpu_plan->cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads);
|
|
cpu_plan->cgraph = *cgraph;
|
|
|
|
if (cpu_plan->cplan.work_size > 0) {
|
|
cpu_plan->cplan.work_data = malloc(cpu_plan->cplan.work_size);
|
|
}
|
|
|
|
return cpu_plan;
|
|
}
|
|
|
|
static void ggml_backend_cpu_graph_plan_free(ggml_backend_context_t ctx, ggml_graph_plan_t plan) {
|
|
struct ggml_backend_cpu_plan * cpu_plan = (struct ggml_backend_cpu_plan *)plan;
|
|
|
|
free(cpu_plan->cplan.work_data);
|
|
free(cpu_plan);
|
|
|
|
UNUSED(ctx);
|
|
}
|
|
|
|
static void ggml_backend_cpu_graph_plan_compute(ggml_backend_context_t ctx, ggml_graph_plan_t plan) {
|
|
struct ggml_backend_cpu_plan * cpu_plan = (struct ggml_backend_cpu_plan *)plan;
|
|
|
|
ggml_graph_compute(&cpu_plan->cgraph, &cpu_plan->cplan);
|
|
|
|
UNUSED(ctx);
|
|
}
|
|
|
|
static void ggml_backend_cpu_graph_compute(ggml_backend_context_t ctx, struct ggml_cgraph * cgraph) {
|
|
struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)ctx;
|
|
|
|
struct ggml_cplan cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads);
|
|
|
|
if (cpu_ctx->work_size < cplan.work_size) {
|
|
// TODO: may be faster to free and use malloc to avoid the copy
|
|
cpu_ctx->work_data = realloc(cpu_ctx->work_data, cplan.work_size);
|
|
cpu_ctx->work_size = cplan.work_size;
|
|
}
|
|
|
|
cplan.work_data = cpu_ctx->work_data;
|
|
|
|
ggml_graph_compute(cgraph, &cplan);
|
|
}
|
|
|
|
static struct ggml_backend_interface cpu_backend_interface = {
|
|
/* .get_name = */ ggml_backend_cpu_name,
|
|
/* .free_context = */ ggml_backend_cpu_free_context,
|
|
/* .alloc_buffer = */ ggml_backend_cpu_alloc_buffer,
|
|
/* .free_buffer = */ ggml_backend_cpu_free_buffer,
|
|
/* .reset_buffer = */ ggml_backend_cpu_reset_buffer,
|
|
/* .alloc_tensor = */ ggml_backend_cpu_alloc_tensor,
|
|
/* .set_tensor_async = */ ggml_backend_cpu_set_tensor_async,
|
|
/* .get_tensor_async = */ ggml_backend_cpu_get_tensor_async,
|
|
/* .synchronize = */ ggml_backend_cpu_synchronize,
|
|
/* .cpy_tensor_from = */ ggml_backend_cpu_cpy_tensor_from,
|
|
/* .cpy_tensor_to = */ ggml_backend_cpu_cpy_tensor_to,
|
|
/* .graph_plan_create = */ ggml_backend_cpu_graph_plan_create,
|
|
/* .graph_plan_free = */ ggml_backend_cpu_graph_plan_free,
|
|
/* .graph_plan_compute = */ ggml_backend_cpu_graph_plan_compute,
|
|
/* .graph_compute = */ ggml_backend_cpu_graph_compute
|
|
};
|
|
|
|
struct ggml_backend ggml_backend_cpu_init(void) {
|
|
struct ggml_backend_cpu_context * ctx = malloc(sizeof(struct ggml_backend_cpu_context));
|
|
ctx->n_threads = GGML_DEFAULT_N_THREADS;
|
|
ctx->work_data = NULL;
|
|
ctx->work_size = 0;
|
|
|
|
struct ggml_backend cpu_backend = {
|
|
/* .interface = */ &cpu_backend_interface,
|
|
/* .context = */ ctx
|
|
};
|
|
return cpu_backend;
|
|
}
|
|
|
|
void ggml_backend_cpu_set_n_threads(struct ggml_backend * backend_cpu, int n_threads) {
|
|
struct ggml_backend_cpu_context * ctx = (struct ggml_backend_cpu_context *)backend_cpu->context;
|
|
ctx->n_threads = n_threads;
|
|
}
|
|
|
|
// splits
|
|
|
|
struct ggml_graph_splits ggml_graph_split_init(void) {
|
|
struct ggml_graph_splits splits = {0};
|
|
return splits;
|
|
}
|
|
|
|
// TODO: this can be removed after allocating the graphs in a ggml_context
|
|
void ggml_graph_splits_free(struct ggml_graph_splits * splits) {
|
|
for (int i = 0; i < splits->n_splits; i++) {
|
|
if (splits->splits[i].graph) {
|
|
free(splits->splits[i].graph);
|
|
}
|
|
}
|
|
}
|
|
|
|
void ggml_graph_splits_add_n_va(struct ggml_graph_splits * splits, struct ggml_tensor *** inputs, struct ggml_context * ctx, const char * fmt, va_list args) {
|
|
GGML_ASSERT(splits->n_splits < GGML_MAX_SPLITS);
|
|
|
|
struct ggml_graph_split * split = &splits->splits[splits->n_splits];
|
|
|
|
if ((*inputs[0])->backend == ggml_get_ctx_backend(ctx)) {
|
|
if (splits->n_splits > 0) {
|
|
char name[GGML_MAX_NAME];
|
|
vsnprintf(name, sizeof(name), fmt, args);
|
|
char new_name[GGML_MAX_NAME];
|
|
snprintf(new_name, sizeof(new_name), "%s,%s", splits->splits[splits->n_splits - 1].name, name);
|
|
strcpy(splits->splits[splits->n_splits - 1].name, new_name);
|
|
return;
|
|
}
|
|
// always add the first split
|
|
int i = 0;
|
|
while (inputs[i] != NULL) {
|
|
GGML_ASSERT(i < GGML_MAX_SPLIT_INPUTS);
|
|
split->src_inputs[i] = *inputs[i];
|
|
split->dst_inputs[i] = *inputs[i];
|
|
i++;
|
|
}
|
|
split->src_inputs[i] = NULL;
|
|
split->dst_inputs[i] = NULL;
|
|
} else {
|
|
int i = 0;
|
|
while (inputs[i] != NULL) {
|
|
GGML_ASSERT(i < GGML_MAX_SPLIT_INPUTS);
|
|
split->src_inputs[i] = *inputs[i];
|
|
split->dst_inputs[i] = ggml_dup_tensor(ctx, *inputs[i]);
|
|
// TODO: maybe support different layings in ggml_backend_cpy_tensor instead
|
|
for (int j = 0; j < GGML_MAX_DIMS; j++) {
|
|
split->dst_inputs[i]->nb[j] = split->src_inputs[i]->nb[j];
|
|
}
|
|
ggml_set_name(split->dst_inputs[i], ggml_get_name(*inputs[i]));
|
|
*inputs[i] = split->dst_inputs[i];
|
|
i++;
|
|
}
|
|
split->src_inputs[i] = NULL;
|
|
split->dst_inputs[i] = NULL;
|
|
}
|
|
|
|
vsnprintf(split->name, GGML_MAX_NAME, fmt, args);
|
|
split->graph = NULL;
|
|
splits->n_splits++;
|
|
}
|
|
|
|
void ggml_graph_splits_add_n(struct ggml_graph_splits * splits, struct ggml_tensor *** input, struct ggml_context * ctx, const char * fmt, ...) {
|
|
va_list args;
|
|
va_start(args, fmt);
|
|
ggml_graph_splits_add_n_va(splits, input, ctx, fmt, args);
|
|
va_end(args);
|
|
}
|
|
|
|
void ggml_graph_splits_add(struct ggml_graph_splits * splits, struct ggml_tensor ** input, struct ggml_context * ctx, const char * fmt, ...) {
|
|
va_list args;
|
|
va_start(args, fmt);
|
|
ggml_graph_splits_add_n_va(splits, (struct ggml_tensor**[2]){ input, NULL }, ctx, fmt, args);
|
|
va_end(args);
|
|
}
|
|
|
|
void ggml_graph_splits_build_forward(struct ggml_graph_splits * splits, struct ggml_tensor * output) {
|
|
struct ggml_tensor *last_outputs[2] = { output, NULL };
|
|
struct ggml_tensor ** outputs;
|
|
|
|
for (int i = 0; i < splits->n_splits; i++) {
|
|
struct ggml_graph_split * split = &splits->splits[i];
|
|
|
|
if (i < splits->n_splits - 1) {
|
|
outputs = splits->splits[i + 1].src_inputs;
|
|
} else {
|
|
outputs = last_outputs;
|
|
}
|
|
|
|
// build the graph
|
|
// TODO: allocate graphs in context
|
|
split->graph = (struct ggml_cgraph *) malloc(sizeof(struct ggml_cgraph));
|
|
memset(split->graph, 0, sizeof(struct ggml_cgraph));
|
|
// *split->graph = ggml_build_forward_range(output, split->input);
|
|
// *split->graph = ggml_build_forward(output);
|
|
for (int j = 0; outputs[j] != NULL; j++) {
|
|
ggml_build_forward_expand(split->graph, outputs[j]);
|
|
}
|
|
|
|
for (int j = 1; j < split->graph->n_nodes; j++) {
|
|
if (split->graph->nodes[j]->backend != split->graph->nodes[0]->backend) {
|
|
fprintf(stderr, "split %s: node %s has different backend (%s) than the first node (%s)\n",
|
|
split->name, split->graph->nodes[j]->name,
|
|
ggml_backend_name(split->graph->nodes[j]->backend),
|
|
ggml_backend_name(split->graph->nodes[0]->backend));
|
|
}
|
|
}
|
|
for (int j = 1; j < split->graph->n_leafs; j++) {
|
|
if (split->graph->leafs[j]->backend != split->graph->leafs[0]->backend) {
|
|
fprintf(stderr, "split %s: leaf %s has different backend (%s) than the first leaf (%s)\n",
|
|
split->name, split->graph->leafs[j]->name,
|
|
ggml_backend_name(split->graph->leafs[j]->backend),
|
|
ggml_backend_name(split->graph->leafs[0]->backend));
|
|
}
|
|
}
|
|
}
|
|
|
|
// close graphs
|
|
for (int i = 0; i < splits->n_splits; i++) {
|
|
struct ggml_graph_split * split = &splits->splits[i];
|
|
ggml_graph_close(split->graph);
|
|
}
|
|
}
|
|
|
|
void ggml_graph_splits_compute(struct ggml_graph_splits * splits) {
|
|
uint64_t copy_us = 0;
|
|
uint64_t compute_cpu_us = 0;
|
|
uint64_t compute_gpu_us = 0;
|
|
int n_nodes = 0;
|
|
for (int i = 0; i < splits->n_splits; i++) {
|
|
struct ggml_graph_split * split = &splits->splits[i];
|
|
|
|
//printf("computing split %i (%s) on backend %s (%i nodes)\n", i, split->name, ggml_backend_name(split->dst_inputs[0]->backend), split->graph->n_nodes);
|
|
|
|
// copy the input tensor to the backend
|
|
uint64_t copy_start_us = ggml_time_us();
|
|
for (int j = 0; split->src_inputs[j] != NULL; j++) {
|
|
if (split->src_inputs[j] != split->dst_inputs[j]) {
|
|
//printf("\tcopying tensor %d (%s) (%lu bytes)\n", j, split->src_inputs[j]->name, ggml_nbytes(split->src_inputs[j]));
|
|
ggml_backend_cpy_tensor(split->dst_inputs[j], split->src_inputs[j]);
|
|
}
|
|
}
|
|
// ggml_backend_synchronize(split->dst_inputs[0]->backend);
|
|
copy_us += ggml_time_us() - copy_start_us;
|
|
|
|
#if 0
|
|
char split_filename[GGML_MAX_NAME];
|
|
snprintf(split_filename, GGML_MAX_NAME, "split_%i.dot", i);
|
|
ggml_graph_dump_dot(split->graph, NULL, split_filename);
|
|
#endif
|
|
uint64_t start = ggml_time_us();
|
|
ggml_backend_graph_compute(split->dst_inputs[0]->backend, split->graph);
|
|
//ggml_backend_synchronize(split->dst_inputs[0]->backend);
|
|
uint64_t end = ggml_time_us();
|
|
if (strcmp(ggml_backend_name(split->dst_inputs[0]->backend), "CPU") == 0) {
|
|
compute_cpu_us += end - start;
|
|
} else {
|
|
compute_gpu_us += end - start;
|
|
}
|
|
|
|
n_nodes += split->graph->n_nodes;
|
|
}
|
|
|
|
//printf("splits: %d, nodes: %d, copy: %.2fms, compute_cpu: %.2fms, compute_gpu: %.2fms\n", splits->n_splits, n_nodes, copy_us / 1000.0, compute_cpu_us / 1000.0, compute_gpu_us / 1000.0);
|
|
//exit(0);
|
|
}
|