mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-11 19:21:46 +00:00
557410b8f0
* llama : greatly reduce logits memory usage * llama : more compact state saving and reloading * llama : fix lctx.n_outputs not being set before building graph * perplexity : adapt to the logits API changes * perplexity : fix Winogrande, use correct logits for second choice start The first logits used to evaluate the second choice were not from the end of the common prefix; instead, they were the logits from the end of the first choice. This has been corrected. The previous implementation sometimes had outliers in the scores of choices for some tasks, and the logic to skip choices words in the log-likelihood evaluation probably was an attempt to reduce those, but it was complex and didn't quite seem to be the right thing. This is simpler now, and the outlier scores aren't there anymore. * perplexity : normalize spaces and punctuation in Winogrande sentences * llama : fix embedding conditions * llama : fix llama_get_embeddings_ith when the resulting id is 0 * llama : fix wrong n_outputs in llama_set_inputs A mismatch happened when using a smaller n_ubatch than n_batch and then using llama_batch_get_one(). The decision of what n_outputs should be now almost fully depends on how lctx.n_outputs is set in llama_decode_internal. The conditions are simpler this way. * llama : when saving the state, recalculate n_outputs This ensures the correct number of outputs for the entire previous batch is stored in the session file, even when n_ubatch is smaller than n_batch. * llama : fix not-skipping outputs of non-causal models * llama : fix running a batch with n_outputs == 0 It previously worked because lctx.inp_out_ids was not initialized, so it pointed to some garbage address which was somehow still valid when I ran my tests. * llama : keep same graph topology even when n_outputs == 0 * ggml : saner ggml_can_repeat with empty tensors * ggml : future-proof ggml_is_empty by using GGML_MAX_DIMS - 1 * ggml : do not multi-thread ops returning empty tensors * ggml : make ggml_is_empty public and work with views * llama : use a vector for ctx->output_ids * llama : rework reallocation logic for llama_output_reserve Now comparing the actual size with the new total size of the output buffer to allow more efficient enabling and disabling of the embeddings and/or logits output in the future. * ggml : skip empty tensors in all backends * llama : fix llama_output_reserve nullptr deref when new_size is 0 * perplexity : make Winogrande work as it does on master The problems with the Winogrande implementation will need to be fixed in a separate PR to ease review. * llama : clearer error messages for invalid logits or embeddings ids * llama : assert all models that can have inp_out_ids Since the graph topology is now constant, this presence check can be done even when there are no outputs. * llama : assert logits and embd buffers exist before writing to them * llama : handle errors from llama_output_reserve at call sites * perplexity : make hellaswag and multiple-choice outputs identical to master Due to how the KV cache is updated, the logprobs for tokens in a batch are very slightly affected by the other tokens present in the batch, so to make hellaswag and multiple-choice return exactly the same results as on master, the last token of each sequence needs to be evaluated even though its output is not used at all. This will probably be changed back in the future to make these benchmarks a tiny bit faster. * perplexity : fix division by zero when using less than 100 multiple-choice tasks * llama : allow loading state saved with a different ctx size When loading a session file, the context size is now only required to be at least enough to load the KV cells contained in that session file, instead of requiring to use exactly the same context size as when saving. Doing this enables the use-case of extending or shrinking the context size of a saved session. This breaks existing session files because the meaning of kv_buf_size is slightly changed (previously it was the size of the whole KV cache, now it's only the size of the saved part of it). This allows for finer-grained sanity checks when loading in an effort to keep kv_buf_size useful even when the kv_size is changed. * llama : minor ggml-ci * readme : update recent API changes, and warn about Vulkan --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
3585 lines
143 KiB
C++
3585 lines
143 KiB
C++
#include "utils.hpp"
|
|
|
|
#include "common.h"
|
|
#include "json-schema-to-grammar.h"
|
|
#include "llama.h"
|
|
#include "grammar-parser.h"
|
|
|
|
#ifndef NDEBUG
|
|
// crash the server in debug mode, otherwise send an http 500 error
|
|
#define CPPHTTPLIB_NO_EXCEPTIONS 1
|
|
#endif
|
|
// increase max payload length to allow use of larger context size
|
|
#define CPPHTTPLIB_FORM_URL_ENCODED_PAYLOAD_MAX_LENGTH 1048576
|
|
#include "httplib.h"
|
|
#include "json.hpp"
|
|
|
|
// auto generated files (update with ./deps.sh)
|
|
#include "index.html.hpp"
|
|
#include "index.js.hpp"
|
|
#include "completion.js.hpp"
|
|
#include "json-schema-to-grammar.mjs.hpp"
|
|
|
|
#include <atomic>
|
|
#include <chrono>
|
|
#include <condition_variable>
|
|
#include <cstddef>
|
|
#include <set>
|
|
#include <mutex>
|
|
#include <thread>
|
|
#include <signal.h>
|
|
#include <memory>
|
|
|
|
using json = nlohmann::ordered_json;
|
|
|
|
bool server_verbose = false;
|
|
bool server_log_json = true;
|
|
|
|
enum stop_type {
|
|
STOP_TYPE_FULL,
|
|
STOP_TYPE_PARTIAL,
|
|
};
|
|
|
|
enum slot_state {
|
|
SLOT_STATE_IDLE,
|
|
SLOT_STATE_PROCESSING,
|
|
};
|
|
|
|
enum slot_command {
|
|
SLOT_COMMAND_NONE,
|
|
SLOT_COMMAND_LOAD_PROMPT,
|
|
SLOT_COMMAND_RELEASE,
|
|
};
|
|
|
|
enum server_state {
|
|
SERVER_STATE_LOADING_MODEL, // Server is starting up, model not fully loaded yet
|
|
SERVER_STATE_READY, // Server is ready and model is loaded
|
|
SERVER_STATE_ERROR // An error occurred, load_model failed
|
|
};
|
|
|
|
enum server_task_type {
|
|
SERVER_TASK_TYPE_COMPLETION,
|
|
SERVER_TASK_TYPE_CANCEL,
|
|
SERVER_TASK_TYPE_NEXT_RESPONSE,
|
|
SERVER_TASK_TYPE_METRICS
|
|
};
|
|
|
|
struct server_task {
|
|
int id = -1; // to be filled by server_queue
|
|
int id_multi = -1;
|
|
int id_target = -1;
|
|
|
|
server_task_type type;
|
|
json data;
|
|
|
|
bool infill = false;
|
|
bool embedding = false;
|
|
};
|
|
|
|
struct server_task_result {
|
|
int id = -1;
|
|
int id_multi = -1;
|
|
|
|
json data;
|
|
|
|
bool stop;
|
|
bool error;
|
|
};
|
|
|
|
struct server_task_multi {
|
|
int id = -1;
|
|
|
|
std::set<int> subtasks_remaining;
|
|
std::vector<server_task_result> results;
|
|
};
|
|
|
|
struct slot_params {
|
|
bool stream = true;
|
|
bool cache_prompt = false; // remember the prompt to avoid reprocessing all prompt
|
|
|
|
uint32_t seed = -1; // RNG seed
|
|
int32_t n_keep = 0; // number of tokens to keep from initial prompt
|
|
int32_t n_discard = 0; // number of tokens after n_keep that may be discarded when shifting context, 0 defaults to half
|
|
int32_t n_predict = -1; // new tokens to predict
|
|
|
|
std::vector<std::string> antiprompt;
|
|
|
|
json input_prefix;
|
|
json input_suffix;
|
|
};
|
|
|
|
struct server_params {
|
|
int32_t port = 8080;
|
|
int32_t read_timeout = 600;
|
|
int32_t write_timeout = 600;
|
|
int32_t n_threads_http = -1;
|
|
|
|
std::string hostname = "127.0.0.1";
|
|
std::string public_path = "";
|
|
std::string chat_template = "";
|
|
std::string system_prompt = "";
|
|
|
|
std::vector<std::string> api_keys;
|
|
|
|
#ifdef CPPHTTPLIB_OPENSSL_SUPPORT
|
|
std::string ssl_key_file = "";
|
|
std::string ssl_cert_file = "";
|
|
#endif
|
|
|
|
bool slots_endpoint = true;
|
|
bool metrics_endpoint = false;
|
|
};
|
|
|
|
struct server_slot {
|
|
int id;
|
|
int id_task = -1;
|
|
int id_multi = -1;
|
|
|
|
struct slot_params params;
|
|
|
|
slot_state state = SLOT_STATE_IDLE;
|
|
slot_command command = SLOT_COMMAND_NONE;
|
|
|
|
// used to determine the slot that has been used the longest
|
|
int64_t t_last_used = -1;
|
|
|
|
// generation props
|
|
int32_t n_ctx = 0; // context size per slot
|
|
int32_t n_past = 0;
|
|
int32_t n_decoded = 0;
|
|
int32_t n_remaining = -1;
|
|
int32_t i_batch = -1;
|
|
int32_t n_predict = -1; // TODO: disambiguate from params.n_predict
|
|
|
|
int32_t n_prompt_tokens = 0;
|
|
int32_t n_prompt_tokens_processed = 0;
|
|
|
|
json prompt;
|
|
|
|
// when a task is submitted, we first tokenize the prompt and store it here
|
|
std::vector<llama_token> prompt_tokens;
|
|
|
|
std::string generated_text;
|
|
std::vector<llama_token> cache_tokens;
|
|
std::vector<completion_token_output> generated_token_probs;
|
|
|
|
bool infill = false;
|
|
bool embedding = false;
|
|
bool has_next_token = true;
|
|
bool truncated = false;
|
|
bool stopped_eos = false;
|
|
bool stopped_word = false;
|
|
bool stopped_limit = false;
|
|
|
|
bool oaicompat = false;
|
|
|
|
std::string oaicompat_model;
|
|
std::string stopping_word;
|
|
|
|
// sampling
|
|
llama_token sampled;
|
|
struct llama_sampling_params sparams;
|
|
llama_sampling_context * ctx_sampling = nullptr;
|
|
json json_schema;
|
|
|
|
int32_t ga_i = 0; // group-attention state
|
|
int32_t ga_n = 1; // group-attention factor
|
|
int32_t ga_w = 512; // group-attention width
|
|
|
|
int32_t n_past_se = 0; // self-extend
|
|
|
|
// stats
|
|
size_t n_sent_text = 0; // number of sent text character
|
|
size_t n_sent_token_probs = 0;
|
|
|
|
int64_t t_start_process_prompt;
|
|
int64_t t_start_generation;
|
|
|
|
double t_prompt_processing; // ms
|
|
double t_token_generation; // ms
|
|
|
|
void reset() {
|
|
n_prompt_tokens = 0;
|
|
generated_text = "";
|
|
truncated = false;
|
|
stopped_eos = false;
|
|
stopped_word = false;
|
|
stopped_limit = false;
|
|
stopping_word = "";
|
|
n_past = 0;
|
|
n_sent_text = 0;
|
|
n_sent_token_probs = 0;
|
|
infill = false;
|
|
ga_i = 0;
|
|
n_past_se = 0;
|
|
|
|
generated_token_probs.clear();
|
|
}
|
|
|
|
bool has_budget(gpt_params &global_params) {
|
|
if (params.n_predict == -1 && global_params.n_predict == -1) {
|
|
return true; // limitless
|
|
}
|
|
|
|
n_remaining = -1;
|
|
|
|
if (params.n_predict != -1) {
|
|
n_remaining = params.n_predict - n_decoded;
|
|
} else if (global_params.n_predict != -1) {
|
|
n_remaining = global_params.n_predict - n_decoded;
|
|
}
|
|
|
|
return n_remaining > 0; // no budget
|
|
}
|
|
|
|
bool available() const {
|
|
return state == SLOT_STATE_IDLE && command == SLOT_COMMAND_NONE;
|
|
}
|
|
|
|
bool is_processing() const {
|
|
return (state == SLOT_STATE_IDLE && command == SLOT_COMMAND_LOAD_PROMPT) || state == SLOT_STATE_PROCESSING;
|
|
}
|
|
|
|
void add_token_string(const completion_token_output & token) {
|
|
if (command == SLOT_COMMAND_RELEASE) {
|
|
return;
|
|
}
|
|
generated_token_probs.push_back(token);
|
|
}
|
|
|
|
void release() {
|
|
if (state == SLOT_STATE_PROCESSING) {
|
|
t_token_generation = (ggml_time_us() - t_start_generation) / 1e3;
|
|
command = SLOT_COMMAND_RELEASE;
|
|
}
|
|
}
|
|
|
|
json get_formated_timings() const {
|
|
return json {
|
|
{"prompt_n", n_prompt_tokens_processed},
|
|
{"prompt_ms", t_prompt_processing},
|
|
{"prompt_per_token_ms", t_prompt_processing / n_prompt_tokens_processed},
|
|
{"prompt_per_second", 1e3 / t_prompt_processing * n_prompt_tokens_processed},
|
|
|
|
{"predicted_n", n_decoded},
|
|
{"predicted_ms", t_token_generation},
|
|
{"predicted_per_token_ms", t_token_generation / n_decoded},
|
|
{"predicted_per_second", 1e3 / t_token_generation * n_decoded},
|
|
};
|
|
}
|
|
|
|
size_t find_stopping_strings(const std::string & text, const size_t last_token_size, const stop_type type) {
|
|
size_t stop_pos = std::string::npos;
|
|
|
|
for (const std::string & word : params.antiprompt) {
|
|
size_t pos;
|
|
|
|
if (type == STOP_TYPE_FULL) {
|
|
const size_t tmp = word.size() + last_token_size;
|
|
const size_t from_pos = text.size() > tmp ? text.size() - tmp : 0;
|
|
|
|
pos = text.find(word, from_pos);
|
|
} else {
|
|
pos = find_partial_stop_string(word, text);
|
|
}
|
|
|
|
if (pos != std::string::npos && (stop_pos == std::string::npos || pos < stop_pos)) {
|
|
if (type == STOP_TYPE_FULL) {
|
|
stopped_word = true;
|
|
stopping_word = word;
|
|
has_next_token = false;
|
|
}
|
|
stop_pos = pos;
|
|
}
|
|
}
|
|
|
|
return stop_pos;
|
|
}
|
|
|
|
void print_timings() const {
|
|
char buffer[512];
|
|
|
|
double t_token = t_prompt_processing / n_prompt_tokens_processed;
|
|
double n_tokens_second = 1e3 / t_prompt_processing * n_prompt_tokens_processed;
|
|
|
|
snprintf(buffer, 512, "prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)",
|
|
t_prompt_processing, n_prompt_tokens_processed,
|
|
t_token, n_tokens_second);
|
|
|
|
LOG_INFO(buffer, {
|
|
{"id_slot", id},
|
|
{"id_task", id_task},
|
|
{"t_prompt_processing", t_prompt_processing},
|
|
{"n_prompt_tokens_processed", n_prompt_tokens_processed},
|
|
{"t_token", t_token},
|
|
{"n_tokens_second", n_tokens_second},
|
|
});
|
|
|
|
t_token = t_token_generation / n_decoded;
|
|
n_tokens_second = 1e3 / t_token_generation * n_decoded;
|
|
|
|
snprintf(buffer, 512, "generation eval time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)",
|
|
t_token_generation, n_decoded,
|
|
t_token, n_tokens_second);
|
|
|
|
LOG_INFO(buffer, {
|
|
{"id_slot", id},
|
|
{"id_task", id_task},
|
|
{"t_token_generation", t_token_generation},
|
|
{"n_decoded", n_decoded},
|
|
{"t_token", t_token},
|
|
{"n_tokens_second", n_tokens_second},
|
|
});
|
|
|
|
snprintf(buffer, 512, " total time = %10.2f ms", t_prompt_processing + t_token_generation);
|
|
|
|
LOG_INFO(buffer, {
|
|
{"id_slot", id},
|
|
{"id_task", id_task},
|
|
{"t_prompt_processing", t_prompt_processing},
|
|
{"t_token_generation", t_token_generation},
|
|
{"t_total", t_prompt_processing + t_token_generation},
|
|
});
|
|
}
|
|
};
|
|
|
|
struct server_metrics {
|
|
int64_t t_start = 0;
|
|
|
|
uint64_t n_prompt_tokens_processed_total = 0;
|
|
uint64_t t_prompt_processing_total = 0;
|
|
uint64_t n_tokens_predicted_total = 0;
|
|
uint64_t t_tokens_generation_total = 0;
|
|
|
|
uint64_t n_prompt_tokens_processed = 0;
|
|
uint64_t t_prompt_processing = 0;
|
|
|
|
uint64_t n_tokens_predicted = 0;
|
|
uint64_t t_tokens_generation = 0;
|
|
|
|
void init() {
|
|
t_start = ggml_time_us();
|
|
}
|
|
|
|
void on_prompt_eval(const server_slot & slot) {
|
|
n_prompt_tokens_processed_total += slot.n_prompt_tokens_processed;
|
|
n_prompt_tokens_processed += slot.n_prompt_tokens_processed;
|
|
t_prompt_processing += slot.t_prompt_processing;
|
|
t_prompt_processing_total += slot.t_prompt_processing;
|
|
}
|
|
|
|
void on_prediction(const server_slot & slot) {
|
|
n_tokens_predicted_total += slot.n_decoded;
|
|
n_tokens_predicted += slot.n_decoded;
|
|
t_tokens_generation += slot.t_token_generation;
|
|
t_tokens_generation_total += slot.t_token_generation;
|
|
}
|
|
|
|
void reset_bucket() {
|
|
n_prompt_tokens_processed = 0;
|
|
t_prompt_processing = 0;
|
|
n_tokens_predicted = 0;
|
|
t_tokens_generation = 0;
|
|
}
|
|
};
|
|
|
|
struct server_queue {
|
|
int id = 0;
|
|
bool running;
|
|
|
|
// queues
|
|
std::vector<server_task> queue_tasks;
|
|
std::vector<server_task> queue_tasks_deferred;
|
|
|
|
std::vector<server_task_multi> queue_multitasks;
|
|
|
|
std::mutex mutex_tasks;
|
|
std::condition_variable condition_tasks;
|
|
|
|
// callback functions
|
|
std::function<void(server_task &)> callback_new_task;
|
|
std::function<void(server_task_multi &)> callback_finish_multitask;
|
|
std::function<void(void)> callback_update_slots;
|
|
|
|
// Add a new task to the end of the queue
|
|
int post(server_task task) {
|
|
std::unique_lock<std::mutex> lock(mutex_tasks);
|
|
if (task.id == -1) {
|
|
task.id = id++;
|
|
LOG_VERBOSE("new task id", {{"new_id", task.id}});
|
|
}
|
|
queue_tasks.push_back(std::move(task));
|
|
condition_tasks.notify_one();
|
|
return task.id;
|
|
}
|
|
|
|
// Add a new task, but defer until one slot is available
|
|
void defer(server_task task) {
|
|
std::unique_lock<std::mutex> lock(mutex_tasks);
|
|
queue_tasks_deferred.push_back(std::move(task));
|
|
}
|
|
|
|
// Get the next id for creating anew task
|
|
int get_new_id() {
|
|
std::unique_lock<std::mutex> lock(mutex_tasks);
|
|
int new_id = id++;
|
|
LOG_VERBOSE("new task id", {{"new_id", new_id}});
|
|
return new_id;
|
|
}
|
|
|
|
// Register function to process a new task
|
|
void on_new_task(std::function<void(server_task &)> callback) {
|
|
callback_new_task = std::move(callback);
|
|
}
|
|
|
|
// Register function to process a multitask when it is finished
|
|
void on_finish_multitask(std::function<void(server_task_multi&)> callback) {
|
|
callback_finish_multitask = std::move(callback);
|
|
}
|
|
|
|
// Register the function to be called when all slots data is ready to be processed
|
|
void on_update_slots(std::function<void(void)> callback) {
|
|
callback_update_slots = std::move(callback);
|
|
}
|
|
|
|
// Call when the state of one slot is changed
|
|
void notify_slot_changed() {
|
|
// move deferred tasks back to main loop
|
|
std::unique_lock<std::mutex> lock(mutex_tasks);
|
|
for (auto & task : queue_tasks_deferred) {
|
|
queue_tasks.push_back(std::move(task));
|
|
}
|
|
queue_tasks_deferred.clear();
|
|
}
|
|
|
|
// end the start_loop routine
|
|
void terminate() {
|
|
std::unique_lock<std::mutex> lock(mutex_tasks);
|
|
running = false;
|
|
condition_tasks.notify_all();
|
|
}
|
|
|
|
/**
|
|
* Main loop consists of these steps:
|
|
* - Wait until a new task arrives
|
|
* - Process the task (i.e. maybe copy data into slot)
|
|
* - Check if multitask is finished
|
|
* - Update all slots
|
|
*/
|
|
void start_loop() {
|
|
running = true;
|
|
|
|
while (true) {
|
|
LOG_VERBOSE("new task may arrive", {});
|
|
|
|
while (true) {
|
|
std::unique_lock<std::mutex> lock(mutex_tasks);
|
|
if (queue_tasks.empty()) {
|
|
lock.unlock();
|
|
break;
|
|
}
|
|
server_task task = queue_tasks.front();
|
|
queue_tasks.erase(queue_tasks.begin());
|
|
lock.unlock();
|
|
LOG_VERBOSE("callback_new_task", {{"id_task", task.id}});
|
|
callback_new_task(task);
|
|
}
|
|
|
|
LOG_VERBOSE("update_multitasks", {});
|
|
|
|
// check if we have any finished multitasks
|
|
auto queue_iterator = queue_multitasks.begin();
|
|
while (queue_iterator != queue_multitasks.end()) {
|
|
if (queue_iterator->subtasks_remaining.empty()) {
|
|
// all subtasks done == multitask is done
|
|
server_task_multi current_multitask = *queue_iterator;
|
|
callback_finish_multitask(current_multitask);
|
|
// remove this multitask
|
|
queue_iterator = queue_multitasks.erase(queue_iterator);
|
|
} else {
|
|
++queue_iterator;
|
|
}
|
|
}
|
|
|
|
// all tasks in the current loop is processed, slots data is now ready
|
|
LOG_VERBOSE("callback_update_slots", {});
|
|
|
|
callback_update_slots();
|
|
|
|
LOG_VERBOSE("wait for new task", {});
|
|
{
|
|
std::unique_lock<std::mutex> lock(mutex_tasks);
|
|
if (queue_tasks.empty()) {
|
|
if (!running) {
|
|
LOG_VERBOSE("ending start_loop", {});
|
|
return;
|
|
}
|
|
condition_tasks.wait(lock, [&]{
|
|
return (!queue_tasks.empty() || !running);
|
|
});
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//
|
|
// functions to manage multitasks
|
|
//
|
|
|
|
// add a multitask by specifying the id of all subtask (subtask is a server_task)
|
|
void add_multitask(int id_multi, std::vector<int> & sub_ids) {
|
|
std::lock_guard<std::mutex> lock(mutex_tasks);
|
|
server_task_multi multi;
|
|
multi.id = id_multi;
|
|
std::copy(sub_ids.begin(), sub_ids.end(), std::inserter(multi.subtasks_remaining, multi.subtasks_remaining.end()));
|
|
queue_multitasks.push_back(multi);
|
|
}
|
|
|
|
// updatethe remaining subtasks, while appending results to multitask
|
|
void update_multitask(int id_multi, int id_sub, server_task_result & result) {
|
|
std::lock_guard<std::mutex> lock(mutex_tasks);
|
|
for (auto & multitask : queue_multitasks) {
|
|
if (multitask.id == id_multi) {
|
|
multitask.subtasks_remaining.erase(id_sub);
|
|
multitask.results.push_back(result);
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
struct server_response {
|
|
typedef std::function<void(int, int, server_task_result &)> callback_multitask_t;
|
|
callback_multitask_t callback_update_multitask;
|
|
|
|
// for keeping track of all tasks waiting for the result
|
|
std::set<int> waiting_task_ids;
|
|
|
|
// the main result queue
|
|
std::vector<server_task_result> queue_results;
|
|
|
|
std::mutex mutex_results;
|
|
std::condition_variable condition_results;
|
|
|
|
// add the id_task to the list of tasks waiting for response
|
|
void add_waiting_task_id(int id_task) {
|
|
LOG_VERBOSE("waiting for task id", {{"id_task", id_task}});
|
|
|
|
std::unique_lock<std::mutex> lock(mutex_results);
|
|
waiting_task_ids.insert(id_task);
|
|
}
|
|
|
|
// when the request is finished, we can remove task associated with it
|
|
void remove_waiting_task_id(int id_task) {
|
|
LOG_VERBOSE("remove waiting for task id", {{"id_task", id_task}});
|
|
|
|
std::unique_lock<std::mutex> lock(mutex_results);
|
|
waiting_task_ids.erase(id_task);
|
|
}
|
|
|
|
// This function blocks the thread until there is a response for this id_task
|
|
server_task_result recv(int id_task) {
|
|
while (true) {
|
|
std::unique_lock<std::mutex> lock(mutex_results);
|
|
condition_results.wait(lock, [&]{
|
|
return !queue_results.empty();
|
|
});
|
|
|
|
for (int i = 0; i < (int) queue_results.size(); i++) {
|
|
if (queue_results[i].id == id_task) {
|
|
assert(queue_results[i].id_multi == -1);
|
|
server_task_result res = queue_results[i];
|
|
queue_results.erase(queue_results.begin() + i);
|
|
return res;
|
|
}
|
|
}
|
|
}
|
|
|
|
// should never reach here
|
|
}
|
|
|
|
// Register the function to update multitask
|
|
void on_multitask_update(callback_multitask_t callback) {
|
|
callback_update_multitask = std::move(callback);
|
|
}
|
|
|
|
// Send a new result to a waiting id_task
|
|
void send(server_task_result result) {
|
|
LOG_VERBOSE("send new result", {{"id_task", result.id}});
|
|
|
|
std::unique_lock<std::mutex> lock(mutex_results);
|
|
for (const auto & id_task : waiting_task_ids) {
|
|
// LOG_TEE("waiting task id %i \n", id_task);
|
|
// for now, tasks that have associated parent multitasks just get erased once multitask picks up the result
|
|
if (result.id_multi == id_task) {
|
|
LOG_VERBOSE("callback_update_multitask", {{"id_task", id_task}});
|
|
callback_update_multitask(id_task, result.id, result);
|
|
continue;
|
|
}
|
|
|
|
if (result.id == id_task) {
|
|
LOG_VERBOSE("queue_results.push_back", {{"id_task", id_task}});
|
|
queue_results.push_back(result);
|
|
condition_results.notify_all();
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
struct server_context {
|
|
llama_model * model = nullptr;
|
|
llama_context * ctx = nullptr;
|
|
|
|
gpt_params params;
|
|
|
|
llama_batch batch;
|
|
|
|
bool clean_kv_cache = true;
|
|
bool add_bos_token = true;
|
|
|
|
int32_t n_ctx; // total context for all clients / slots
|
|
|
|
// system prompt
|
|
bool system_need_update = false;
|
|
|
|
std::string system_prompt;
|
|
std::vector<llama_token> system_tokens;
|
|
|
|
std::string name_user; // this should be the antiprompt
|
|
std::string name_assistant;
|
|
|
|
// slots / clients
|
|
std::vector<server_slot> slots;
|
|
json default_generation_settings_for_props;
|
|
|
|
server_queue queue_tasks;
|
|
server_response queue_results;
|
|
|
|
server_metrics metrics;
|
|
|
|
~server_context() {
|
|
if (ctx) {
|
|
llama_free(ctx);
|
|
ctx = nullptr;
|
|
}
|
|
|
|
if (model) {
|
|
llama_free_model(model);
|
|
model = nullptr;
|
|
}
|
|
}
|
|
|
|
bool load_model(const gpt_params & params_) {
|
|
params = params_;
|
|
|
|
// dedicate one sequence to the system prompt
|
|
params.n_parallel += 1;
|
|
|
|
std::tie(model, ctx) = llama_init_from_gpt_params(params);
|
|
params.n_parallel -= 1; // but be sneaky about it
|
|
if (model == nullptr) {
|
|
LOG_ERROR("unable to load model", {{"model", params.model}});
|
|
return false;
|
|
}
|
|
|
|
n_ctx = llama_n_ctx(ctx);
|
|
|
|
add_bos_token = llama_should_add_bos_token(model);
|
|
|
|
return true;
|
|
}
|
|
|
|
bool validate_model_chat_template() const {
|
|
llama_chat_message chat[] = {{"user", "test"}};
|
|
|
|
const int res = llama_chat_apply_template(model, nullptr, chat, 1, true, nullptr, 0);
|
|
|
|
return res > 0;
|
|
}
|
|
|
|
void init() {
|
|
const int32_t n_ctx_slot = n_ctx / params.n_parallel;
|
|
|
|
LOG_INFO("initializing slots", {{"n_slots", params.n_parallel}});
|
|
|
|
for (int i = 0; i < params.n_parallel; i++) {
|
|
server_slot slot;
|
|
|
|
slot.id = i;
|
|
slot.n_ctx = n_ctx_slot;
|
|
slot.n_predict = params.n_predict;
|
|
|
|
LOG_INFO("new slot", {
|
|
{"id_slot", slot.id},
|
|
{"n_ctx_slot", slot.n_ctx}
|
|
});
|
|
|
|
const int ga_n = params.grp_attn_n;
|
|
const int ga_w = params.grp_attn_w;
|
|
|
|
if (ga_n != 1) {
|
|
GGML_ASSERT(ga_n > 0 && "ga_n must be positive"); // NOLINT
|
|
GGML_ASSERT(ga_w % ga_n == 0 && "ga_w must be a multiple of ga_n"); // NOLINT
|
|
//GGML_ASSERT(n_ctx_train % ga_w == 0 && "n_ctx_train must be a multiple of ga_w"); // NOLINT
|
|
//GGML_ASSERT(n_ctx >= n_ctx_train * ga_n && "n_ctx must be at least n_ctx_train * ga_n"); // NOLINT
|
|
|
|
LOG_INFO("slot self-extend", {
|
|
{"id_slot", slot.id},
|
|
{"ga_n", ga_n},
|
|
{"ga_w", ga_w}
|
|
});
|
|
}
|
|
|
|
slot.ga_i = 0;
|
|
slot.ga_n = ga_n;
|
|
slot.ga_w = ga_w;
|
|
|
|
slot.reset();
|
|
|
|
slots.push_back(slot);
|
|
}
|
|
|
|
default_generation_settings_for_props = get_formated_generation(slots.front());
|
|
default_generation_settings_for_props["seed"] = -1;
|
|
|
|
// the update_slots() logic will always submit a maximum of n_batch tokens
|
|
// note that n_batch can be > n_ctx (e.g. for non-causal attention models such as BERT where the KV cache is not used)
|
|
{
|
|
const int32_t n_batch = llama_n_batch(ctx);
|
|
|
|
// only a single seq_id per token is needed
|
|
batch = llama_batch_init(n_batch, 0, 1);
|
|
}
|
|
|
|
metrics.init();
|
|
}
|
|
|
|
std::vector<llama_token> tokenize(const json & json_prompt, bool add_bos) const {
|
|
// TODO: currently, we tokenize using special tokens by default
|
|
// this is not always correct (see https://github.com/ggerganov/llama.cpp/pull/4160#issuecomment-1824826216)
|
|
// but it's better compared to completely ignoring ChatML and other chat templates
|
|
const bool TMP_FORCE_SPECIAL = true;
|
|
|
|
// If `add_bos` is true, we only add BOS, when json_prompt is a string,
|
|
// or the first element of the json_prompt array is a string.
|
|
std::vector<llama_token> prompt_tokens;
|
|
|
|
if (json_prompt.is_array()) {
|
|
bool first = true;
|
|
for (const auto & p : json_prompt) {
|
|
if (p.is_string()) {
|
|
auto s = p.template get<std::string>();
|
|
|
|
std::vector<llama_token> p;
|
|
if (first) {
|
|
p = ::llama_tokenize(ctx, s, add_bos, TMP_FORCE_SPECIAL);
|
|
first = false;
|
|
} else {
|
|
p = ::llama_tokenize(ctx, s, false, TMP_FORCE_SPECIAL);
|
|
}
|
|
|
|
prompt_tokens.insert(prompt_tokens.end(), p.begin(), p.end());
|
|
} else {
|
|
if (first) {
|
|
first = false;
|
|
}
|
|
|
|
prompt_tokens.push_back(p.template get<llama_token>());
|
|
}
|
|
}
|
|
} else {
|
|
auto s = json_prompt.template get<std::string>();
|
|
prompt_tokens = ::llama_tokenize(ctx, s, add_bos, TMP_FORCE_SPECIAL);
|
|
}
|
|
|
|
return prompt_tokens;
|
|
}
|
|
|
|
server_slot * get_slot(int id) {
|
|
int64_t t_last = ggml_time_us();
|
|
|
|
server_slot * last_used = nullptr;
|
|
|
|
for (server_slot & slot : slots) {
|
|
if (slot.id == id && slot.available()) {
|
|
return &slot;
|
|
}
|
|
|
|
// among all available slots, find the one that has been least recently used
|
|
if (slot.available() && slot.t_last_used < t_last) {
|
|
last_used = &slot;
|
|
t_last = slot.t_last_used;
|
|
}
|
|
}
|
|
|
|
return last_used;
|
|
}
|
|
|
|
bool launch_slot_with_task(server_slot & slot, const server_task & task) {
|
|
slot_params default_params;
|
|
llama_sampling_params default_sparams;
|
|
auto & data = task.data;
|
|
|
|
if (data.count("__oaicompat") != 0) {
|
|
slot.oaicompat = true;
|
|
slot.oaicompat_model = json_value(data, "model", std::string(DEFAULT_OAICOMPAT_MODEL));
|
|
} else {
|
|
slot.oaicompat = false;
|
|
slot.oaicompat_model = "";
|
|
}
|
|
|
|
slot.params.stream = json_value(data, "stream", false);
|
|
slot.params.cache_prompt = json_value(data, "cache_prompt", false);
|
|
slot.params.n_predict = json_value(data, "n_predict", default_params.n_predict);
|
|
slot.sparams.top_k = json_value(data, "top_k", default_sparams.top_k);
|
|
slot.sparams.top_p = json_value(data, "top_p", default_sparams.top_p);
|
|
slot.sparams.min_p = json_value(data, "min_p", default_sparams.min_p);
|
|
slot.sparams.tfs_z = json_value(data, "tfs_z", default_sparams.tfs_z);
|
|
slot.sparams.typical_p = json_value(data, "typical_p", default_sparams.typical_p);
|
|
slot.sparams.temp = json_value(data, "temperature", default_sparams.temp);
|
|
slot.sparams.dynatemp_range = json_value(data, "dynatemp_range", default_sparams.dynatemp_range);
|
|
slot.sparams.dynatemp_exponent = json_value(data, "dynatemp_exponent", default_sparams.dynatemp_exponent);
|
|
slot.sparams.penalty_last_n = json_value(data, "repeat_last_n", default_sparams.penalty_last_n);
|
|
slot.sparams.penalty_repeat = json_value(data, "repeat_penalty", default_sparams.penalty_repeat);
|
|
slot.sparams.penalty_freq = json_value(data, "frequency_penalty", default_sparams.penalty_freq);
|
|
slot.sparams.penalty_present = json_value(data, "presence_penalty", default_sparams.penalty_present);
|
|
slot.sparams.mirostat = json_value(data, "mirostat", default_sparams.mirostat);
|
|
slot.sparams.mirostat_tau = json_value(data, "mirostat_tau", default_sparams.mirostat_tau);
|
|
slot.sparams.mirostat_eta = json_value(data, "mirostat_eta", default_sparams.mirostat_eta);
|
|
slot.sparams.penalize_nl = json_value(data, "penalize_nl", default_sparams.penalize_nl);
|
|
slot.params.n_keep = json_value(data, "n_keep", slot.params.n_keep);
|
|
slot.params.n_discard = json_value(data, "n_discard", default_params.n_discard);
|
|
slot.params.seed = json_value(data, "seed", default_params.seed);
|
|
slot.sparams.n_probs = json_value(data, "n_probs", default_sparams.n_probs);
|
|
slot.sparams.min_keep = json_value(data, "min_keep", default_sparams.min_keep);
|
|
|
|
// process "json_schema" and "grammar"
|
|
if (data.contains("json_schema") && data.contains("grammar")) {
|
|
send_error(task, "Either \"json_schema\" or \"grammar\" can be specified, but not both", ERROR_TYPE_INVALID_REQUEST);
|
|
return false;
|
|
} else if (data.contains("json_schema") && !data.contains("grammar")) {
|
|
try {
|
|
auto schema = json_value(data, "json_schema", json::object());
|
|
slot.sparams.grammar = json_schema_to_grammar(schema);
|
|
} catch (const std::exception & e) {
|
|
send_error(task, std::string("\"json_schema\": ") + e.what(), ERROR_TYPE_INVALID_REQUEST);
|
|
return false;
|
|
}
|
|
} else {
|
|
slot.sparams.grammar = json_value(data, "grammar", default_sparams.grammar);
|
|
}
|
|
|
|
if (slot.params.cache_prompt && slot.ga_n != 1) {
|
|
LOG_WARNING("cache_prompt is not supported with group-attention", {});
|
|
slot.params.cache_prompt = false;
|
|
}
|
|
|
|
if (slot.n_predict > 0 && slot.params.n_predict > slot.n_predict) {
|
|
// Might be better to reject the request with a 400 ?
|
|
LOG_WARNING("Max tokens to predict exceeds server configuration", {
|
|
{"params.n_predict", slot.params.n_predict},
|
|
{"slot.n_predict", slot.n_predict},
|
|
});
|
|
slot.params.n_predict = slot.n_predict;
|
|
}
|
|
|
|
// infill
|
|
slot.params.input_prefix = json_value(data, "input_prefix", default_params.input_prefix);
|
|
slot.params.input_suffix = json_value(data, "input_suffix", default_params.input_suffix);
|
|
|
|
// get prompt
|
|
{
|
|
const auto & prompt = data.find("prompt");
|
|
if (prompt == data.end()) {
|
|
send_error(task, "Either \"prompt\" or \"messages\" must be provided", ERROR_TYPE_INVALID_REQUEST);
|
|
return false;
|
|
} else {
|
|
slot.prompt = *prompt;
|
|
}
|
|
if (slot.prompt.is_array() && slot.prompt.size() == 0) {
|
|
send_error(task, "\"prompt\" cannot be an empty array", ERROR_TYPE_INVALID_REQUEST);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// penalize user-provided tokens
|
|
{
|
|
slot.sparams.penalty_prompt_tokens.clear();
|
|
slot.sparams.use_penalty_prompt_tokens = false;
|
|
|
|
const auto & penalty_prompt = data.find("penalty_prompt");
|
|
|
|
if (penalty_prompt != data.end()) {
|
|
if (penalty_prompt->is_string()) {
|
|
const auto penalty_prompt_string = penalty_prompt->get<std::string>();
|
|
slot.sparams.penalty_prompt_tokens = llama_tokenize(model, penalty_prompt_string, false);
|
|
|
|
if (slot.params.n_predict > 0) {
|
|
slot.sparams.penalty_prompt_tokens.reserve(slot.sparams.penalty_prompt_tokens.size() + slot.params.n_predict);
|
|
}
|
|
slot.sparams.use_penalty_prompt_tokens = true;
|
|
|
|
LOG_VERBOSE("penalty_prompt_tokens", {
|
|
{"id_slot", slot.id},
|
|
{"tokens", slot.sparams.penalty_prompt_tokens},
|
|
});
|
|
}
|
|
else if (penalty_prompt->is_array()) {
|
|
const auto n_tokens = penalty_prompt->size();
|
|
slot.sparams.penalty_prompt_tokens.reserve(n_tokens + std::max(0, slot.params.n_predict));
|
|
|
|
const int n_vocab = llama_n_vocab(model);
|
|
for (const auto & penalty_token : *penalty_prompt) {
|
|
if (penalty_token.is_number_integer()) {
|
|
const auto tok = penalty_token.get<llama_token>();
|
|
if (tok >= 0 && tok < n_vocab) {
|
|
slot.sparams.penalty_prompt_tokens.push_back(tok);
|
|
}
|
|
}
|
|
}
|
|
slot.sparams.use_penalty_prompt_tokens = true;
|
|
|
|
LOG_VERBOSE("penalty_prompt_tokens", {
|
|
{"id_slot", slot.id},
|
|
{"tokens", slot.sparams.penalty_prompt_tokens},
|
|
});
|
|
}
|
|
}
|
|
}
|
|
|
|
{
|
|
slot.sparams.logit_bias.clear();
|
|
|
|
if (json_value(data, "ignore_eos", false)) {
|
|
slot.sparams.logit_bias[llama_token_eos(model)] = -INFINITY;
|
|
}
|
|
|
|
const auto & logit_bias = data.find("logit_bias");
|
|
if (logit_bias != data.end() && logit_bias->is_array()) {
|
|
const int n_vocab = llama_n_vocab(model);
|
|
for (const auto & el : *logit_bias) {
|
|
// TODO: we may want to throw errors here, in case "el" is incorrect
|
|
if (el.is_array() && el.size() == 2) {
|
|
float bias;
|
|
if (el[1].is_number()) {
|
|
bias = el[1].get<float>();
|
|
} else if (el[1].is_boolean() && !el[1].get<bool>()) {
|
|
bias = -INFINITY;
|
|
} else {
|
|
continue;
|
|
}
|
|
|
|
if (el[0].is_number_integer()) {
|
|
llama_token tok = el[0].get<llama_token>();
|
|
if (tok >= 0 && tok < n_vocab) {
|
|
slot.sparams.logit_bias[tok] = bias;
|
|
}
|
|
} else if (el[0].is_string()) {
|
|
auto toks = llama_tokenize(model, el[0].get<std::string>(), false);
|
|
for (auto tok : toks) {
|
|
slot.sparams.logit_bias[tok] = bias;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
{
|
|
slot.params.antiprompt.clear();
|
|
|
|
const auto & stop = data.find("stop");
|
|
if (stop != data.end() && stop->is_array()) {
|
|
for (const auto & word : *stop) {
|
|
if (!word.empty()) {
|
|
slot.params.antiprompt.push_back(word);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
{
|
|
const auto & samplers_sequence = data.find("samplers");
|
|
if (samplers_sequence != data.end() && samplers_sequence->is_array()) {
|
|
std::vector<std::string> sampler_names;
|
|
for (const auto & sampler_name : *samplers_sequence) {
|
|
if (sampler_name.is_string()) {
|
|
sampler_names.emplace_back(sampler_name);
|
|
}
|
|
}
|
|
slot.sparams.samplers_sequence = sampler_types_from_names(sampler_names, false);
|
|
} else {
|
|
slot.sparams.samplers_sequence = default_sparams.samplers_sequence;
|
|
}
|
|
}
|
|
|
|
{
|
|
if (slot.ctx_sampling != nullptr) {
|
|
llama_sampling_free(slot.ctx_sampling);
|
|
}
|
|
slot.ctx_sampling = llama_sampling_init(slot.sparams);
|
|
if (slot.ctx_sampling == nullptr) {
|
|
// for now, the only error that may happen here is invalid grammar
|
|
send_error(task, "Failed to parse grammar", ERROR_TYPE_INVALID_REQUEST);
|
|
return false;
|
|
}
|
|
llama_set_rng_seed(ctx, slot.params.seed);
|
|
}
|
|
|
|
slot.command = SLOT_COMMAND_LOAD_PROMPT;
|
|
slot.prompt_tokens.clear();
|
|
|
|
LOG_INFO("slot is processing task", {
|
|
{"id_slot", slot.id},
|
|
{"id_task", slot.id_task},
|
|
});
|
|
|
|
return true;
|
|
}
|
|
|
|
void kv_cache_clear() {
|
|
LOG_VERBOSE("clearing KV cache", {});
|
|
|
|
// clear the entire KV cache
|
|
llama_kv_cache_clear(ctx);
|
|
clean_kv_cache = false;
|
|
}
|
|
|
|
void system_prompt_update() {
|
|
LOG_VERBOSE("system prompt update", {
|
|
{"system_prompt", system_prompt},
|
|
});
|
|
|
|
kv_cache_clear();
|
|
system_tokens.clear();
|
|
|
|
if (!system_prompt.empty()) {
|
|
system_tokens = ::llama_tokenize(ctx, system_prompt, add_bos_token);
|
|
|
|
llama_batch_clear(batch);
|
|
|
|
for (int i = 0; i < (int)system_tokens.size(); ++i) {
|
|
llama_batch_add(batch, system_tokens[i], i, { 0 }, false);
|
|
}
|
|
|
|
const int32_t n_batch = llama_n_batch(ctx);
|
|
|
|
for (int32_t i = 0; i < batch.n_tokens; i += n_batch) {
|
|
const int32_t n_tokens = std::min(params.n_batch, batch.n_tokens - i);
|
|
llama_batch batch_view = {
|
|
n_tokens,
|
|
batch.token + i,
|
|
nullptr,
|
|
batch.pos + i,
|
|
batch.n_seq_id + i,
|
|
batch.seq_id + i,
|
|
batch.logits + i,
|
|
0, 0, 0, // unused
|
|
};
|
|
|
|
if (llama_decode(ctx, batch_view) != 0) {
|
|
LOG_TEE("%s: llama_decode() failed\n", __func__);
|
|
return;
|
|
}
|
|
}
|
|
|
|
// assign the system KV cache to all parallel sequences
|
|
for (int32_t i = 1; i <= params.n_parallel; ++i) {
|
|
llama_kv_cache_seq_cp(ctx, 0, i, -1, -1);
|
|
}
|
|
}
|
|
|
|
system_need_update = false;
|
|
}
|
|
|
|
void system_prompt_set(const json & sys_props) {
|
|
system_prompt = sys_props.value("prompt", "");
|
|
name_user = sys_props.value("anti_prompt", "");
|
|
name_assistant = sys_props.value("assistant_name", "");
|
|
|
|
LOG_VERBOSE("system prompt process", {
|
|
{"system_prompt", system_prompt},
|
|
{"name_user", name_user},
|
|
{"name_assistant", name_assistant},
|
|
});
|
|
|
|
// release all slots
|
|
for (server_slot & slot : slots) {
|
|
slot.release();
|
|
}
|
|
|
|
system_need_update = true;
|
|
}
|
|
|
|
bool process_token(completion_token_output & result, server_slot & slot) {
|
|
// remember which tokens were sampled - used for repetition penalties during sampling
|
|
const std::string token_str = llama_token_to_piece(ctx, result.tok);
|
|
slot.sampled = result.tok;
|
|
|
|
// search stop word and delete it
|
|
slot.generated_text += token_str;
|
|
slot.has_next_token = true;
|
|
|
|
if (slot.ctx_sampling->params.use_penalty_prompt_tokens && result.tok != -1) {
|
|
// we can change penalty_prompt_tokens because it is always created from scratch each request
|
|
slot.ctx_sampling->params.penalty_prompt_tokens.push_back(result.tok);
|
|
}
|
|
|
|
// check if there is incomplete UTF-8 character at the end
|
|
bool incomplete = false;
|
|
for (unsigned i = 1; i < 5 && i <= slot.generated_text.size(); ++i) {
|
|
unsigned char c = slot.generated_text[slot.generated_text.size() - i];
|
|
if ((c & 0xC0) == 0x80) {
|
|
// continuation byte: 10xxxxxx
|
|
continue;
|
|
}
|
|
if ((c & 0xE0) == 0xC0) {
|
|
// 2-byte character: 110xxxxx ...
|
|
incomplete = i < 2;
|
|
} else if ((c & 0xF0) == 0xE0) {
|
|
// 3-byte character: 1110xxxx ...
|
|
incomplete = i < 3;
|
|
} else if ((c & 0xF8) == 0xF0) {
|
|
// 4-byte character: 11110xxx ...
|
|
incomplete = i < 4;
|
|
}
|
|
// else 1-byte character or invalid byte
|
|
break;
|
|
}
|
|
|
|
if (!incomplete) {
|
|
size_t pos = std::min(slot.n_sent_text, slot.generated_text.size());
|
|
|
|
const std::string str_test = slot.generated_text.substr(pos);
|
|
bool is_stop_full = false;
|
|
|
|
size_t stop_pos = slot.find_stopping_strings(str_test, token_str.size(), STOP_TYPE_FULL);
|
|
if (stop_pos != std::string::npos) {
|
|
is_stop_full = true;
|
|
slot.generated_text.erase(
|
|
slot.generated_text.begin() + pos + stop_pos,
|
|
slot.generated_text.end());
|
|
pos = std::min(slot.n_sent_text, slot.generated_text.size());
|
|
} else {
|
|
is_stop_full = false;
|
|
stop_pos = slot.find_stopping_strings(str_test, token_str.size(), STOP_TYPE_PARTIAL);
|
|
}
|
|
|
|
// check if there is any token to predict
|
|
if (stop_pos == std::string::npos || (!slot.has_next_token && !is_stop_full && stop_pos > 0)) {
|
|
// no send the stop word in the response
|
|
result.text_to_send = slot.generated_text.substr(pos, std::string::npos);
|
|
slot.n_sent_text += result.text_to_send.size();
|
|
// add the token to slot queue and cache
|
|
}
|
|
|
|
slot.add_token_string(result);
|
|
if (slot.params.stream) {
|
|
send_partial_response(slot, result);
|
|
}
|
|
}
|
|
|
|
if (incomplete) {
|
|
slot.has_next_token = true;
|
|
}
|
|
|
|
// check the limits
|
|
if (slot.n_decoded > 0 && slot.has_next_token && !slot.has_budget(params)) {
|
|
slot.stopped_limit = true;
|
|
slot.has_next_token = false;
|
|
|
|
LOG_VERBOSE("stopped by limit", {
|
|
{"id_slot", slot.id},
|
|
{"id_task", slot.id_task},
|
|
{"n_decoded", slot.n_decoded},
|
|
{"n_predict", slot.params.n_predict},
|
|
});
|
|
}
|
|
|
|
if (result.tok == llama_token_eos(model)) {
|
|
slot.stopped_eos = true;
|
|
slot.has_next_token = false;
|
|
|
|
LOG_VERBOSE("eos token found", {});
|
|
}
|
|
|
|
LOG_VERBOSE("next token", {
|
|
{"id_slot", slot.id},
|
|
{"id_task", slot.id_task},
|
|
{"token", result.tok},
|
|
{"token_text", tokens_to_output_formatted_string(ctx, result.tok)},
|
|
{"has_next_token", slot.has_next_token},
|
|
{"n_remain", slot.n_remaining},
|
|
{"n_decoded", slot.n_decoded},
|
|
{"stopped_eos", slot.stopped_eos},
|
|
{"stopped_word", slot.stopped_word},
|
|
{"stopped_limit", slot.stopped_limit},
|
|
{"stopping_word", slot.stopping_word},
|
|
});
|
|
|
|
return slot.has_next_token; // continue
|
|
}
|
|
|
|
json get_formated_generation(const server_slot & slot) const {
|
|
const auto eos_bias = slot.sparams.logit_bias.find(llama_token_eos(model));
|
|
const bool ignore_eos = eos_bias != slot.sparams.logit_bias.end() && eos_bias->second < 0.0f && std::isinf(eos_bias->second);
|
|
|
|
std::vector<std::string> samplers_sequence;
|
|
samplers_sequence.reserve(slot.sparams.samplers_sequence.size());
|
|
for (const auto & sampler_type : slot.sparams.samplers_sequence) {
|
|
samplers_sequence.emplace_back(sampler_type_to_name_string(sampler_type));
|
|
}
|
|
|
|
return json {
|
|
{"n_ctx", slot.n_ctx},
|
|
{"n_predict", slot.n_predict},
|
|
{"model", params.model_alias},
|
|
{"seed", slot.params.seed},
|
|
{"temperature", slot.sparams.temp},
|
|
{"dynatemp_range", slot.sparams.dynatemp_range},
|
|
{"dynatemp_exponent", slot.sparams.dynatemp_exponent},
|
|
{"top_k", slot.sparams.top_k},
|
|
{"top_p", slot.sparams.top_p},
|
|
{"min_p", slot.sparams.min_p},
|
|
{"tfs_z", slot.sparams.tfs_z},
|
|
{"typical_p", slot.sparams.typical_p},
|
|
{"repeat_last_n", slot.sparams.penalty_last_n},
|
|
{"repeat_penalty", slot.sparams.penalty_repeat},
|
|
{"presence_penalty", slot.sparams.penalty_present},
|
|
{"frequency_penalty", slot.sparams.penalty_freq},
|
|
{"penalty_prompt_tokens", slot.sparams.penalty_prompt_tokens},
|
|
{"use_penalty_prompt_tokens", slot.sparams.use_penalty_prompt_tokens},
|
|
{"mirostat", slot.sparams.mirostat},
|
|
{"mirostat_tau", slot.sparams.mirostat_tau},
|
|
{"mirostat_eta", slot.sparams.mirostat_eta},
|
|
{"penalize_nl", slot.sparams.penalize_nl},
|
|
{"stop", slot.params.antiprompt},
|
|
{"n_predict", slot.params.n_predict}, // TODO: fix duplicate key n_predict
|
|
{"n_keep", slot.params.n_keep},
|
|
{"n_discard", slot.params.n_discard},
|
|
{"ignore_eos", ignore_eos},
|
|
{"stream", slot.params.stream},
|
|
{"logit_bias", slot.sparams.logit_bias},
|
|
{"n_probs", slot.sparams.n_probs},
|
|
{"min_keep", slot.sparams.min_keep},
|
|
{"grammar", slot.sparams.grammar},
|
|
{"samplers", samplers_sequence}
|
|
};
|
|
}
|
|
|
|
void send_error(const server_task & task, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
|
|
send_error(task.id, task.id_multi, error, type);
|
|
}
|
|
|
|
void send_error(const server_slot & slot, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
|
|
send_error(slot.id_task, slot.id_multi, error, type);
|
|
}
|
|
|
|
void send_error(const int id_task, const int id_multi, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
|
|
LOG_TEE("task %i - error: %s\n", id_task, error.c_str());
|
|
|
|
server_task_result res;
|
|
res.id = id_task;
|
|
res.id_multi = id_multi;
|
|
res.stop = false;
|
|
res.error = true;
|
|
res.data = format_error_response(error, type);
|
|
|
|
queue_results.send(res);
|
|
}
|
|
|
|
void send_partial_response(server_slot & slot, completion_token_output tkn) {
|
|
server_task_result res;
|
|
res.id = slot.id_task;
|
|
res.id_multi = slot.id_multi;
|
|
res.error = false;
|
|
res.stop = false;
|
|
res.data = json {
|
|
{"content", tkn.text_to_send},
|
|
{"stop", false},
|
|
{"id_slot", slot.id},
|
|
{"multimodal", false}
|
|
};
|
|
|
|
if (slot.sparams.n_probs > 0) {
|
|
const std::vector<llama_token> to_send_toks = llama_tokenize(ctx, tkn.text_to_send, false);
|
|
const size_t probs_pos = std::min(slot.n_sent_token_probs, slot.generated_token_probs.size());
|
|
const size_t probs_stop_pos = std::min(slot.n_sent_token_probs + to_send_toks.size(), slot.generated_token_probs.size());
|
|
|
|
std::vector<completion_token_output> probs_output;
|
|
if (probs_pos < probs_stop_pos) {
|
|
probs_output = std::vector<completion_token_output>(
|
|
slot.generated_token_probs.begin() + probs_pos,
|
|
slot.generated_token_probs.begin() + probs_stop_pos);
|
|
}
|
|
slot.n_sent_token_probs = probs_stop_pos;
|
|
|
|
res.data["completion_probabilities"] = probs_vector_to_json(ctx, probs_output);
|
|
}
|
|
|
|
if (slot.oaicompat) {
|
|
res.data["oaicompat_token_ctr"] = slot.n_decoded;
|
|
res.data["model"] = slot.oaicompat_model;
|
|
}
|
|
|
|
queue_results.send(res);
|
|
}
|
|
|
|
void send_final_response(const server_slot & slot) {
|
|
server_task_result res;
|
|
res.id = slot.id_task;
|
|
res.id_multi = slot.id_multi;
|
|
res.error = false;
|
|
res.stop = true;
|
|
res.data = json {
|
|
{"content", !slot.params.stream ? slot.generated_text : ""},
|
|
{"id_slot", slot.id},
|
|
{"stop", true},
|
|
{"model", params.model_alias},
|
|
{"tokens_predicted", slot.n_decoded},
|
|
{"tokens_evaluated", slot.n_prompt_tokens},
|
|
{"generation_settings", get_formated_generation(slot)},
|
|
{"prompt", slot.prompt},
|
|
{"truncated", slot.truncated},
|
|
{"stopped_eos", slot.stopped_eos},
|
|
{"stopped_word", slot.stopped_word},
|
|
{"stopped_limit", slot.stopped_limit},
|
|
{"stopping_word", slot.stopping_word},
|
|
{"tokens_cached", slot.n_past},
|
|
{"timings", slot.get_formated_timings()}
|
|
};
|
|
|
|
if (slot.sparams.n_probs > 0) {
|
|
std::vector<completion_token_output> probs;
|
|
if (!slot.params.stream && slot.stopped_word) {
|
|
const std::vector<llama_token> stop_word_toks = llama_tokenize(ctx, slot.stopping_word, false);
|
|
|
|
probs = std::vector<completion_token_output>(
|
|
slot.generated_token_probs.begin(),
|
|
slot.generated_token_probs.end() - stop_word_toks.size());
|
|
} else {
|
|
probs = std::vector<completion_token_output>(
|
|
slot.generated_token_probs.begin(),
|
|
slot.generated_token_probs.end());
|
|
}
|
|
|
|
res.data["completion_probabilities"] = probs_vector_to_json(ctx, probs);
|
|
}
|
|
|
|
if (slot.oaicompat) {
|
|
res.data["oaicompat_token_ctr"] = slot.n_decoded;
|
|
res.data["model"] = slot.oaicompat_model;
|
|
}
|
|
|
|
queue_results.send(res);
|
|
}
|
|
|
|
void send_embedding(const server_slot & slot, const llama_batch & batch) {
|
|
server_task_result res;
|
|
res.id = slot.id_task;
|
|
res.id_multi = slot.id_multi;
|
|
res.error = false;
|
|
res.stop = true;
|
|
|
|
const int n_embd = llama_n_embd(model);
|
|
|
|
std::vector<float> embd_res(n_embd, 0.0f);
|
|
|
|
for (int i = 0; i < batch.n_tokens; ++i) {
|
|
if (!batch.logits[i] || batch.seq_id[i][0] != slot.id + 1) {
|
|
continue;
|
|
}
|
|
|
|
const float * embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]);
|
|
if (embd == NULL) {
|
|
embd = llama_get_embeddings_ith(ctx, i);
|
|
}
|
|
|
|
if (embd == NULL) {
|
|
LOG_ERROR("failed to get embeddings", {
|
|
{"token", batch.token [i]},
|
|
{"seq_id", batch.seq_id[i][0]}
|
|
});
|
|
|
|
res.data = json {
|
|
{"embedding", std::vector<float>(n_embd, 0.0f)},
|
|
};
|
|
|
|
continue;
|
|
}
|
|
|
|
llama_embd_normalize(embd, embd_res.data(), n_embd);
|
|
|
|
res.data = json {
|
|
{"embedding", embd_res},
|
|
};
|
|
}
|
|
|
|
queue_results.send(res);
|
|
}
|
|
|
|
void request_completion(int id_task, int id_multi, json data, bool infill, bool embedding) {
|
|
server_task task;
|
|
task.id = id_task;
|
|
task.id_multi = id_multi;
|
|
task.id_target = 0;
|
|
task.data = std::move(data);
|
|
task.infill = infill;
|
|
task.embedding = embedding;
|
|
task.type = SERVER_TASK_TYPE_COMPLETION;
|
|
|
|
// when a completion task's prompt array is not a singleton, we split it into multiple requests
|
|
// otherwise, it's a single-prompt task, we actually queue it
|
|
// if there's numbers in the prompt array it will be treated as an array of tokens
|
|
if (task.data.count("prompt") != 0 && task.data.at("prompt").size() > 1) {
|
|
bool numbers = false;
|
|
for (const auto & e : task.data.at("prompt")) {
|
|
if (e.is_number()) {
|
|
numbers = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// NOTE: split_multiprompt_task() does not handle a mix of strings and numbers,
|
|
// it will completely stall the server. I don't know where the bug for this is.
|
|
//
|
|
// if there are numbers, it needs to be treated like a single prompt,
|
|
// queue_tasks handles a mix of strings and numbers just fine.
|
|
if (numbers) {
|
|
queue_tasks.post(task);
|
|
} else {
|
|
split_multiprompt_task(id_task, task);
|
|
}
|
|
} else {
|
|
queue_tasks.post(task);
|
|
}
|
|
}
|
|
|
|
void request_cancel(int id_task) {
|
|
server_task task;
|
|
task.type = SERVER_TASK_TYPE_CANCEL;
|
|
task.id_target = id_task;
|
|
|
|
queue_tasks.post(task);
|
|
}
|
|
|
|
void split_multiprompt_task(int id_multi, const server_task & multiprompt_task) {
|
|
const int prompt_count = multiprompt_task.data.at("prompt").size();
|
|
if (prompt_count <= 1) {
|
|
send_error(multiprompt_task, "error while handling multiple prompts");
|
|
return;
|
|
}
|
|
|
|
// generate all the ID for subtask
|
|
std::vector<int> subtask_ids(prompt_count);
|
|
for (int i = 0; i < prompt_count; i++) {
|
|
subtask_ids[i] = queue_tasks.get_new_id();
|
|
}
|
|
|
|
// queue up the multitask so we can track its subtask progression
|
|
queue_tasks.add_multitask(id_multi, subtask_ids);
|
|
|
|
// add subtasks
|
|
for (int i = 0; i < prompt_count; i++) {
|
|
json subtask_data = multiprompt_task.data;
|
|
subtask_data["prompt"] = subtask_data["prompt"][i];
|
|
|
|
// subtasks inherit everything else (infill mode, embedding mode, etc.)
|
|
request_completion(subtask_ids[i], id_multi, subtask_data, multiprompt_task.infill, multiprompt_task.embedding);
|
|
}
|
|
}
|
|
|
|
void process_single_task(const server_task & task) {
|
|
switch (task.type) {
|
|
case SERVER_TASK_TYPE_COMPLETION:
|
|
{
|
|
server_slot * slot = get_slot(json_value(task.data, "id_slot", -1));
|
|
if (slot == nullptr) {
|
|
// if no slot is available, we defer this task for processing later
|
|
LOG_VERBOSE("no slot is available", {{"id_task", task.id}});
|
|
queue_tasks.defer(task);
|
|
break;
|
|
}
|
|
|
|
if (task.data.contains("system_prompt")) {
|
|
system_prompt_set(task.data["system_prompt"]);
|
|
|
|
for (server_slot & slot : slots) {
|
|
slot.n_past = 0;
|
|
slot.n_past_se = 0;
|
|
}
|
|
}
|
|
|
|
slot->reset();
|
|
|
|
slot->id_task = task.id;
|
|
slot->id_multi = task.id_multi;
|
|
slot->infill = task.infill;
|
|
slot->embedding = task.embedding;
|
|
|
|
if (!launch_slot_with_task(*slot, task)) {
|
|
LOG_ERROR("error while launching slot", task.data);
|
|
break;
|
|
}
|
|
} break;
|
|
case SERVER_TASK_TYPE_CANCEL:
|
|
{
|
|
// release slot linked with the task id
|
|
for (auto & slot : slots) {
|
|
if (slot.id_task == task.id_target) {
|
|
slot.release();
|
|
break;
|
|
}
|
|
}
|
|
} break;
|
|
case SERVER_TASK_TYPE_NEXT_RESPONSE:
|
|
{
|
|
// do nothing
|
|
} break;
|
|
case SERVER_TASK_TYPE_METRICS:
|
|
{
|
|
json slots_data = json::array();
|
|
|
|
int n_idle_slots = 0;
|
|
int n_processing_slots = 0;
|
|
|
|
for (server_slot & slot : slots) {
|
|
json slot_data = get_formated_generation(slot);
|
|
slot_data["id"] = slot.id;
|
|
slot_data["id_task"] = slot.id_task;
|
|
slot_data["state"] = slot.state;
|
|
slot_data["prompt"] = slot.prompt;
|
|
slot_data["next_token"] = {
|
|
{"has_next_token", slot.has_next_token},
|
|
{"n_remain", slot.n_remaining},
|
|
{"n_decoded", slot.n_decoded},
|
|
{"stopped_eos", slot.stopped_eos},
|
|
{"stopped_word", slot.stopped_word},
|
|
{"stopped_limit", slot.stopped_limit},
|
|
{"stopping_word", slot.stopping_word},
|
|
};
|
|
|
|
if (slot_data["state"] == SLOT_STATE_IDLE) {
|
|
n_idle_slots++;
|
|
} else {
|
|
n_processing_slots++;
|
|
}
|
|
|
|
slots_data.push_back(slot_data);
|
|
}
|
|
LOG_INFO("slot data", {
|
|
{"id_task", task.id},
|
|
{"n_idle_slots", n_idle_slots},
|
|
{"n_processing_slots", n_processing_slots}
|
|
});
|
|
|
|
LOG_VERBOSE("slot data", {
|
|
{"id_task", task.id},
|
|
{"n_idle_slots", n_idle_slots},
|
|
{"n_processing_slots", n_processing_slots},
|
|
{"slots", slots_data}
|
|
});
|
|
|
|
server_task_result res;
|
|
res.id = task.id;
|
|
res.id_multi = task.id_multi;
|
|
res.stop = true;
|
|
res.error = false;
|
|
res.data = {
|
|
{ "idle", n_idle_slots },
|
|
{ "processing", n_processing_slots },
|
|
{ "deferred", queue_tasks.queue_tasks_deferred.size() },
|
|
{ "t_start", metrics.t_start},
|
|
|
|
{ "n_prompt_tokens_processed_total", metrics.n_prompt_tokens_processed_total},
|
|
{ "t_tokens_generation_total", metrics.t_tokens_generation_total},
|
|
{ "n_tokens_predicted_total", metrics.n_tokens_predicted_total},
|
|
{ "t_prompt_processing_total", metrics.t_prompt_processing_total},
|
|
|
|
{ "n_prompt_tokens_processed", metrics.n_prompt_tokens_processed},
|
|
{ "t_prompt_processing", metrics.t_prompt_processing},
|
|
{ "n_tokens_predicted", metrics.n_tokens_predicted},
|
|
{ "t_tokens_generation", metrics.t_tokens_generation},
|
|
|
|
{ "kv_cache_tokens_count", llama_get_kv_cache_token_count(ctx)},
|
|
{ "kv_cache_used_cells", llama_get_kv_cache_used_cells(ctx)},
|
|
|
|
{ "slots", slots_data },
|
|
};
|
|
|
|
if (json_value(task.data, "reset_bucket", false)) {
|
|
metrics.reset_bucket();
|
|
}
|
|
queue_results.send(res);
|
|
} break;
|
|
}
|
|
}
|
|
|
|
void on_finish_multitask(const server_task_multi & multitask) {
|
|
// all subtasks done == multitask is done
|
|
server_task_result result;
|
|
result.id = multitask.id;
|
|
result.stop = true;
|
|
result.error = false;
|
|
|
|
// collect json results into one json result
|
|
std::vector<json> result_jsons;
|
|
for (const auto & subres : multitask.results) {
|
|
result_jsons.push_back(subres.data);
|
|
result.error = result.error && subres.error;
|
|
}
|
|
result.data = json {
|
|
{ "results", result_jsons }
|
|
};
|
|
|
|
queue_results.send(result);
|
|
}
|
|
|
|
void update_slots() {
|
|
if (system_need_update) {
|
|
system_prompt_update();
|
|
}
|
|
|
|
// release slots
|
|
for (auto & slot : slots) {
|
|
if (slot.command == SLOT_COMMAND_RELEASE) {
|
|
slot.state = SLOT_STATE_IDLE;
|
|
slot.command = SLOT_COMMAND_NONE;
|
|
slot.t_last_used = ggml_time_us();
|
|
|
|
LOG_INFO("slot released", {
|
|
{"id_slot", slot.id},
|
|
{"id_task", slot.id_task},
|
|
{"n_ctx", n_ctx},
|
|
{"n_past", slot.n_past},
|
|
{"n_system_tokens", system_tokens.size()},
|
|
{"n_cache_tokens", slot.cache_tokens.size()},
|
|
{"truncated", slot.truncated}
|
|
});
|
|
|
|
queue_tasks.notify_slot_changed();
|
|
}
|
|
}
|
|
|
|
// check if all slots are idle
|
|
{
|
|
bool all_idle = true;
|
|
|
|
for (auto & slot : slots) {
|
|
if (slot.state != SLOT_STATE_IDLE || slot.command != SLOT_COMMAND_NONE) {
|
|
all_idle = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (all_idle) {
|
|
LOG_INFO("all slots are idle", {});
|
|
if (system_prompt.empty() && clean_kv_cache) {
|
|
kv_cache_clear();
|
|
}
|
|
|
|
return;
|
|
}
|
|
}
|
|
|
|
{
|
|
LOG_VERBOSE("posting NEXT_RESPONSE", {});
|
|
|
|
server_task task;
|
|
task.type = SERVER_TASK_TYPE_NEXT_RESPONSE;
|
|
task.id_target = -1;
|
|
|
|
queue_tasks.post(task);
|
|
}
|
|
|
|
// apply context-shift if needed
|
|
// TODO: simplify and improve
|
|
for (server_slot & slot : slots) {
|
|
if (slot.ga_n == 1) {
|
|
if (slot.is_processing() && (int) system_tokens.size() + slot.n_past >= slot.n_ctx - 1) {
|
|
// Shift context
|
|
const int n_keep = slot.params.n_keep + add_bos_token;
|
|
const int n_left = (int) system_tokens.size() + slot.n_past - n_keep;
|
|
const int n_discard = slot.params.n_discard ? slot.params.n_discard : (n_left / 2);
|
|
|
|
LOG_INFO("slot context shift", {
|
|
{"id_slot", slot.id},
|
|
{"id_task", slot.id_task},
|
|
{"n_keep", n_keep},
|
|
{"n_left", n_left},
|
|
{"n_discard", n_discard},
|
|
{"n_ctx", n_ctx},
|
|
{"n_past", slot.n_past},
|
|
{"n_system_tokens", system_tokens.size()},
|
|
{"n_cache_tokens", slot.cache_tokens.size()}
|
|
});
|
|
|
|
llama_kv_cache_seq_rm (ctx, slot.id + 1, n_keep , n_keep + n_discard);
|
|
llama_kv_cache_seq_add(ctx, slot.id + 1, n_keep + n_discard, system_tokens.size() + slot.n_past, -n_discard);
|
|
|
|
if (slot.params.cache_prompt) {
|
|
for (size_t i = n_keep + n_discard; i < slot.cache_tokens.size(); i++) {
|
|
slot.cache_tokens[i - n_discard] = slot.cache_tokens[i];
|
|
}
|
|
|
|
slot.cache_tokens.resize(slot.cache_tokens.size() - n_discard);
|
|
}
|
|
|
|
slot.n_past -= n_discard;
|
|
|
|
slot.truncated = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
// start populating the batch for this iteration
|
|
llama_batch_clear(batch);
|
|
|
|
// frist, add sampled tokens from any ongoing sequences
|
|
for (auto & slot : slots) {
|
|
if (slot.state == SLOT_STATE_IDLE) {
|
|
continue;
|
|
}
|
|
|
|
slot.i_batch = batch.n_tokens;
|
|
|
|
const int32_t slot_npast = slot.n_past_se > 0 ? slot.n_past_se : slot.n_past;
|
|
|
|
// TODO: we always have to take into account the "system_tokens"
|
|
// this is not great and needs to be improved somehow
|
|
llama_batch_add(batch, slot.sampled, system_tokens.size() + slot_npast, { slot.id + 1 }, true);
|
|
|
|
slot.n_past += 1;
|
|
|
|
if (slot.params.cache_prompt) {
|
|
slot.cache_tokens.push_back(slot.sampled);
|
|
}
|
|
|
|
LOG_VERBOSE("slot decode token", {
|
|
{"id_slot", slot.id},
|
|
{"id_task", slot.id_task},
|
|
{"n_ctx", n_ctx},
|
|
{"n_past", slot.n_past},
|
|
{"n_system_tokens", system_tokens.size()},
|
|
{"n_cache_tokens", slot.cache_tokens.size()},
|
|
{"truncated", slot.truncated}
|
|
});
|
|
}
|
|
|
|
// process in chunks of params.n_batch
|
|
int32_t n_batch = llama_n_batch(ctx);
|
|
int32_t n_ubatch = llama_n_ubatch(ctx);
|
|
|
|
// next, batch any pending prompts without exceeding n_batch
|
|
if (params.cont_batching || batch.n_tokens == 0) {
|
|
for (auto & slot : slots) {
|
|
// this slot still has a prompt to be processed
|
|
if (slot.state == SLOT_STATE_IDLE && slot.command == SLOT_COMMAND_LOAD_PROMPT) {
|
|
auto & prompt_tokens = slot.prompt_tokens;
|
|
|
|
// we haven't tokenized the prompt yet - do it now:
|
|
if (prompt_tokens.empty()) {
|
|
LOG_VERBOSE("tokenizing prompt", {
|
|
{"id_slot", slot.id},
|
|
{"id_task", slot.id_task}
|
|
});
|
|
|
|
slot.t_start_process_prompt = ggml_time_us();
|
|
slot.t_start_generation = 0;
|
|
|
|
if (slot.infill) {
|
|
bool suff_rm_leading_spc = true;
|
|
if (params.input_suffix.find_first_of(' ') == 0 && params.input_suffix.size() > 1) {
|
|
params.input_suffix.erase(0, 1);
|
|
suff_rm_leading_spc = false;
|
|
}
|
|
|
|
auto prefix_tokens = tokenize(slot.params.input_prefix, false);
|
|
auto suffix_tokens = tokenize(slot.params.input_suffix, false);
|
|
|
|
const int space_token = 29871; // TODO: this should not be hardcoded
|
|
if (suff_rm_leading_spc && !suffix_tokens.empty() && suffix_tokens[0] == space_token) {
|
|
suffix_tokens.erase(suffix_tokens.begin());
|
|
}
|
|
|
|
prefix_tokens.insert(prefix_tokens.begin(), llama_token_prefix(model));
|
|
prefix_tokens.insert(prefix_tokens.begin(), llama_token_bos(model)); // always add BOS
|
|
prefix_tokens.insert(prefix_tokens.end(), llama_token_suffix(model));
|
|
prefix_tokens.insert(prefix_tokens.end(), suffix_tokens.begin(), suffix_tokens.end());
|
|
prefix_tokens.push_back(llama_token_middle(model));
|
|
prompt_tokens = prefix_tokens;
|
|
} else {
|
|
prompt_tokens = tokenize(slot.prompt, system_prompt.empty() && add_bos_token); // add BOS if there isn't system prompt
|
|
}
|
|
|
|
slot.n_past = 0;
|
|
slot.n_prompt_tokens = prompt_tokens.size();
|
|
|
|
LOG_VERBOSE("prompt tokenized", {
|
|
{"id_slot", slot.id},
|
|
{"id_task", slot.id_task},
|
|
{"n_ctx", slot.n_ctx},
|
|
{"n_keep", slot.params.n_keep},
|
|
{"n_prompt_tokens", slot.n_prompt_tokens},
|
|
{"prompt_tokens", tokens_to_str(ctx, prompt_tokens.cbegin(), prompt_tokens.cend())},
|
|
});
|
|
|
|
// empty prompt passed -> release the slot and send empty response
|
|
if (prompt_tokens.empty()) {
|
|
LOG_INFO("empty prompt - releasing slot", {
|
|
{"id_slot", slot.id},
|
|
{"id_task", slot.id_task}
|
|
});
|
|
|
|
slot.state = SLOT_STATE_PROCESSING;
|
|
slot.command = SLOT_COMMAND_NONE;
|
|
slot.release();
|
|
slot.print_timings();
|
|
send_final_response(slot);
|
|
continue;
|
|
}
|
|
|
|
if (slot.embedding) {
|
|
// this prompt is too large to process - discard it
|
|
if (slot.n_prompt_tokens > n_ubatch) {
|
|
slot.state = SLOT_STATE_PROCESSING;
|
|
slot.command = SLOT_COMMAND_NONE;
|
|
slot.release();
|
|
slot.print_timings();
|
|
send_final_response(slot);
|
|
continue;
|
|
}
|
|
} else {
|
|
if (slot.params.n_keep < 0) {
|
|
slot.params.n_keep = slot.n_prompt_tokens;
|
|
}
|
|
slot.params.n_keep = std::min(slot.n_ctx - 4, slot.params.n_keep);
|
|
|
|
// if input prompt is too big, truncate it (if group attention self-extend is disabled)
|
|
if (slot.ga_n == 1 && slot.n_prompt_tokens >= slot.n_ctx) {
|
|
const int n_left = slot.n_ctx - slot.params.n_keep;
|
|
|
|
const int n_block_size = n_left / 2;
|
|
const int erased_blocks = (slot.n_prompt_tokens - slot.params.n_keep - n_block_size) / n_block_size;
|
|
|
|
std::vector<llama_token> new_tokens(
|
|
prompt_tokens.begin(),
|
|
prompt_tokens.begin() + slot.params.n_keep);
|
|
|
|
new_tokens.insert(
|
|
new_tokens.end(),
|
|
prompt_tokens.begin() + slot.params.n_keep + erased_blocks * n_block_size,
|
|
prompt_tokens.end());
|
|
|
|
prompt_tokens = std::move(new_tokens);
|
|
|
|
slot.truncated = true;
|
|
slot.n_prompt_tokens = prompt_tokens.size();
|
|
|
|
LOG_VERBOSE("input truncated", {
|
|
{"id_slot", slot.id},
|
|
{"id_task", slot.id_task},
|
|
{"n_ctx", slot.n_ctx},
|
|
{"n_keep", slot.params.n_keep},
|
|
{"n_left", n_left},
|
|
{"n_prompt_tokens", slot.n_prompt_tokens},
|
|
{"prompt_tokens", tokens_to_str(ctx, prompt_tokens.cbegin(), prompt_tokens.cend())},
|
|
});
|
|
|
|
GGML_ASSERT(slot.n_prompt_tokens < slot.n_ctx);
|
|
}
|
|
|
|
llama_sampling_reset(slot.ctx_sampling);
|
|
|
|
if (!slot.params.cache_prompt) {
|
|
slot.n_past_se = 0;
|
|
slot.ga_i = 0;
|
|
} else {
|
|
GGML_ASSERT(slot.ga_n == 1);
|
|
|
|
// reuse any previously computed tokens that are common with the new prompt
|
|
slot.n_past = common_part(slot.cache_tokens, prompt_tokens);
|
|
|
|
// push the prompt into the sampling context (do not apply grammar)
|
|
for (int i = 0; i < slot.n_past; ++i) {
|
|
llama_sampling_accept(slot.ctx_sampling, ctx, slot.cache_tokens[i], false);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (slot.n_past == slot.n_prompt_tokens && slot.n_past > 0) {
|
|
// we have to evaluate at least 1 token to generate logits.
|
|
LOG_INFO("we have to evaluate at least 1 token to generate logits", {
|
|
{ "id_slot", slot.id },
|
|
{ "id_task", slot.id_task }
|
|
});
|
|
|
|
slot.n_past--;
|
|
if (slot.ga_i > 0) {
|
|
slot.n_past_se--;
|
|
}
|
|
}
|
|
|
|
slot.n_prompt_tokens_processed = 0;
|
|
}
|
|
|
|
if (slot.embedding) {
|
|
// cannot fit the prompt in the current batch - will try next iter
|
|
if (batch.n_tokens + slot.n_prompt_tokens > n_batch) {
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// keep only the common part
|
|
int p0 = (int) system_tokens.size() + slot.n_past;
|
|
if (!llama_kv_cache_seq_rm(ctx, slot.id + 1, p0, -1)) {
|
|
// could not partially delete (likely using a non-Transformer model)
|
|
llama_kv_cache_seq_rm(ctx, slot.id + 1, -1, -1);
|
|
|
|
p0 = (int) system_tokens.size();
|
|
if (p0 != 0) {
|
|
// copy over the system prompt when there is one
|
|
llama_kv_cache_seq_cp(ctx, 0, slot.id + 1, -1, -1);
|
|
}
|
|
|
|
// there is no common part left (except for the system prompt)
|
|
slot.n_past = 0;
|
|
slot.n_past_se = 0;
|
|
slot.ga_i = 0;
|
|
// TODO: is the system prompt ever in the sampling context?
|
|
llama_sampling_reset(slot.ctx_sampling);
|
|
}
|
|
|
|
// remove the non-common part from the cache
|
|
slot.cache_tokens.resize(slot.n_past);
|
|
|
|
LOG_INFO("kv cache rm [p0, end)", {
|
|
{ "id_slot", slot.id },
|
|
{ "id_task", slot.id_task },
|
|
{ "p0", p0 }
|
|
});
|
|
|
|
int32_t slot_npast = slot.n_past_se > 0 ? slot.n_past_se : slot.n_past;
|
|
|
|
int32_t ga_i = slot.ga_i;
|
|
int32_t ga_n = slot.ga_n;
|
|
int32_t ga_w = slot.ga_w;
|
|
|
|
// add prompt tokens for processing in the current batch
|
|
// TODO: the self-extend stuff here is a mess - simplify and/or abstract it somehow
|
|
for (; slot.n_past < slot.n_prompt_tokens && batch.n_tokens < n_batch; ++slot.n_past) {
|
|
if (slot.ga_n != 1) {
|
|
while (slot_npast >= ga_i + ga_w) {
|
|
const int bd = (ga_w/ga_n)*(ga_n - 1);
|
|
slot_npast -= bd;
|
|
ga_i += ga_w/ga_n;
|
|
}
|
|
}
|
|
|
|
llama_batch_add(batch, prompt_tokens[slot.n_past], system_tokens.size() + slot_npast, { slot.id + 1 }, false);
|
|
|
|
if (slot.params.cache_prompt) {
|
|
slot.cache_tokens.push_back(prompt_tokens[slot.n_past]);
|
|
}
|
|
|
|
slot.n_prompt_tokens_processed++;
|
|
slot_npast++;
|
|
}
|
|
|
|
LOG_VERBOSE("prompt processing progress", {
|
|
{"id_slot", slot.id},
|
|
{"n_past", slot.n_past},
|
|
{"n_ctx", n_ctx},
|
|
{"n_tokens", batch.n_tokens},
|
|
{"progress", (float) slot.n_prompt_tokens_processed / slot.n_prompt_tokens},
|
|
});
|
|
|
|
// entire prompt has been processed - start decoding new tokens
|
|
if (slot.n_past == slot.n_prompt_tokens) {
|
|
slot.state = SLOT_STATE_PROCESSING;
|
|
slot.command = SLOT_COMMAND_NONE;
|
|
|
|
GGML_ASSERT(batch.n_tokens > 0);
|
|
|
|
// extract the logits only for the last token
|
|
batch.logits[batch.n_tokens - 1] = true;
|
|
|
|
slot.n_decoded = 0;
|
|
slot.i_batch = batch.n_tokens - 1;
|
|
|
|
LOG_VERBOSE("prompt done", {
|
|
{"id_slot", slot.id},
|
|
{"n_past", slot.n_past},
|
|
{"n_ctx", n_ctx},
|
|
{"n_tokens", batch.n_tokens},
|
|
});
|
|
}
|
|
}
|
|
|
|
if (batch.n_tokens >= n_batch) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (batch.n_tokens == 0) {
|
|
LOG_VERBOSE("no tokens to decode", {});
|
|
return;
|
|
}
|
|
|
|
LOG_VERBOSE("decoding batch", {
|
|
{"n_tokens", batch.n_tokens},
|
|
});
|
|
|
|
// process the created batch of tokens
|
|
for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += n_batch) {
|
|
const int32_t n_tokens = std::min(n_batch, batch.n_tokens - i);
|
|
|
|
for (auto & slot : slots) {
|
|
if (slot.ga_n != 1) {
|
|
// context extension via Self-Extend
|
|
// TODO: simplify and/or abstract this
|
|
while (slot.n_past_se >= slot.ga_i + slot.ga_w) {
|
|
const int ib = (slot.ga_n * slot.ga_i) / slot.ga_w;
|
|
const int bd = (slot.ga_w / slot.ga_n) * (slot.ga_n - 1);
|
|
const int dd = (slot.ga_w / slot.ga_n) - ib * bd - slot.ga_w;
|
|
|
|
LOG_TEE("\n");
|
|
LOG_TEE("shift: [%6d, %6d] + %6d -> [%6d, %6d]\n", slot.ga_i, slot.n_past_se, ib * bd, slot.ga_i + ib * bd, slot.n_past_se + ib * bd);
|
|
LOG_TEE("div: [%6d, %6d] / %6d -> [%6d, %6d]\n", slot.ga_i + ib * bd, slot.ga_i + ib * bd + slot.ga_w, slot.ga_n, (slot.ga_i + ib * bd) / slot.ga_n, (slot.ga_i + ib * bd + slot.ga_w) / slot.ga_n);
|
|
LOG_TEE("shift: [%6d, %6d] + %6d -> [%6d, %6d]\n", slot.ga_i + ib * bd + slot.ga_w, slot.n_past_se + ib * bd, dd, slot.ga_i + ib * bd + slot.ga_w + dd, slot.n_past_se + ib * bd + dd);
|
|
|
|
llama_kv_cache_seq_add(ctx, slot.id + 1, slot.ga_i, slot.n_past_se, ib * bd);
|
|
llama_kv_cache_seq_div(ctx, slot.id + 1, slot.ga_i + ib * bd, slot.ga_i + ib * bd + slot.ga_w, slot.ga_n);
|
|
llama_kv_cache_seq_add(ctx, slot.id + 1, slot.ga_i + ib * bd + slot.ga_w, slot.n_past_se + ib * bd, dd);
|
|
|
|
slot.n_past_se -= bd;
|
|
|
|
slot.ga_i += slot.ga_w / slot.ga_n;
|
|
|
|
LOG_TEE("\nn_past_old = %d, n_past = %d, ga_i = %d\n\n", slot.n_past_se + bd, slot.n_past_se, slot.ga_i);
|
|
}
|
|
|
|
slot.n_past_se += n_tokens;
|
|
}
|
|
}
|
|
|
|
llama_batch batch_view = {
|
|
n_tokens,
|
|
batch.token + i,
|
|
nullptr,
|
|
batch.pos + i,
|
|
batch.n_seq_id + i,
|
|
batch.seq_id + i,
|
|
batch.logits + i,
|
|
0, 0, 0, // unused
|
|
};
|
|
|
|
const int ret = llama_decode(ctx, batch_view);
|
|
|
|
if (ret != 0) {
|
|
if (n_batch == 1 || ret < 0) {
|
|
// if you get here, it means the KV cache is full - try increasing it via the context size
|
|
LOG_TEE("%s : failed to decode the batch, n_batch = %d, ret = %d\n", __func__, n_batch, ret);
|
|
for (auto & slot : slots) {
|
|
slot.state = SLOT_STATE_PROCESSING;
|
|
slot.command = SLOT_COMMAND_NONE;
|
|
slot.release();
|
|
send_error(slot, "Input prompt is too big compared to KV size. Please try increasing KV size.");
|
|
}
|
|
break; // break loop of n_batch
|
|
}
|
|
|
|
LOG_TEE("%s : failed to find free space in the KV cache, retrying with smaller n_batch = %d\n", __func__, n_batch / 2);
|
|
|
|
// retry with half the batch size to try to find a free slot in the KV cache
|
|
n_batch /= 2;
|
|
i -= n_batch;
|
|
|
|
continue; // continue loop of n_batch
|
|
}
|
|
|
|
for (auto & slot : slots) {
|
|
if (slot.state != SLOT_STATE_PROCESSING || slot.i_batch < (int) i || slot.i_batch >= (int) (i + n_tokens)) {
|
|
continue; // continue loop of slots
|
|
}
|
|
|
|
// prompt evaluated for embedding
|
|
if (slot.embedding) {
|
|
send_embedding(slot, batch_view);
|
|
slot.release();
|
|
slot.i_batch = -1;
|
|
continue; // continue loop of slots
|
|
}
|
|
|
|
completion_token_output result;
|
|
const llama_token id = llama_sampling_sample(slot.ctx_sampling, ctx, NULL, slot.i_batch - i);
|
|
|
|
llama_sampling_accept(slot.ctx_sampling, ctx, id, true);
|
|
|
|
slot.n_decoded += 1;
|
|
if (slot.n_decoded == 1) {
|
|
slot.t_start_generation = ggml_time_us();
|
|
slot.t_prompt_processing = (slot.t_start_generation - slot.t_start_process_prompt) / 1e3;
|
|
metrics.on_prompt_eval(slot);
|
|
}
|
|
|
|
llama_token_data_array cur_p = { slot.ctx_sampling->cur.data(), slot.ctx_sampling->cur.size(), false };
|
|
result.tok = id;
|
|
|
|
const int32_t n_probs = slot.sparams.n_probs;
|
|
if (slot.sparams.temp <= 0 && n_probs > 0) {
|
|
// for llama_sample_token_greedy we need to sort candidates
|
|
llama_sample_softmax(ctx, &cur_p);
|
|
}
|
|
|
|
for (size_t i = 0; i < std::min(cur_p.size, (size_t) n_probs); ++i) {
|
|
result.probs.push_back({
|
|
cur_p.data[i].id,
|
|
cur_p.data[i].p
|
|
});
|
|
}
|
|
|
|
if (!process_token(result, slot)) {
|
|
slot.release();
|
|
slot.print_timings();
|
|
send_final_response(slot);
|
|
metrics.on_prediction(slot);
|
|
}
|
|
|
|
slot.i_batch = -1;
|
|
}
|
|
}
|
|
|
|
LOG_VERBOSE("run slots completed", {});
|
|
}
|
|
|
|
json model_meta() const {
|
|
return json {
|
|
{"vocab_type", llama_vocab_type (model)},
|
|
{"n_vocab", llama_n_vocab (model)},
|
|
{"n_ctx_train", llama_n_ctx_train (model)},
|
|
{"n_embd", llama_n_embd (model)},
|
|
{"n_params", llama_model_n_params(model)},
|
|
{"size", llama_model_size (model)},
|
|
};
|
|
}
|
|
};
|
|
|
|
static void server_print_usage(const char * argv0, const gpt_params & params, const server_params & sparams) {
|
|
printf("usage: %s [options]\n", argv0);
|
|
printf("\n");
|
|
printf("options:\n");
|
|
printf(" -h, --help show this help message and exit\n");
|
|
printf(" -v, --verbose verbose output (default: %s)\n", server_verbose ? "enabled" : "disabled");
|
|
printf(" -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads);
|
|
printf(" -tb N, --threads-batch N number of threads to use during batch and prompt processing (default: same as --threads)\n");
|
|
printf(" --threads-http N number of threads in the http server pool to process requests (default: max(hardware concurrency - 1, --parallel N + 2))\n");
|
|
printf(" -c N, --ctx-size N size of the prompt context (default: %d)\n", params.n_ctx);
|
|
printf(" --rope-scaling {none,linear,yarn}\n");
|
|
printf(" RoPE frequency scaling method, defaults to linear unless specified by the model\n");
|
|
printf(" --rope-freq-base N RoPE base frequency (default: loaded from model)\n");
|
|
printf(" --rope-freq-scale N RoPE frequency scaling factor, expands context by a factor of 1/N\n");
|
|
printf(" --yarn-ext-factor N YaRN: extrapolation mix factor (default: 1.0, 0.0 = full interpolation)\n");
|
|
printf(" --yarn-attn-factor N YaRN: scale sqrt(t) or attention magnitude (default: 1.0)\n");
|
|
printf(" --yarn-beta-slow N YaRN: high correction dim or alpha (default: %.1f)\n", params.yarn_beta_slow);
|
|
printf(" --yarn-beta-fast N YaRN: low correction dim or beta (default: %.1f)\n", params.yarn_beta_fast);
|
|
printf(" --pooling {none,mean,cls} pooling type for embeddings, use model default if unspecified\n");
|
|
printf(" -dt N, --defrag-thold N\n");
|
|
printf(" KV cache defragmentation threshold (default: %.1f, < 0 - disabled)\n", params.defrag_thold);
|
|
printf(" -b N, --batch-size N logical maximum batch size (default: %d)\n", params.n_batch);
|
|
printf(" -ub N, --ubatch-size N physical maximum batch size (default: %d)\n", params.n_ubatch);
|
|
printf(" --memory-f32 use f32 instead of f16 for memory key+value (default: disabled)\n");
|
|
printf(" not recommended: doubles context memory required and no measurable increase in quality\n");
|
|
if (llama_supports_mlock()) {
|
|
printf(" --mlock force system to keep model in RAM rather than swapping or compressing\n");
|
|
}
|
|
if (llama_supports_mmap()) {
|
|
printf(" --no-mmap do not memory-map model (slower load but may reduce pageouts if not using mlock)\n");
|
|
}
|
|
printf(" --numa TYPE attempt optimizations that help on some NUMA systems\n");
|
|
printf(" - distribute: spread execution evenly over all nodes\n");
|
|
printf(" - isolate: only spawn threads on CPUs on the node that execution started on\n");
|
|
printf(" - numactl: use the CPU map provided my numactl\n");
|
|
if (llama_supports_gpu_offload()) {
|
|
printf(" -ngl N, --n-gpu-layers N\n");
|
|
printf(" number of layers to store in VRAM\n");
|
|
printf(" -sm SPLIT_MODE, --split-mode SPLIT_MODE\n");
|
|
printf(" how to split the model across multiple GPUs, one of:\n");
|
|
printf(" - none: use one GPU only\n");
|
|
printf(" - layer (default): split layers and KV across GPUs\n");
|
|
printf(" - row: split rows across GPUs\n");
|
|
printf(" -ts SPLIT --tensor-split SPLIT\n");
|
|
printf(" fraction of the model to offload to each GPU, comma-separated list of proportions, e.g. 3,1\n");
|
|
printf(" -mg i, --main-gpu i the GPU to use for the model (with split-mode = none),\n");
|
|
printf(" or for intermediate results and KV (with split-mode = row)\n");
|
|
}
|
|
printf(" -m FNAME, --model FNAME\n");
|
|
printf(" model path (default: %s)\n", params.model.c_str());
|
|
printf(" -mu MODEL_URL, --model-url MODEL_URL\n");
|
|
printf(" model download url (default: unused)\n");
|
|
printf(" -hfr REPO, --hf-repo REPO\n");
|
|
printf(" Hugging Face model repository (default: unused)\n");
|
|
printf(" -hff FILE, --hf-file FILE\n");
|
|
printf(" Hugging Face model file (default: unused)\n");
|
|
printf(" -a ALIAS, --alias ALIAS\n");
|
|
printf(" set an alias for the model, will be added as `model` field in completion response\n");
|
|
printf(" --lora FNAME apply LoRA adapter (implies --no-mmap)\n");
|
|
printf(" --lora-base FNAME optional model to use as a base for the layers modified by the LoRA adapter\n");
|
|
printf(" --host ip address to listen (default (default: %s)\n", sparams.hostname.c_str());
|
|
printf(" --port PORT port to listen (default (default: %d)\n", sparams.port);
|
|
printf(" --path PUBLIC_PATH path from which to serve static files (default: disabled)\n");
|
|
printf(" --api-key API_KEY optional api key to enhance server security. If set, requests must include this key for access.\n");
|
|
printf(" --api-key-file FNAME path to file containing api keys delimited by new lines. If set, requests must include one of the keys for access.\n");
|
|
#ifdef CPPHTTPLIB_OPENSSL_SUPPORT
|
|
printf(" --ssl-key-file FNAME path to file a PEM-encoded SSL private key\n");
|
|
printf(" --ssl-cert-file FNAME path to file a PEM-encoded SSL certificate\n");
|
|
#endif
|
|
printf(" -to N, --timeout N server read/write timeout in seconds (default: %d)\n", sparams.read_timeout);
|
|
printf(" --embeddings enable embedding vector output (default: %s)\n", params.embedding ? "enabled" : "disabled");
|
|
printf(" -np N, --parallel N number of slots for process requests (default: %d)\n", params.n_parallel);
|
|
printf(" -cb, --cont-batching enable continuous batching (a.k.a dynamic batching) (default: enabled)\n");
|
|
printf(" -spf FNAME, --system-prompt-file FNAME\n");
|
|
printf(" set a file to load a system prompt (initial prompt of all slots), this is useful for chat applications.\n");
|
|
printf(" -ctk TYPE, --cache-type-k TYPE\n");
|
|
printf(" KV cache data type for K (default: f16)\n");
|
|
printf(" -ctv TYPE, --cache-type-v TYPE\n");
|
|
printf(" KV cache data type for V (default: f16)\n");
|
|
printf(" --log-format log output format: json or text (default: json)\n");
|
|
printf(" --log-disable disables logging to a file.\n");
|
|
printf(" --slots-endpoint-disable disables slots monitoring endpoint.\n");
|
|
printf(" --metrics enable prometheus compatible metrics endpoint (default: %s).\n", sparams.metrics_endpoint ? "enabled" : "disabled");
|
|
printf("\n");
|
|
printf(" -n, --n-predict maximum tokens to predict (default: %d)\n", params.n_predict);
|
|
printf(" --override-kv KEY=TYPE:VALUE\n");
|
|
printf(" advanced option to override model metadata by key. may be specified multiple times.\n");
|
|
printf(" types: int, float, bool. example: --override-kv tokenizer.ggml.add_bos_token=bool:false\n");
|
|
printf(" -gan N, --grp-attn-n N set the group attention factor to extend context size through self-extend(default: 1=disabled), used together with group attention width `--grp-attn-w`\n");
|
|
printf(" -gaw N, --grp-attn-w N set the group attention width to extend context size through self-extend(default: 512), used together with group attention factor `--grp-attn-n`\n");
|
|
printf(" --chat-template JINJA_TEMPLATE\n");
|
|
printf(" set custom jinja chat template (default: template taken from model's metadata)\n");
|
|
printf(" only commonly used templates are accepted:\n");
|
|
printf(" https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template\n");
|
|
printf("\n");
|
|
}
|
|
|
|
static void server_params_parse(int argc, char ** argv, server_params & sparams, gpt_params & params) {
|
|
gpt_params default_params;
|
|
server_params default_sparams;
|
|
|
|
std::string arg;
|
|
bool invalid_param = false;
|
|
|
|
for (int i = 1; i < argc; i++) {
|
|
arg = argv[i];
|
|
if (arg == "--port") {
|
|
if (++i >= argc) {
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
sparams.port = std::stoi(argv[i]);
|
|
} else if (arg == "--host") {
|
|
if (++i >= argc) {
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
sparams.hostname = argv[i];
|
|
} else if (arg == "--path") {
|
|
if (++i >= argc) {
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
sparams.public_path = argv[i];
|
|
} else if (arg == "--api-key") {
|
|
if (++i >= argc) {
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
sparams.api_keys.push_back(argv[i]);
|
|
} else if (arg == "--api-key-file") {
|
|
if (++i >= argc) {
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
std::ifstream key_file(argv[i]);
|
|
if (!key_file) {
|
|
fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
std::string key;
|
|
while (std::getline(key_file, key)) {
|
|
if (key.size() > 0) {
|
|
sparams.api_keys.push_back(key);
|
|
}
|
|
}
|
|
key_file.close();
|
|
|
|
}
|
|
#ifdef CPPHTTPLIB_OPENSSL_SUPPORT
|
|
else if (arg == "--ssl-key-file") {
|
|
if (++i >= argc) {
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
sparams.ssl_key_file = argv[i];
|
|
} else if (arg == "--ssl-cert-file") {
|
|
if (++i >= argc) {
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
sparams.ssl_cert_file = argv[i];
|
|
}
|
|
#endif
|
|
else if (arg == "--timeout" || arg == "-to") {
|
|
if (++i >= argc) {
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
sparams.read_timeout = std::stoi(argv[i]);
|
|
sparams.write_timeout = std::stoi(argv[i]);
|
|
} else if (arg == "-m" || arg == "--model") {
|
|
if (++i >= argc) {
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
params.model = argv[i];
|
|
} else if (arg == "-mu" || arg == "--model-url") {
|
|
if (++i >= argc) {
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
params.model_url = argv[i];
|
|
} else if (arg == "-hfr" || arg == "--hf-repo") {
|
|
if (++i >= argc) {
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
params.hf_repo = argv[i];
|
|
} else if (arg == "-hff" || arg == "--hf-file") {
|
|
if (++i >= argc) {
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
params.hf_file = argv[i];
|
|
} else if (arg == "-a" || arg == "--alias") {
|
|
if (++i >= argc) {
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
params.model_alias = argv[i];
|
|
} else if (arg == "-h" || arg == "--help") {
|
|
server_print_usage(argv[0], default_params, default_sparams);
|
|
exit(0);
|
|
} else if (arg == "-c" || arg == "--ctx-size" || arg == "--ctx_size") {
|
|
if (++i >= argc) {
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
params.n_ctx = std::stoi(argv[i]);
|
|
} else if (arg == "--rope-scaling") {
|
|
if (++i >= argc) {
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
std::string value(argv[i]);
|
|
/**/ if (value == "none") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_NONE; }
|
|
else if (value == "linear") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_LINEAR; }
|
|
else if (value == "yarn") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_YARN; }
|
|
else { invalid_param = true; break; }
|
|
} else if (arg == "--rope-freq-base") {
|
|
if (++i >= argc) {
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
params.rope_freq_base = std::stof(argv[i]);
|
|
} else if (arg == "--rope-freq-scale") {
|
|
if (++i >= argc) {
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
params.rope_freq_scale = std::stof(argv[i]);
|
|
} else if (arg == "--yarn-ext-factor") {
|
|
if (++i >= argc) {
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
params.yarn_ext_factor = std::stof(argv[i]);
|
|
}
|
|
else if (arg == "--yarn-attn-factor") {
|
|
if (++i >= argc) {
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
params.yarn_attn_factor = std::stof(argv[i]);
|
|
} else if (arg == "--yarn-beta-fast") {
|
|
if (++i >= argc) {
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
params.yarn_beta_fast = std::stof(argv[i]);
|
|
} else if (arg == "--yarn-beta-slow") {
|
|
if (++i >= argc) {
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
params.yarn_beta_slow = std::stof(argv[i]);
|
|
} else if (arg == "--pooling") {
|
|
if (++i >= argc) {
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
std::string value(argv[i]);
|
|
/**/ if (value == "none") { params.pooling_type = LLAMA_POOLING_TYPE_NONE; }
|
|
else if (value == "mean") { params.pooling_type = LLAMA_POOLING_TYPE_MEAN; }
|
|
else if (value == "cls") { params.pooling_type = LLAMA_POOLING_TYPE_CLS; }
|
|
else { invalid_param = true; break; }
|
|
} else if (arg == "--defrag-thold" || arg == "-dt") {
|
|
if (++i >= argc) {
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
params.defrag_thold = std::stof(argv[i]);
|
|
} else if (arg == "--threads" || arg == "-t") {
|
|
if (++i >= argc)
|
|
{
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
params.n_threads = std::stoi(argv[i]);
|
|
} else if (arg == "--grp-attn-n" || arg == "-gan") {
|
|
if (++i >= argc) {
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
|
|
params.grp_attn_n = std::stoi(argv[i]);
|
|
} else if (arg == "--grp-attn-w" || arg == "-gaw") {
|
|
if (++i >= argc) {
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
|
|
params.grp_attn_w = std::stoi(argv[i]);
|
|
} else if (arg == "--threads-batch" || arg == "-tb") {
|
|
if (++i >= argc) {
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
params.n_threads_batch = std::stoi(argv[i]);
|
|
} else if (arg == "--threads-http") {
|
|
if (++i >= argc) {
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
sparams.n_threads_http = std::stoi(argv[i]);
|
|
} else if (arg == "-b" || arg == "--batch-size") {
|
|
if (++i >= argc) {
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
params.n_batch = std::stoi(argv[i]);
|
|
} else if (arg == "-ub" || arg == "--ubatch-size") {
|
|
if (++i >= argc) {
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
params.n_ubatch = std::stoi(argv[i]);
|
|
} else if (arg == "--gpu-layers" || arg == "-ngl" || arg == "--n-gpu-layers") {
|
|
if (++i >= argc) {
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
if (llama_supports_gpu_offload()) {
|
|
params.n_gpu_layers = std::stoi(argv[i]);
|
|
} else {
|
|
LOG_WARNING(
|
|
"Not compiled with GPU offload support, --n-gpu-layers option will be ignored. "
|
|
"See main README.md for information on enabling GPU BLAS support",
|
|
{{"n_gpu_layers", params.n_gpu_layers}});
|
|
}
|
|
} else if (arg == "--split-mode" || arg == "-sm") {
|
|
if (++i >= argc) {
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
std::string arg_next = argv[i];
|
|
if (arg_next == "none") {
|
|
params.split_mode = LLAMA_SPLIT_MODE_NONE;
|
|
} else if (arg_next == "layer") {
|
|
params.split_mode = LLAMA_SPLIT_MODE_LAYER;
|
|
} else if (arg_next == "row") {
|
|
params.split_mode = LLAMA_SPLIT_MODE_ROW;
|
|
} else {
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
#ifndef GGML_USE_CUDA
|
|
fprintf(stderr, "warning: llama.cpp was compiled without CUDA. Setting the split mode has no effect.\n");
|
|
#endif // GGML_USE_CUDA
|
|
} else if (arg == "--tensor-split" || arg == "-ts") {
|
|
if (++i >= argc) {
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
#if defined(GGML_USE_CUDA) || defined(GGML_USE_SYCL)
|
|
std::string arg_next = argv[i];
|
|
|
|
// split string by , and /
|
|
const std::regex regex{R"([,/]+)"};
|
|
std::sregex_token_iterator it{arg_next.begin(), arg_next.end(), regex, -1};
|
|
std::vector<std::string> split_arg{it, {}};
|
|
GGML_ASSERT(split_arg.size() <= llama_max_devices());
|
|
|
|
for (size_t i_device = 0; i_device < llama_max_devices(); ++i_device) {
|
|
if (i_device < split_arg.size()) {
|
|
params.tensor_split[i_device] = std::stof(split_arg[i_device]);
|
|
} else {
|
|
params.tensor_split[i_device] = 0.0f;
|
|
}
|
|
}
|
|
#else
|
|
LOG_WARNING("llama.cpp was compiled without CUDA. It is not possible to set a tensor split.\n", {});
|
|
#endif // GGML_USE_CUDA
|
|
} else if (arg == "--main-gpu" || arg == "-mg") {
|
|
if (++i >= argc) {
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
#if defined(GGML_USE_CUDA) || defined(GGML_USE_SYCL)
|
|
params.main_gpu = std::stoi(argv[i]);
|
|
#else
|
|
LOG_WARNING("llama.cpp was compiled without CUDA. It is not possible to set a main GPU.", {});
|
|
#endif
|
|
} else if (arg == "--lora") {
|
|
if (++i >= argc) {
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
params.lora_adapter.emplace_back(argv[i], 1.0f);
|
|
params.use_mmap = false;
|
|
} else if (arg == "--lora-scaled") {
|
|
if (++i >= argc) {
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
const char * lora_adapter = argv[i];
|
|
if (++i >= argc) {
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
params.lora_adapter.emplace_back(lora_adapter, std::stof(argv[i]));
|
|
params.use_mmap = false;
|
|
} else if (arg == "--lora-base") {
|
|
if (++i >= argc) {
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
params.lora_base = argv[i];
|
|
} else if (arg == "-v" || arg == "--verbose") {
|
|
#if SERVER_VERBOSE != 1
|
|
LOG_WARNING("server.cpp is not built with verbose logging.", {});
|
|
#else
|
|
server_verbose = true;
|
|
#endif
|
|
} else if (arg == "--mlock") {
|
|
params.use_mlock = true;
|
|
} else if (arg == "--no-mmap") {
|
|
params.use_mmap = false;
|
|
} else if (arg == "--numa") {
|
|
if (++i >= argc) {
|
|
invalid_param = true;
|
|
break;
|
|
} else {
|
|
std::string value(argv[i]);
|
|
/**/ if (value == "distribute" || value == "" ) { params.numa = GGML_NUMA_STRATEGY_DISTRIBUTE; }
|
|
else if (value == "isolate") { params.numa = GGML_NUMA_STRATEGY_ISOLATE; }
|
|
else if (value == "numactl") { params.numa = GGML_NUMA_STRATEGY_NUMACTL; }
|
|
else { invalid_param = true; break; }
|
|
}
|
|
} else if (arg == "--embedding" || arg == "--embeddings") {
|
|
params.embedding = true;
|
|
} else if (arg == "-cb" || arg == "--cont-batching") {
|
|
params.cont_batching = true;
|
|
} else if (arg == "-np" || arg == "--parallel") {
|
|
if (++i >= argc) {
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
params.n_parallel = std::stoi(argv[i]);
|
|
} else if (arg == "-n" || arg == "--n-predict") {
|
|
if (++i >= argc) {
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
params.n_predict = std::stoi(argv[i]);
|
|
} else if (arg == "-spf" || arg == "--system-prompt-file") {
|
|
if (++i >= argc) {
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
std::ifstream file(argv[i]);
|
|
if (!file) {
|
|
fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
std::string system_prompt;
|
|
std::copy(
|
|
std::istreambuf_iterator<char>(file),
|
|
std::istreambuf_iterator<char>(),
|
|
std::back_inserter(system_prompt)
|
|
);
|
|
sparams.system_prompt = system_prompt;
|
|
} else if (arg == "-ctk" || arg == "--cache-type-k") {
|
|
params.cache_type_k = argv[++i];
|
|
} else if (arg == "-ctv" || arg == "--cache-type-v") {
|
|
params.cache_type_v = argv[++i];
|
|
} else if (arg == "--log-format") {
|
|
if (++i >= argc) {
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
if (std::strcmp(argv[i], "json") == 0) {
|
|
server_log_json = true;
|
|
} else if (std::strcmp(argv[i], "text") == 0) {
|
|
server_log_json = false;
|
|
} else {
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
} else if (arg == "--log-disable") {
|
|
log_set_target(stdout);
|
|
LOG_INFO("logging to file is disabled.", {});
|
|
} else if (arg == "--slots-endpoint-disable") {
|
|
sparams.slots_endpoint = false;
|
|
} else if (arg == "--metrics") {
|
|
sparams.metrics_endpoint = true;
|
|
} else if (arg == "--chat-template") {
|
|
if (++i >= argc) {
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
if (!verify_custom_template(argv[i])) {
|
|
fprintf(stderr, "error: the supplied chat template is not supported: %s\n", argv[i]);
|
|
fprintf(stderr, "note: llama.cpp does not use jinja parser, we only support commonly used templates\n");
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
sparams.chat_template = argv[i];
|
|
} else if (arg == "--override-kv") {
|
|
if (++i >= argc) {
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
char * sep = strchr(argv[i], '=');
|
|
if (sep == nullptr || sep - argv[i] >= 128) {
|
|
fprintf(stderr, "error: Malformed KV override: %s\n", argv[i]);
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
|
|
struct llama_model_kv_override kvo;
|
|
std::strncpy(kvo.key, argv[i], sep - argv[i]);
|
|
kvo.key[sep - argv[i]] = 0;
|
|
sep++;
|
|
if (strncmp(sep, "int:", 4) == 0) {
|
|
sep += 4;
|
|
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_INT;
|
|
kvo.int_value = std::atol(sep);
|
|
} else if (strncmp(sep, "float:", 6) == 0) {
|
|
sep += 6;
|
|
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_FLOAT;
|
|
kvo.float_value = std::atof(sep);
|
|
} else if (strncmp(sep, "bool:", 5) == 0) {
|
|
sep += 5;
|
|
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_BOOL;
|
|
if (std::strcmp(sep, "true") == 0) {
|
|
kvo.bool_value = true;
|
|
} else if (std::strcmp(sep, "false") == 0) {
|
|
kvo.bool_value = false;
|
|
} else {
|
|
fprintf(stderr, "error: Invalid boolean value for KV override: %s\n", argv[i]);
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
} else {
|
|
fprintf(stderr, "error: Invalid type for KV override: %s\n", argv[i]);
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
params.kv_overrides.push_back(kvo);
|
|
} else {
|
|
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
|
|
server_print_usage(argv[0], default_params, default_sparams);
|
|
exit(1);
|
|
}
|
|
}
|
|
|
|
if (!params.kv_overrides.empty()) {
|
|
params.kv_overrides.emplace_back();
|
|
params.kv_overrides.back().key[0] = 0;
|
|
}
|
|
|
|
if (invalid_param) {
|
|
fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
|
|
server_print_usage(argv[0], default_params, default_sparams);
|
|
exit(1);
|
|
}
|
|
}
|
|
|
|
static void log_server_request(const httplib::Request & req, const httplib::Response & res) {
|
|
// skip GH copilot requests when using default port
|
|
if (req.path == "/v1/health" || req.path == "/v1/completions") {
|
|
return;
|
|
}
|
|
|
|
LOG_INFO("request", {
|
|
{"remote_addr", req.remote_addr},
|
|
{"remote_port", req.remote_port},
|
|
{"status", res.status},
|
|
{"method", req.method},
|
|
{"path", req.path},
|
|
{"params", req.params},
|
|
});
|
|
|
|
LOG_VERBOSE("request", {
|
|
{"request", req.body},
|
|
{"response", res.body},
|
|
});
|
|
}
|
|
|
|
std::function<void(int)> shutdown_handler;
|
|
std::atomic_flag is_terminating = ATOMIC_FLAG_INIT;
|
|
|
|
inline void signal_handler(int signal) {
|
|
if (is_terminating.test_and_set()) {
|
|
// in case it hangs, we can force terminate the server by hitting Ctrl+C twice
|
|
// this is for better developer experience, we can remove when the server is stable enough
|
|
fprintf(stderr, "Received second interrupt, terminating immediately.\n");
|
|
exit(1);
|
|
}
|
|
|
|
shutdown_handler(signal);
|
|
}
|
|
|
|
int main(int argc, char ** argv) {
|
|
#if SERVER_VERBOSE != 1
|
|
log_disable();
|
|
#endif
|
|
// own arguments required by this example
|
|
gpt_params params;
|
|
server_params sparams;
|
|
|
|
// struct that contains llama context and inference
|
|
server_context ctx_server;
|
|
|
|
server_params_parse(argc, argv, sparams, params);
|
|
|
|
if (!sparams.system_prompt.empty()) {
|
|
ctx_server.system_prompt_set(json::parse(sparams.system_prompt));
|
|
}
|
|
|
|
if (params.model_alias == "unknown") {
|
|
params.model_alias = params.model;
|
|
}
|
|
|
|
llama_backend_init();
|
|
llama_numa_init(params.numa);
|
|
|
|
LOG_INFO("build info", {
|
|
{"build", LLAMA_BUILD_NUMBER},
|
|
{"commit", LLAMA_COMMIT}
|
|
});
|
|
|
|
LOG_INFO("system info", {
|
|
{"n_threads", params.n_threads},
|
|
{"n_threads_batch", params.n_threads_batch},
|
|
{"total_threads", std::thread::hardware_concurrency()},
|
|
{"system_info", llama_print_system_info()},
|
|
});
|
|
|
|
std::unique_ptr<httplib::Server> svr;
|
|
#ifdef CPPHTTPLIB_OPENSSL_SUPPORT
|
|
if (sparams.ssl_key_file != "" && sparams.ssl_cert_file != "") {
|
|
LOG_INFO("Running with SSL", {{"key", sparams.ssl_key_file}, {"cert", sparams.ssl_cert_file}});
|
|
svr.reset(
|
|
new httplib::SSLServer(sparams.ssl_cert_file.c_str(), sparams.ssl_key_file.c_str())
|
|
);
|
|
} else {
|
|
LOG_INFO("Running without SSL", {});
|
|
svr.reset(new httplib::Server());
|
|
}
|
|
#else
|
|
svr.reset(new httplib::Server());
|
|
#endif
|
|
|
|
std::atomic<server_state> state{SERVER_STATE_LOADING_MODEL};
|
|
|
|
svr->set_default_headers({{"Server", "llama.cpp"}});
|
|
|
|
// CORS preflight
|
|
svr->Options(R"(.*)", [](const httplib::Request & req, httplib::Response & res) {
|
|
res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
|
|
res.set_header("Access-Control-Allow-Credentials", "true");
|
|
res.set_header("Access-Control-Allow-Methods", "POST");
|
|
res.set_header("Access-Control-Allow-Headers", "*");
|
|
return res.set_content("", "application/json; charset=utf-8");
|
|
});
|
|
|
|
svr->set_logger(log_server_request);
|
|
|
|
auto res_error = [](httplib::Response & res, json error_data) {
|
|
json final_response {{"error", error_data}};
|
|
res.set_content(final_response.dump(), "application/json; charset=utf-8");
|
|
res.status = json_value(error_data, "code", 500);
|
|
};
|
|
|
|
svr->set_exception_handler([&res_error](const httplib::Request &, httplib::Response & res, std::exception_ptr ep) {
|
|
std::string message;
|
|
try {
|
|
std::rethrow_exception(std::move(ep));
|
|
} catch (std::exception & e) {
|
|
message = e.what();
|
|
} catch (...) {
|
|
message = "Unknown Exception";
|
|
}
|
|
|
|
json formatted_error = format_error_response(message, ERROR_TYPE_SERVER);
|
|
LOG_VERBOSE("Got exception", formatted_error);
|
|
res_error(res, formatted_error);
|
|
});
|
|
|
|
svr->set_error_handler([&res_error](const httplib::Request &, httplib::Response & res) {
|
|
if (res.status == 404) {
|
|
res_error(res, format_error_response("File Not Found", ERROR_TYPE_NOT_FOUND));
|
|
}
|
|
// for other error codes, we skip processing here because it's already done by res_error()
|
|
});
|
|
|
|
// set timeouts and change hostname and port
|
|
svr->set_read_timeout (sparams.read_timeout);
|
|
svr->set_write_timeout(sparams.write_timeout);
|
|
|
|
if (!svr->bind_to_port(sparams.hostname, sparams.port)) {
|
|
fprintf(stderr, "\ncouldn't bind to server socket: hostname=%s port=%d\n\n", sparams.hostname.c_str(), sparams.port);
|
|
return 1;
|
|
}
|
|
|
|
std::unordered_map<std::string, std::string> log_data;
|
|
|
|
log_data["hostname"] = sparams.hostname;
|
|
log_data["port"] = std::to_string(sparams.port);
|
|
|
|
if (sparams.api_keys.size() == 1) {
|
|
auto key = sparams.api_keys[0];
|
|
log_data["api_key"] = "api_key: ****" + key.substr(std::max((int)(key.length() - 4), 0));
|
|
} else if (sparams.api_keys.size() > 1) {
|
|
log_data["api_key"] = "api_key: " + std::to_string(sparams.api_keys.size()) + " keys loaded";
|
|
}
|
|
|
|
// load the model
|
|
if (!ctx_server.load_model(params)) {
|
|
state.store(SERVER_STATE_ERROR);
|
|
return 1;
|
|
} else {
|
|
ctx_server.init();
|
|
state.store(SERVER_STATE_READY);
|
|
}
|
|
|
|
LOG_INFO("model loaded", {});
|
|
|
|
const auto model_meta = ctx_server.model_meta();
|
|
|
|
// if a custom chat template is not supplied, we will use the one that comes with the model (if any)
|
|
if (sparams.chat_template.empty()) {
|
|
if (!ctx_server.validate_model_chat_template()) {
|
|
LOG_ERROR("The chat template that comes with this model is not yet supported, falling back to chatml. This may cause the model to output suboptimal responses", {});
|
|
sparams.chat_template = "chatml";
|
|
}
|
|
}
|
|
|
|
// print sample chat example to make it clear which template is used
|
|
{
|
|
json chat;
|
|
chat.push_back({{"role", "system"}, {"content", "You are a helpful assistant"}});
|
|
chat.push_back({{"role", "user"}, {"content", "Hello"}});
|
|
chat.push_back({{"role", "assistant"}, {"content", "Hi there"}});
|
|
chat.push_back({{"role", "user"}, {"content", "How are you?"}});
|
|
|
|
const std::string chat_example = format_chat(ctx_server.model, sparams.chat_template, chat);
|
|
|
|
LOG_INFO("chat template", {
|
|
{"chat_example", chat_example},
|
|
{"built_in", sparams.chat_template.empty()},
|
|
});
|
|
}
|
|
|
|
//
|
|
// Middlewares
|
|
//
|
|
|
|
auto middleware_validate_api_key = [&sparams, &res_error](const httplib::Request & req, httplib::Response & res) {
|
|
// TODO: should we apply API key to all endpoints, including "/health" and "/models"?
|
|
static const std::set<std::string> protected_endpoints = {
|
|
"/props",
|
|
"/completion",
|
|
"/completions",
|
|
"/v1/completions",
|
|
"/chat/completions",
|
|
"/v1/chat/completions",
|
|
"/infill",
|
|
"/tokenize",
|
|
"/detokenize",
|
|
"/embedding",
|
|
"/embeddings",
|
|
"/v1/embeddings",
|
|
};
|
|
|
|
// If API key is not set, skip validation
|
|
if (sparams.api_keys.empty()) {
|
|
return true;
|
|
}
|
|
|
|
// If path is not in protected_endpoints list, skip validation
|
|
if (protected_endpoints.find(req.path) == protected_endpoints.end()) {
|
|
return true;
|
|
}
|
|
|
|
// Check for API key in the header
|
|
auto auth_header = req.get_header_value("Authorization");
|
|
|
|
std::string prefix = "Bearer ";
|
|
if (auth_header.substr(0, prefix.size()) == prefix) {
|
|
std::string received_api_key = auth_header.substr(prefix.size());
|
|
if (std::find(sparams.api_keys.begin(), sparams.api_keys.end(), received_api_key) != sparams.api_keys.end()) {
|
|
return true; // API key is valid
|
|
}
|
|
}
|
|
|
|
// API key is invalid or not provided
|
|
// TODO: make another middleware for CORS related logic
|
|
res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
|
|
res_error(res, format_error_response("Invalid API Key", ERROR_TYPE_AUTHENTICATION));
|
|
|
|
LOG_WARNING("Unauthorized: Invalid API Key", {});
|
|
|
|
return false;
|
|
};
|
|
|
|
// register server middlewares
|
|
svr->set_pre_routing_handler([&middleware_validate_api_key](const httplib::Request & req, httplib::Response & res) {
|
|
if (!middleware_validate_api_key(req, res)) {
|
|
return httplib::Server::HandlerResponse::Handled;
|
|
}
|
|
return httplib::Server::HandlerResponse::Unhandled;
|
|
});
|
|
|
|
//
|
|
// Route handlers (or controllers)
|
|
//
|
|
|
|
const auto handle_health = [&](const httplib::Request & req, httplib::Response & res) {
|
|
server_state current_state = state.load();
|
|
switch (current_state) {
|
|
case SERVER_STATE_READY:
|
|
{
|
|
// request slots data using task queue
|
|
server_task task;
|
|
task.id = ctx_server.queue_tasks.get_new_id();
|
|
task.type = SERVER_TASK_TYPE_METRICS;
|
|
task.id_target = -1;
|
|
|
|
ctx_server.queue_results.add_waiting_task_id(task.id);
|
|
ctx_server.queue_tasks.post(task);
|
|
|
|
// get the result
|
|
server_task_result result = ctx_server.queue_results.recv(task.id);
|
|
ctx_server.queue_results.remove_waiting_task_id(task.id);
|
|
|
|
const int n_idle_slots = result.data["idle"];
|
|
const int n_processing_slots = result.data["processing"];
|
|
|
|
json health = {
|
|
{"status", "ok"},
|
|
{"slots_idle", n_idle_slots},
|
|
{"slots_processing", n_processing_slots}
|
|
};
|
|
|
|
res.status = 200; // HTTP OK
|
|
if (sparams.slots_endpoint && req.has_param("include_slots")) {
|
|
health["slots"] = result.data["slots"];
|
|
}
|
|
|
|
if (n_idle_slots == 0) {
|
|
health["status"] = "no slot available";
|
|
if (req.has_param("fail_on_no_slot")) {
|
|
res.status = 503; // HTTP Service Unavailable
|
|
}
|
|
}
|
|
|
|
res.set_content(health.dump(), "application/json");
|
|
break;
|
|
}
|
|
case SERVER_STATE_LOADING_MODEL:
|
|
{
|
|
res_error(res, format_error_response("Loading model", ERROR_TYPE_UNAVAILABLE));
|
|
} break;
|
|
case SERVER_STATE_ERROR:
|
|
{
|
|
res_error(res, format_error_response("Model failed to load", ERROR_TYPE_SERVER));
|
|
} break;
|
|
}
|
|
};
|
|
|
|
const auto handle_slots = [&](const httplib::Request &, httplib::Response & res) {
|
|
if (!sparams.slots_endpoint) {
|
|
res_error(res, format_error_response("This server does not support slots endpoint.", ERROR_TYPE_NOT_SUPPORTED));
|
|
return;
|
|
}
|
|
|
|
// request slots data using task queue
|
|
server_task task;
|
|
task.id = ctx_server.queue_tasks.get_new_id();
|
|
task.id_multi = -1;
|
|
task.id_target = -1;
|
|
task.type = SERVER_TASK_TYPE_METRICS;
|
|
|
|
ctx_server.queue_results.add_waiting_task_id(task.id);
|
|
ctx_server.queue_tasks.post(task);
|
|
|
|
// get the result
|
|
server_task_result result = ctx_server.queue_results.recv(task.id);
|
|
ctx_server.queue_results.remove_waiting_task_id(task.id);
|
|
|
|
res.set_content(result.data["slots"].dump(), "application/json");
|
|
res.status = 200; // HTTP OK
|
|
};
|
|
|
|
const auto handle_metrics = [&](const httplib::Request &, httplib::Response & res) {
|
|
if (!sparams.metrics_endpoint) {
|
|
res_error(res, format_error_response("This server does not support metrics endpoint.", ERROR_TYPE_NOT_SUPPORTED));
|
|
return;
|
|
}
|
|
|
|
// request slots data using task queue
|
|
server_task task;
|
|
task.id = ctx_server.queue_tasks.get_new_id();
|
|
task.id_multi = -1;
|
|
task.id_target = -1;
|
|
task.type = SERVER_TASK_TYPE_METRICS;
|
|
task.data.push_back({{"reset_bucket", true}});
|
|
|
|
ctx_server.queue_results.add_waiting_task_id(task.id);
|
|
ctx_server.queue_tasks.post(task);
|
|
|
|
// get the result
|
|
server_task_result result = ctx_server.queue_results.recv(task.id);
|
|
ctx_server.queue_results.remove_waiting_task_id(task.id);
|
|
|
|
json data = result.data;
|
|
|
|
const uint64_t n_prompt_tokens_processed = data["n_prompt_tokens_processed"];
|
|
const uint64_t t_prompt_processing = data["t_prompt_processing"];
|
|
|
|
const uint64_t n_tokens_predicted = data["n_tokens_predicted"];
|
|
const uint64_t t_tokens_generation = data["t_tokens_generation"];
|
|
|
|
const int32_t kv_cache_used_cells = data["kv_cache_used_cells"];
|
|
|
|
// metrics definition: https://prometheus.io/docs/practices/naming/#metric-names
|
|
json all_metrics_def = json {
|
|
{"counter", {{
|
|
{"name", "prompt_tokens_total"},
|
|
{"help", "Number of prompt tokens processed."},
|
|
{"value", (uint64_t) data["n_prompt_tokens_processed_total"]}
|
|
}, {
|
|
{"name", "prompt_seconds_total"},
|
|
{"help", "Prompt process time"},
|
|
{"value", (uint64_t) data["t_prompt_processing_total"] / 1.e3}
|
|
}, {
|
|
{"name", "tokens_predicted_total"},
|
|
{"help", "Number of generation tokens processed."},
|
|
{"value", (uint64_t) data["n_tokens_predicted_total"]}
|
|
}, {
|
|
{"name", "tokens_predicted_seconds_total"},
|
|
{"help", "Predict process time"},
|
|
{"value", (uint64_t) data["t_tokens_generation_total"] / 1.e3}
|
|
}}},
|
|
{"gauge", {{
|
|
{"name", "prompt_tokens_seconds"},
|
|
{"help", "Average prompt throughput in tokens/s."},
|
|
{"value", n_prompt_tokens_processed ? 1.e3 / t_prompt_processing * n_prompt_tokens_processed : 0.}
|
|
},{
|
|
{"name", "predicted_tokens_seconds"},
|
|
{"help", "Average generation throughput in tokens/s."},
|
|
{"value", n_tokens_predicted ? 1.e3 / t_tokens_generation * n_tokens_predicted : 0.}
|
|
},{
|
|
{"name", "kv_cache_usage_ratio"},
|
|
{"help", "KV-cache usage. 1 means 100 percent usage."},
|
|
{"value", 1. * kv_cache_used_cells / params.n_ctx}
|
|
},{
|
|
{"name", "kv_cache_tokens"},
|
|
{"help", "KV-cache tokens."},
|
|
{"value", (uint64_t) data["kv_cache_tokens_count"]}
|
|
},{
|
|
{"name", "requests_processing"},
|
|
{"help", "Number of request processing."},
|
|
{"value", (uint64_t) data["processing"]}
|
|
},{
|
|
{"name", "requests_deferred"},
|
|
{"help", "Number of request deferred."},
|
|
{"value", (uint64_t) data["deferred"]}
|
|
}}}
|
|
};
|
|
|
|
std::stringstream prometheus;
|
|
|
|
for (const auto & el : all_metrics_def.items()) {
|
|
const auto & type = el.key();
|
|
const auto & metrics_def = el.value();
|
|
|
|
for (const auto & metric_def : metrics_def) {
|
|
const std::string name = metric_def["name"];
|
|
const std::string help = metric_def["help"];
|
|
|
|
auto value = json_value(metric_def, "value", 0.);
|
|
prometheus << "# HELP llamacpp:" << name << " " << help << "\n"
|
|
<< "# TYPE llamacpp:" << name << " " << type << "\n"
|
|
<< "llamacpp:" << name << " " << value << "\n";
|
|
}
|
|
}
|
|
|
|
const int64_t t_start = data["t_start"];
|
|
res.set_header("Process-Start-Time-Unix", std::to_string(t_start));
|
|
|
|
res.set_content(prometheus.str(), "text/plain; version=0.0.4");
|
|
res.status = 200; // HTTP OK
|
|
};
|
|
|
|
const auto handle_props = [&ctx_server](const httplib::Request & req, httplib::Response & res) {
|
|
res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
|
|
json data = {
|
|
{ "user_name", ctx_server.name_user.c_str() },
|
|
{ "assistant_name", ctx_server.name_assistant.c_str() },
|
|
{ "default_generation_settings", ctx_server.default_generation_settings_for_props },
|
|
{ "total_slots", ctx_server.params.n_parallel }
|
|
};
|
|
|
|
res.set_content(data.dump(), "application/json; charset=utf-8");
|
|
};
|
|
|
|
const auto handle_completions = [&ctx_server, &res_error](const httplib::Request & req, httplib::Response & res) {
|
|
res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
|
|
|
|
json data = json::parse(req.body);
|
|
|
|
const int id_task = ctx_server.queue_tasks.get_new_id();
|
|
|
|
ctx_server.queue_results.add_waiting_task_id(id_task);
|
|
ctx_server.request_completion(id_task, -1, data, false, false);
|
|
|
|
if (!json_value(data, "stream", false)) {
|
|
server_task_result result = ctx_server.queue_results.recv(id_task);
|
|
if (!result.error && result.stop) {
|
|
res.set_content(result.data.dump(-1, ' ', false, json::error_handler_t::replace), "application/json; charset=utf-8");
|
|
} else {
|
|
res_error(res, result.data);
|
|
}
|
|
|
|
ctx_server.queue_results.remove_waiting_task_id(id_task);
|
|
} else {
|
|
const auto chunked_content_provider = [id_task, &ctx_server](size_t, httplib::DataSink & sink) {
|
|
while (true) {
|
|
server_task_result result = ctx_server.queue_results.recv(id_task);
|
|
if (!result.error) {
|
|
const std::string str =
|
|
"data: " +
|
|
result.data.dump(-1, ' ', false, json::error_handler_t::replace) +
|
|
"\n\n";
|
|
|
|
LOG_VERBOSE("data stream", {
|
|
{ "to_send", str }
|
|
});
|
|
|
|
if (!sink.write(str.c_str(), str.size())) {
|
|
ctx_server.queue_results.remove_waiting_task_id(id_task);
|
|
return false;
|
|
}
|
|
|
|
if (result.stop) {
|
|
break;
|
|
}
|
|
} else {
|
|
const std::string str =
|
|
"error: " +
|
|
result.data.dump(-1, ' ', false, json::error_handler_t::replace) +
|
|
"\n\n";
|
|
|
|
LOG_VERBOSE("data stream", {
|
|
{ "to_send", str }
|
|
});
|
|
|
|
if (!sink.write(str.c_str(), str.size())) {
|
|
ctx_server.queue_results.remove_waiting_task_id(id_task);
|
|
return false;
|
|
}
|
|
|
|
break;
|
|
}
|
|
}
|
|
|
|
ctx_server.queue_results.remove_waiting_task_id(id_task);
|
|
sink.done();
|
|
|
|
return true;
|
|
};
|
|
|
|
auto on_complete = [id_task, &ctx_server] (bool) {
|
|
// cancel
|
|
ctx_server.request_cancel(id_task);
|
|
ctx_server.queue_results.remove_waiting_task_id(id_task);
|
|
};
|
|
|
|
res.set_chunked_content_provider("text/event-stream", chunked_content_provider, on_complete);
|
|
}
|
|
};
|
|
|
|
const auto handle_models = [¶ms, &model_meta](const httplib::Request & req, httplib::Response & res) {
|
|
res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
|
|
|
|
json models = {
|
|
{"object", "list"},
|
|
{"data", {
|
|
{
|
|
{"id", params.model_alias},
|
|
{"object", "model"},
|
|
{"created", std::time(0)},
|
|
{"owned_by", "llamacpp"},
|
|
{"meta", model_meta}
|
|
},
|
|
}}
|
|
};
|
|
|
|
res.set_content(models.dump(), "application/json; charset=utf-8");
|
|
};
|
|
|
|
const auto handle_chat_completions = [&ctx_server, &sparams, &res_error](const httplib::Request & req, httplib::Response & res) {
|
|
res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
|
|
json data = oaicompat_completion_params_parse(ctx_server.model, json::parse(req.body), sparams.chat_template);
|
|
|
|
const int id_task = ctx_server.queue_tasks.get_new_id();
|
|
|
|
ctx_server.queue_results.add_waiting_task_id(id_task);
|
|
ctx_server.request_completion(id_task, -1, data, false, false);
|
|
|
|
const auto completion_id = gen_chatcmplid();
|
|
if (!json_value(data, "stream", false)) {
|
|
server_task_result result = ctx_server.queue_results.recv(id_task);
|
|
|
|
if (!result.error && result.stop) {
|
|
json result_oai = format_final_response_oaicompat(data, result.data, completion_id);
|
|
|
|
res.set_content(result_oai.dump(-1, ' ', false, json::error_handler_t::replace), "application/json; charset=utf-8");
|
|
} else {
|
|
res_error(res, result.data);
|
|
}
|
|
ctx_server.queue_results.remove_waiting_task_id(id_task);
|
|
} else {
|
|
const auto chunked_content_provider = [id_task, &ctx_server, completion_id](size_t, httplib::DataSink & sink) {
|
|
while (true) {
|
|
server_task_result result = ctx_server.queue_results.recv(id_task);
|
|
if (!result.error) {
|
|
std::vector<json> result_array = format_partial_response_oaicompat(result.data, completion_id);
|
|
|
|
for (auto it = result_array.begin(); it != result_array.end(); ++it) {
|
|
if (!it->empty()) {
|
|
const std::string str =
|
|
"data: " +
|
|
it->dump(-1, ' ', false, json::error_handler_t::replace) +
|
|
"\n\n";
|
|
LOG_VERBOSE("data stream", {{"to_send", str}});
|
|
if (!sink.write(str.c_str(), str.size())) {
|
|
ctx_server.queue_results.remove_waiting_task_id(id_task);
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
if (result.stop) {
|
|
break;
|
|
}
|
|
} else {
|
|
const std::string str =
|
|
"error: " +
|
|
result.data.dump(-1, ' ', false, json::error_handler_t::replace) +
|
|
"\n\n";
|
|
LOG_VERBOSE("data stream", {{"to_send", str}});
|
|
if (!sink.write(str.c_str(), str.size())) {
|
|
ctx_server.queue_results.remove_waiting_task_id(id_task);
|
|
return false;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
sink.done();
|
|
ctx_server.queue_results.remove_waiting_task_id(id_task);
|
|
return true;
|
|
};
|
|
|
|
auto on_complete = [id_task, &ctx_server](bool) {
|
|
// cancel request
|
|
ctx_server.request_cancel(id_task);
|
|
ctx_server.queue_results.remove_waiting_task_id(id_task);
|
|
};
|
|
|
|
res.set_chunked_content_provider("text/event-stream", chunked_content_provider, on_complete);
|
|
}
|
|
};
|
|
|
|
const auto handle_infill = [&ctx_server, &res_error](const httplib::Request & req, httplib::Response & res) {
|
|
res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
|
|
|
|
json data = json::parse(req.body);
|
|
|
|
const int id_task = ctx_server.queue_tasks.get_new_id();
|
|
|
|
ctx_server.queue_results.add_waiting_task_id(id_task);
|
|
ctx_server.request_completion(id_task, -1, data, true, false);
|
|
|
|
if (!json_value(data, "stream", false)) {
|
|
server_task_result result = ctx_server.queue_results.recv(id_task);
|
|
if (!result.error && result.stop) {
|
|
res.set_content(result.data.dump(-1, ' ', false, json::error_handler_t::replace), "application/json; charset=utf-8");
|
|
} else {
|
|
res_error(res, result.data);
|
|
}
|
|
|
|
ctx_server.queue_results.remove_waiting_task_id(id_task);
|
|
} else {
|
|
const auto chunked_content_provider = [id_task, &ctx_server](size_t, httplib::DataSink & sink) {
|
|
while (true) {
|
|
server_task_result result = ctx_server.queue_results.recv(id_task);
|
|
if (!result.error) {
|
|
const std::string str =
|
|
"data: " +
|
|
result.data.dump(-1, ' ', false, json::error_handler_t::replace) +
|
|
"\n\n";
|
|
|
|
LOG_VERBOSE("data stream", {
|
|
{ "to_send", str }
|
|
});
|
|
|
|
if (!sink.write(str.c_str(), str.size())) {
|
|
ctx_server.queue_results.remove_waiting_task_id(id_task);
|
|
return false;
|
|
}
|
|
|
|
if (result.stop) {
|
|
break;
|
|
}
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
ctx_server.queue_results.remove_waiting_task_id(id_task);
|
|
sink.done();
|
|
|
|
return true;
|
|
};
|
|
|
|
auto on_complete = [id_task, &ctx_server] (bool) {
|
|
ctx_server.request_cancel(id_task);
|
|
};
|
|
|
|
res.set_chunked_content_provider("text/event-stream", chunked_content_provider, on_complete);
|
|
}
|
|
};
|
|
|
|
const auto handle_tokenize = [&ctx_server](const httplib::Request & req, httplib::Response & res) {
|
|
res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
|
|
const json body = json::parse(req.body);
|
|
|
|
std::vector<llama_token> tokens;
|
|
if (body.count("content") != 0) {
|
|
tokens = ctx_server.tokenize(body["content"], false);
|
|
}
|
|
const json data = format_tokenizer_response(tokens);
|
|
return res.set_content(data.dump(), "application/json; charset=utf-8");
|
|
};
|
|
|
|
const auto handle_detokenize = [&ctx_server](const httplib::Request & req, httplib::Response & res) {
|
|
res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
|
|
const json body = json::parse(req.body);
|
|
|
|
std::string content;
|
|
if (body.count("tokens") != 0) {
|
|
const std::vector<llama_token> tokens = body["tokens"];
|
|
content = tokens_to_str(ctx_server.ctx, tokens.cbegin(), tokens.cend());
|
|
}
|
|
|
|
const json data = format_detokenized_response(content);
|
|
return res.set_content(data.dump(), "application/json; charset=utf-8");
|
|
};
|
|
|
|
const auto handle_embeddings = [¶ms, &ctx_server, &res_error](const httplib::Request & req, httplib::Response & res) {
|
|
res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
|
|
if (!params.embedding) {
|
|
res.status = 501;
|
|
res.set_content("This server does not support embeddings. Start it with `--embeddings`", "text/plain; charset=utf-8");
|
|
return;
|
|
}
|
|
|
|
const json body = json::parse(req.body);
|
|
bool is_openai = false;
|
|
|
|
// an input prompt can be a string or a list of tokens (integer)
|
|
json prompt;
|
|
if (body.count("input") != 0) {
|
|
is_openai = true;
|
|
prompt = body["input"];
|
|
} else if (body.count("content") != 0) {
|
|
// with "content", we only support single prompt
|
|
prompt = std::vector<std::string>{body["content"]};
|
|
} else {
|
|
res_error(res, format_error_response("\"input\" or \"content\" must be provided", ERROR_TYPE_INVALID_REQUEST));
|
|
return;
|
|
}
|
|
|
|
// create and queue the task
|
|
json responses;
|
|
{
|
|
const int id_task = ctx_server.queue_tasks.get_new_id();
|
|
ctx_server.queue_results.add_waiting_task_id(id_task);
|
|
ctx_server.request_completion(id_task, -1, {{"prompt", prompt}}, false, true);
|
|
|
|
// get the result
|
|
server_task_result result = ctx_server.queue_results.recv(id_task);
|
|
ctx_server.queue_results.remove_waiting_task_id(id_task);
|
|
if (!result.error) {
|
|
if (result.data.count("results")) {
|
|
// result for multi-task
|
|
responses = result.data["results"];
|
|
} else {
|
|
// result for single task
|
|
responses = std::vector<json>{result.data};
|
|
}
|
|
} else {
|
|
// error received, ignore everything else
|
|
res_error(res, result.data);
|
|
return;
|
|
}
|
|
}
|
|
|
|
// write JSON response
|
|
json root = is_openai
|
|
? format_embeddings_response_oaicompat(body, responses)
|
|
: responses[0];
|
|
return res.set_content(root.dump(), "application/json; charset=utf-8");
|
|
};
|
|
|
|
auto handle_static_file = [](unsigned char * content, size_t len, const char * mime_type) {
|
|
return [content, len, mime_type](const httplib::Request &, httplib::Response & res) {
|
|
res.set_content(reinterpret_cast<const char*>(content), len, mime_type);
|
|
return false;
|
|
};
|
|
};
|
|
|
|
//
|
|
// Router
|
|
//
|
|
|
|
// register static assets routes
|
|
if (!sparams.public_path.empty()) {
|
|
// Set the base directory for serving static files
|
|
svr->set_base_dir(sparams.public_path);
|
|
}
|
|
|
|
// using embedded static files
|
|
svr->Get("/", handle_static_file(index_html, index_html_len, "text/html; charset=utf-8"));
|
|
svr->Get("/index.js", handle_static_file(index_js, index_js_len, "text/javascript; charset=utf-8"));
|
|
svr->Get("/completion.js", handle_static_file(completion_js, completion_js_len, "text/javascript; charset=utf-8"));
|
|
svr->Get("/json-schema-to-grammar.mjs", handle_static_file(
|
|
json_schema_to_grammar_mjs, json_schema_to_grammar_mjs_len, "text/javascript; charset=utf-8"));
|
|
|
|
// register API routes
|
|
svr->Get ("/health", handle_health);
|
|
svr->Get ("/slots", handle_slots);
|
|
svr->Get ("/metrics", handle_metrics);
|
|
svr->Get ("/props", handle_props);
|
|
svr->Get ("/v1/models", handle_models);
|
|
svr->Post("/completion", handle_completions); // legacy
|
|
svr->Post("/completions", handle_completions);
|
|
svr->Post("/v1/completions", handle_completions);
|
|
svr->Post("/chat/completions", handle_chat_completions);
|
|
svr->Post("/v1/chat/completions", handle_chat_completions);
|
|
svr->Post("/infill", handle_infill);
|
|
svr->Post("/embedding", handle_embeddings); // legacy
|
|
svr->Post("/embeddings", handle_embeddings);
|
|
svr->Post("/v1/embeddings", handle_embeddings);
|
|
svr->Post("/tokenize", handle_tokenize);
|
|
svr->Post("/detokenize", handle_detokenize);
|
|
|
|
//
|
|
// Start the server
|
|
//
|
|
if (sparams.n_threads_http < 1) {
|
|
// +2 threads for monitoring endpoints
|
|
sparams.n_threads_http = std::max(params.n_parallel + 2, (int32_t) std::thread::hardware_concurrency() - 1);
|
|
}
|
|
log_data["n_threads_http"] = std::to_string(sparams.n_threads_http);
|
|
svr->new_task_queue = [&sparams] { return new httplib::ThreadPool(sparams.n_threads_http); };
|
|
|
|
LOG_INFO("HTTP server listening", log_data);
|
|
|
|
// run the HTTP server in a thread - see comment below
|
|
std::thread t([&]() {
|
|
if (!svr->listen_after_bind()) {
|
|
state.store(SERVER_STATE_ERROR);
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
});
|
|
|
|
ctx_server.queue_tasks.on_new_task(std::bind(
|
|
&server_context::process_single_task, &ctx_server, std::placeholders::_1));
|
|
ctx_server.queue_tasks.on_finish_multitask(std::bind(
|
|
&server_context::on_finish_multitask, &ctx_server, std::placeholders::_1));
|
|
ctx_server.queue_tasks.on_update_slots(std::bind(
|
|
&server_context::update_slots, &ctx_server));
|
|
ctx_server.queue_results.on_multitask_update(std::bind(
|
|
&server_queue::update_multitask,
|
|
&ctx_server.queue_tasks,
|
|
std::placeholders::_1,
|
|
std::placeholders::_2,
|
|
std::placeholders::_3
|
|
));
|
|
|
|
shutdown_handler = [&](int) {
|
|
ctx_server.queue_tasks.terminate();
|
|
};
|
|
|
|
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
|
|
struct sigaction sigint_action;
|
|
sigint_action.sa_handler = signal_handler;
|
|
sigemptyset (&sigint_action.sa_mask);
|
|
sigint_action.sa_flags = 0;
|
|
sigaction(SIGINT, &sigint_action, NULL);
|
|
#elif defined (_WIN32)
|
|
auto console_ctrl_handler = +[](DWORD ctrl_type) -> BOOL {
|
|
return (ctrl_type == CTRL_C_EVENT) ? (signal_handler(SIGINT), true) : false;
|
|
};
|
|
SetConsoleCtrlHandler(reinterpret_cast<PHANDLER_ROUTINE>(console_ctrl_handler), true);
|
|
#endif
|
|
|
|
ctx_server.queue_tasks.start_loop();
|
|
|
|
svr->stop();
|
|
t.join();
|
|
|
|
llama_backend_free();
|
|
|
|
return 0;
|
|
}
|