llama.cpp/examples/server/tests
slaren f30ea47a87
llama : add pipeline parallelism support (#6017)
* llama : add pipeline parallelism support for batch processing with multiple CUDA GPUs

ggml-ci

* server : add -ub, --ubatch-size parameter

* fix server embedding test

* llama : fix Mamba inference for pipeline parallelism

Tested to work correctly with both `main` and `parallel` examples.

* llama : limit max batch size to n_batch

* add LLAMA_SCHED_MAX_COPIES to configure the number of input copies for pipeline parallelism
default increase to 4 (from 2)

changing this value may improve performance for some systems, but increases memory usage

* fix hip build

* fix sycl build (disable cpy_tensor_async)

* fix hip build

* llama : limit n_batch and n_ubatch to n_ctx during context creation

* llama : fix norm backend

* batched-bench : sync after decode

* swiftui : sync after decode

* ggml : allow ggml_get_rows to use multiple threads if they are available

* check n_ubatch >= n_tokens with non-casual attention

* llama : do not limit n_batch to n_ctx with non-casual attn

* server : construct batch with size of llama_n_batch

* ggml_backend_cpu_graph_compute : fix return value when alloc fails

* llama : better n_batch and n_ubatch comment

* fix merge

* small fix

* reduce default n_batch to 2048

---------

Co-authored-by: Francis Couture-Harpin <git@compilade.net>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-03-13 18:54:21 +01:00
..
features llama : add pipeline parallelism support (#6017) 2024-03-13 18:54:21 +01:00
README.md server: tests: passkey challenge / self-extend with context shift demo (#5832) 2024-03-02 22:00:14 +01:00
requirements.txt server : refactor (#5882) 2024-03-07 11:41:53 +02:00
tests.sh server: tests: passkey challenge / self-extend with context shift demo (#5832) 2024-03-02 22:00:14 +01:00

Server tests

Python based server tests scenario using BDD and behave:

Tests target GitHub workflows job runners with 4 vCPU.

Requests are using aiohttp, asyncio based http client.

Note: If the host architecture inference speed is faster than GitHub runners one, parallel scenario may randomly fail. To mitigate it, you can increase values in n_predict, kv_size.

Install dependencies

pip install -r requirements.txt

Run tests

  1. Build the server
cd ../../..
mkdir build
cd build
cmake ../
cmake --build . --target server
  1. Start the test: ./tests.sh

It's possible to override some scenario steps values with environment variables:

variable description
PORT context.server_port to set the listening port of the server during scenario, default: 8080
LLAMA_SERVER_BIN_PATH to change the server binary path, default: ../../../build/bin/server
DEBUG "ON" to enable steps and server verbose mode --verbose
SERVER_LOG_FORMAT_JSON if set switch server logs to json format
N_GPU_LAYERS number of model layers to offload to VRAM -ngl --n-gpu-layers

Run @bug, @wip or @wrong_usage annotated scenario

Feature or Scenario must be annotated with @llama.cpp to be included in the default scope.

  • @bug annotation aims to link a scenario with a GitHub issue.
  • @wrong_usage are meant to show user issue that are actually an expected behavior
  • @wip to focus on a scenario working in progress
  • @slow heavy test, disabled by default

To run a scenario annotated with @bug, start:

DEBUG=ON ./tests.sh --no-skipped --tags bug

After changing logic in steps.py, ensure that @bug and @wrong_usage scenario are updated.

./tests.sh --no-skipped --tags bug,wrong_usage || echo "should failed but compile"