mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-12-31 22:04:35 +00:00
799a1cb13b
* convert : support Mixtral as LLAMA arch
* convert : fix n_ff typo
* llama : model loading
* ggml : sync latest ggml_mul_mat_id
* llama : update graph to support MoE
* llama : fix cur -> cur_expert
* llama : first working version
* llama : fix expert weighting in the FFN
* ggml : ggml_get_rows support 2D indexing [n_tokens, n_experts] (cpu only)
* ggml : add n_as argument to ggml_mul_mat_id
* ggml : fix ggml_get_rows to take into account ne02 / ne11
* metal : add more general support for ggml_get_rows + tests
* llama : add basic support for offloading moe with CUDA
* metal : add/mul/div use general kernel when src1 not cont
* metal : reduce the kernel launches for ggml_mul_mat_id
* ggml : get_rows : support non-contiguos tensors with gaps, generalize up to 3D
* ggml : update get_rows f16 and q
* cuda : support non-contiguous src1 in get_rows
* llama : offload missing ffn_moe_silu
* metal : fix ggml_get_rows to work with non-cont src1
* metal : add indirect mat-vec kernels for all quantization types
* llama : do not quantize expert gating tensors
* llama : add n_expert and n_expert_used to hparams + change quants
* test-backend-ops : add moe test
* cuda : fix get_rows when ncols is odd
* convert : determine n_ctx correctly
* metal : fix ggml_mul_mat_id for F32
* test-backend-ops : make experts more evenly probable (test_moe)
* test-backend-ops : cleanup, add moe test for batches
* test-backend-ops : add cpy from f32 -> all types test
* test-backend-ops : fix dequantize block offset
* llama : fix hard-coded number of experts
* test-backend-ops : simplify and disable slow tests to avoid CI timeout
* test-backend-ops : disable MOE test with thread sanitizer
* cuda : fix mul_mat_id with multi gpu
* convert : use 1e6 rope_freq_base for mixtral
* convert : fix style
* convert : support safetensors format
* gguf-py : bump version
* metal : add cpy f16 -> f32 kernel
* metal : fix binary ops for ne10 % 4 != 0
* test-backend-ops : add one more sum_rows test
* ggml : do not use BLAS with ggml_mul_mat_id
* convert-hf : support for mixtral-instruct (#4428)
* convert : typo fix, add additional hyperparameters, use LLaMA arch for Mixtral-instruct
* convert : use sentencepiece tokenizer for Mixtral-instruct
* convert : make flake8 happy
* metal : fix soft_max kernels
ref: 1914017863
* metal : limit kernels to not use more than the allowed threads
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: Radek Pilar <github@mrkva.eu>
419 lines
15 KiB
Python
419 lines
15 KiB
Python
from __future__ import annotations
|
|
|
|
import os
|
|
import shutil
|
|
import struct
|
|
import tempfile
|
|
from enum import Enum, auto
|
|
from io import BufferedWriter
|
|
from typing import IO, Any, Sequence
|
|
|
|
import numpy as np
|
|
|
|
from .constants import (
|
|
GGUF_DEFAULT_ALIGNMENT,
|
|
GGUF_MAGIC,
|
|
GGUF_VERSION,
|
|
GGMLQuantizationType,
|
|
GGUFEndian,
|
|
GGUFValueType,
|
|
Keys,
|
|
RopeScalingType,
|
|
TokenType,
|
|
)
|
|
|
|
|
|
class WriterState(Enum):
|
|
EMPTY = auto()
|
|
HEADER = auto()
|
|
KV_DATA = auto()
|
|
TI_DATA = auto()
|
|
|
|
|
|
class GGUFWriter:
|
|
fout: BufferedWriter
|
|
temp_file: tempfile.SpooledTemporaryFile[bytes] | None
|
|
tensors: list[np.ndarray[Any, Any]]
|
|
_simple_value_packing = {
|
|
GGUFValueType.UINT8: "B",
|
|
GGUFValueType.INT8: "b",
|
|
GGUFValueType.UINT16: "H",
|
|
GGUFValueType.INT16: "h",
|
|
GGUFValueType.UINT32: "I",
|
|
GGUFValueType.INT32: "i",
|
|
GGUFValueType.FLOAT32: "f",
|
|
GGUFValueType.UINT64: "Q",
|
|
GGUFValueType.INT64: "q",
|
|
GGUFValueType.FLOAT64: "d",
|
|
GGUFValueType.BOOL: "?",
|
|
}
|
|
|
|
def __init__(
|
|
self, path: os.PathLike[str] | str, arch: str, use_temp_file: bool = True,
|
|
endianess: GGUFEndian = GGUFEndian.LITTLE,
|
|
):
|
|
self.fout = open(path, "wb")
|
|
self.arch = arch
|
|
self.endianess = endianess
|
|
self.offset_tensor = 0
|
|
self.data_alignment = GGUF_DEFAULT_ALIGNMENT
|
|
self.kv_data = bytearray()
|
|
self.kv_data_count = 0
|
|
self.ti_data = bytearray()
|
|
self.ti_data_count = 0
|
|
self.use_temp_file = use_temp_file
|
|
self.temp_file = None
|
|
self.tensors = []
|
|
print("gguf: This GGUF file is for {0} Endian only".format(
|
|
"Big" if self.endianess == GGUFEndian.BIG else "Little",
|
|
))
|
|
self.state = WriterState.EMPTY
|
|
|
|
self.add_architecture()
|
|
|
|
def write_header_to_file(self) -> None:
|
|
if self.state is not WriterState.EMPTY:
|
|
raise ValueError(f'Expected output file to be empty, got {self.state}')
|
|
|
|
self._write_packed("<I", GGUF_MAGIC, skip_pack_prefix = True)
|
|
self._write_packed("I", GGUF_VERSION)
|
|
self._write_packed("Q", self.ti_data_count)
|
|
self._write_packed("Q", self.kv_data_count)
|
|
self.flush()
|
|
self.state = WriterState.HEADER
|
|
|
|
def write_kv_data_to_file(self) -> None:
|
|
if self.state is not WriterState.HEADER:
|
|
raise ValueError(f'Expected output file to contain the header, got {self.state}')
|
|
|
|
self.fout.write(self.kv_data)
|
|
self.flush()
|
|
self.state = WriterState.KV_DATA
|
|
|
|
def write_ti_data_to_file(self) -> None:
|
|
if self.state is not WriterState.KV_DATA:
|
|
raise ValueError(f'Expected output file to contain KV data, got {self.state}')
|
|
|
|
self.fout.write(self.ti_data)
|
|
self.flush()
|
|
self.state = WriterState.TI_DATA
|
|
|
|
def add_key(self, key: str) -> None:
|
|
self.add_val(key, GGUFValueType.STRING, add_vtype=False)
|
|
|
|
def add_uint8(self, key: str, val: int) -> None:
|
|
self.add_key(key)
|
|
self.add_val(val, GGUFValueType.UINT8)
|
|
|
|
def add_int8(self, key: str, val: int) -> None:
|
|
self.add_key(key)
|
|
self.add_val(val, GGUFValueType.INT8)
|
|
|
|
def add_uint16(self, key: str, val: int) -> None:
|
|
self.add_key(key)
|
|
self.add_val(val, GGUFValueType.UINT16)
|
|
|
|
def add_int16(self, key: str, val: int) -> None:
|
|
self.add_key(key)
|
|
self.add_val(val, GGUFValueType.INT16)
|
|
|
|
def add_uint32(self, key: str, val: int) -> None:
|
|
self.add_key(key)
|
|
self.add_val(val, GGUFValueType.UINT32)
|
|
|
|
def add_int32(self, key: str, val: int) -> None:
|
|
self.add_key(key)
|
|
self.add_val(val, GGUFValueType.INT32)
|
|
|
|
def add_float32(self, key: str, val: float) -> None:
|
|
self.add_key(key)
|
|
self.add_val(val, GGUFValueType.FLOAT32)
|
|
|
|
def add_uint64(self, key: str, val: int) -> None:
|
|
self.add_key(key)
|
|
self.add_val(val, GGUFValueType.UINT64)
|
|
|
|
def add_int64(self, key: str, val: int) -> None:
|
|
self.add_key(key)
|
|
self.add_val(val, GGUFValueType.INT64)
|
|
|
|
def add_float64(self, key: str, val: float) -> None:
|
|
self.add_key(key)
|
|
self.add_val(val, GGUFValueType.FLOAT64)
|
|
|
|
def add_bool(self, key: str, val: bool) -> None:
|
|
self.add_key(key)
|
|
self.add_val(val, GGUFValueType.BOOL)
|
|
|
|
def add_string(self, key: str, val: str) -> None:
|
|
if not val:
|
|
return
|
|
self.add_key(key)
|
|
self.add_val(val, GGUFValueType.STRING)
|
|
|
|
def add_array(self, key: str, val: Sequence[Any]) -> None:
|
|
if not isinstance(val, Sequence):
|
|
raise ValueError("Value must be a sequence for array type")
|
|
|
|
self.add_key(key)
|
|
self.add_val(val, GGUFValueType.ARRAY)
|
|
|
|
def add_val(self, val: Any, vtype: GGUFValueType | None = None, add_vtype: bool = True) -> None:
|
|
if vtype is None:
|
|
vtype = GGUFValueType.get_type(val)
|
|
|
|
if add_vtype:
|
|
self.kv_data += self._pack("I", vtype)
|
|
self.kv_data_count += 1
|
|
|
|
pack_fmt = self._simple_value_packing.get(vtype)
|
|
if pack_fmt is not None:
|
|
self.kv_data += self._pack(pack_fmt, val, skip_pack_prefix = vtype == GGUFValueType.BOOL)
|
|
elif vtype == GGUFValueType.STRING:
|
|
encoded_val = val.encode("utf8") if isinstance(val, str) else val
|
|
self.kv_data += self._pack("Q", len(encoded_val))
|
|
self.kv_data += encoded_val
|
|
elif vtype == GGUFValueType.ARRAY and isinstance(val, Sequence) and val:
|
|
ltype = GGUFValueType.get_type(val[0])
|
|
if not all(GGUFValueType.get_type(i) is ltype for i in val[1:]):
|
|
raise ValueError("All items in a GGUF array should be of the same type")
|
|
self.kv_data += self._pack("I", ltype)
|
|
self.kv_data += self._pack("Q", len(val))
|
|
for item in val:
|
|
self.add_val(item, add_vtype=False)
|
|
else:
|
|
raise ValueError("Invalid GGUF metadata value type or value")
|
|
|
|
@staticmethod
|
|
def ggml_pad(x: int, n: int) -> int:
|
|
return ((x + n - 1) // n) * n
|
|
|
|
def add_tensor_info(
|
|
self, name: str, tensor_shape: Sequence[int], tensor_dtype: np.dtype[np.float16] | np.dtype[np.float32],
|
|
tensor_nbytes: int, raw_dtype: GGMLQuantizationType | None = None,
|
|
) -> None:
|
|
if self.state is not WriterState.EMPTY:
|
|
raise ValueError(f'Expected output file to be empty, got {self.state}')
|
|
|
|
if raw_dtype is None and tensor_dtype not in (np.float32, np.float16):
|
|
raise ValueError("Only F32 and F16 tensors are supported for now")
|
|
|
|
encoded_name = name.encode("utf8")
|
|
self.ti_data += self._pack("Q", len(encoded_name))
|
|
self.ti_data += encoded_name
|
|
n_dims = len(tensor_shape)
|
|
self.ti_data += self._pack("I", n_dims)
|
|
for i in range(n_dims):
|
|
self.ti_data += self._pack("Q", tensor_shape[n_dims - 1 - i])
|
|
if raw_dtype is None:
|
|
dtype = GGMLQuantizationType.F32 if tensor_dtype == np.float32 else GGMLQuantizationType.F16
|
|
else:
|
|
dtype = raw_dtype
|
|
self.ti_data += self._pack("I", dtype)
|
|
self.ti_data += self._pack("Q", self.offset_tensor)
|
|
self.offset_tensor += GGUFWriter.ggml_pad(tensor_nbytes, self.data_alignment)
|
|
self.ti_data_count += 1
|
|
|
|
def add_tensor(
|
|
self, name: str, tensor: np.ndarray[Any, Any], raw_shape: Sequence[int] | None = None,
|
|
raw_dtype: GGMLQuantizationType | None = None,
|
|
) -> None:
|
|
if self.endianess == GGUFEndian.BIG:
|
|
tensor.byteswap(inplace=True)
|
|
if self.use_temp_file and self.temp_file is None:
|
|
fp = tempfile.SpooledTemporaryFile(mode="w+b", max_size=256 * 1024 * 1024)
|
|
fp.seek(0)
|
|
self.temp_file = fp
|
|
|
|
shape: Sequence[int] = raw_shape if raw_shape is not None else tensor.shape
|
|
self.add_tensor_info(name, shape, tensor.dtype, tensor.nbytes, raw_dtype = raw_dtype)
|
|
|
|
if self.temp_file is None:
|
|
self.tensors.append(tensor)
|
|
return
|
|
|
|
tensor.tofile(self.temp_file)
|
|
self.write_padding(self.temp_file, tensor.nbytes)
|
|
|
|
def write_padding(self, fp: IO[bytes], n: int, align: int | None = None) -> None:
|
|
pad = GGUFWriter.ggml_pad(n, align if align is not None else self.data_alignment) - n
|
|
if pad != 0:
|
|
fp.write(bytes([0] * pad))
|
|
|
|
def write_tensor_data(self, tensor: np.ndarray[Any, Any]) -> None:
|
|
if self.state is not WriterState.TI_DATA:
|
|
raise ValueError(f'Expected output file to contain tensor info, got {self.state}')
|
|
|
|
if self.endianess == GGUFEndian.BIG:
|
|
tensor.byteswap(inplace=True)
|
|
self.write_padding(self.fout, self.fout.tell())
|
|
tensor.tofile(self.fout)
|
|
self.write_padding(self.fout, tensor.nbytes)
|
|
|
|
def write_tensors_to_file(self) -> None:
|
|
self.write_ti_data_to_file()
|
|
|
|
self.write_padding(self.fout, self.fout.tell())
|
|
|
|
if self.temp_file is None:
|
|
while True:
|
|
try:
|
|
tensor = self.tensors.pop(0)
|
|
except IndexError:
|
|
break
|
|
tensor.tofile(self.fout)
|
|
self.write_padding(self.fout, tensor.nbytes)
|
|
return
|
|
|
|
self.temp_file.seek(0)
|
|
|
|
shutil.copyfileobj(self.temp_file, self.fout)
|
|
self.flush()
|
|
self.temp_file.close()
|
|
|
|
def flush(self) -> None:
|
|
self.fout.flush()
|
|
|
|
def close(self) -> None:
|
|
self.fout.close()
|
|
|
|
def add_architecture(self) -> None:
|
|
self.add_string(Keys.General.ARCHITECTURE, self.arch)
|
|
|
|
def add_author(self, author: str) -> None:
|
|
self.add_string(Keys.General.AUTHOR, author)
|
|
|
|
def add_tensor_data_layout(self, layout: str) -> None:
|
|
self.add_string(Keys.LLM.TENSOR_DATA_LAYOUT.format(arch=self.arch), layout)
|
|
|
|
def add_url(self, url: str) -> None:
|
|
self.add_string(Keys.General.URL, url)
|
|
|
|
def add_description(self, description: str) -> None:
|
|
self.add_string(Keys.General.DESCRIPTION, description)
|
|
|
|
def add_source_url(self, url: str) -> None:
|
|
self.add_string(Keys.General.SOURCE_URL, url)
|
|
|
|
def add_source_hf_repo(self, repo: str) -> None:
|
|
self.add_string(Keys.General.SOURCE_HF_REPO, repo)
|
|
|
|
def add_file_type(self, ftype: int) -> None:
|
|
self.add_uint32(Keys.General.FILE_TYPE, ftype)
|
|
|
|
def add_name(self, name: str) -> None:
|
|
self.add_string(Keys.General.NAME, name)
|
|
|
|
def add_quantization_version(self, quantization_version: GGMLQuantizationType) -> None:
|
|
self.add_uint32(
|
|
Keys.General.QUANTIZATION_VERSION, quantization_version)
|
|
|
|
def add_custom_alignment(self, alignment: int) -> None:
|
|
self.data_alignment = alignment
|
|
self.add_uint32(Keys.General.ALIGNMENT, alignment)
|
|
|
|
def add_context_length(self, length: int) -> None:
|
|
self.add_uint32(Keys.LLM.CONTEXT_LENGTH.format(arch=self.arch), length)
|
|
|
|
def add_embedding_length(self, length: int) -> None:
|
|
self.add_uint32(Keys.LLM.EMBEDDING_LENGTH.format(arch=self.arch), length)
|
|
|
|
def add_block_count(self, length: int) -> None:
|
|
self.add_uint32(Keys.LLM.BLOCK_COUNT.format(arch=self.arch), length)
|
|
|
|
def add_feed_forward_length(self, length: int) -> None:
|
|
self.add_uint32(Keys.LLM.FEED_FORWARD_LENGTH.format(arch=self.arch), length)
|
|
|
|
def add_parallel_residual(self, use: bool) -> None:
|
|
self.add_bool(Keys.LLM.USE_PARALLEL_RESIDUAL.format(arch=self.arch), use)
|
|
|
|
def add_head_count(self, count: int) -> None:
|
|
self.add_uint32(Keys.Attention.HEAD_COUNT.format(arch=self.arch), count)
|
|
|
|
def add_head_count_kv(self, count: int) -> None:
|
|
self.add_uint32(Keys.Attention.HEAD_COUNT_KV.format(arch=self.arch), count)
|
|
|
|
def add_max_alibi_bias(self, bias: float) -> None:
|
|
self.add_float32(Keys.Attention.MAX_ALIBI_BIAS.format(arch=self.arch), bias)
|
|
|
|
def add_clamp_kqv(self, value: float) -> None:
|
|
self.add_float32(Keys.Attention.CLAMP_KQV.format(arch=self.arch), value)
|
|
|
|
def add_expert_count(self, count: int) -> None:
|
|
self.add_uint32(Keys.LLM.EXPERT_COUNT.format(arch=self.arch), count)
|
|
|
|
def add_expert_used_count(self, count: int) -> None:
|
|
self.add_uint32(Keys.LLM.EXPERT_USED_COUNT.format(arch=self.arch), count)
|
|
|
|
def add_layer_norm_eps(self, value: float) -> None:
|
|
self.add_float32(Keys.Attention.LAYERNORM_EPS.format(arch=self.arch), value)
|
|
|
|
def add_layer_norm_rms_eps(self, value: float) -> None:
|
|
self.add_float32(Keys.Attention.LAYERNORM_RMS_EPS.format(arch=self.arch), value)
|
|
|
|
def add_rope_dimension_count(self, count: int) -> None:
|
|
self.add_uint32(Keys.Rope.DIMENSION_COUNT.format(arch=self.arch), count)
|
|
|
|
def add_rope_freq_base(self, value: float) -> None:
|
|
self.add_float32(Keys.Rope.FREQ_BASE.format(arch=self.arch), value)
|
|
|
|
def add_rope_scaling_type(self, value: RopeScalingType) -> None:
|
|
self.add_string(Keys.Rope.SCALING_TYPE.format(arch=self.arch), value.value)
|
|
|
|
def add_rope_scaling_factor(self, value: float) -> None:
|
|
self.add_float32(Keys.Rope.SCALING_FACTOR.format(arch=self.arch), value)
|
|
|
|
def add_rope_scaling_orig_ctx_len(self, value: int) -> None:
|
|
self.add_uint32(Keys.Rope.SCALING_ORIG_CTX_LEN.format(arch=self.arch), value)
|
|
|
|
def add_rope_scaling_finetuned(self, value: bool) -> None:
|
|
self.add_bool(Keys.Rope.SCALING_FINETUNED.format(arch=self.arch), value)
|
|
|
|
def add_tokenizer_model(self, model: str) -> None:
|
|
self.add_string(Keys.Tokenizer.MODEL, model)
|
|
|
|
def add_token_list(self, tokens: Sequence[str] | Sequence[bytes] | Sequence[bytearray]) -> None:
|
|
self.add_array(Keys.Tokenizer.LIST, tokens)
|
|
|
|
def add_token_merges(self, merges: Sequence[str] | Sequence[bytes] | Sequence[bytearray]) -> None:
|
|
self.add_array(Keys.Tokenizer.MERGES, merges)
|
|
|
|
def add_token_types(self, types: Sequence[TokenType] | Sequence[int]) -> None:
|
|
self.add_array(Keys.Tokenizer.TOKEN_TYPE, types)
|
|
|
|
def add_token_scores(self, scores: Sequence[float]) -> None:
|
|
self.add_array(Keys.Tokenizer.SCORES, scores)
|
|
|
|
def add_bos_token_id(self, id: int) -> None:
|
|
self.add_uint32(Keys.Tokenizer.BOS_ID, id)
|
|
|
|
def add_eos_token_id(self, id: int) -> None:
|
|
self.add_uint32(Keys.Tokenizer.EOS_ID, id)
|
|
|
|
def add_unk_token_id(self, id: int) -> None:
|
|
self.add_uint32(Keys.Tokenizer.UNK_ID, id)
|
|
|
|
def add_sep_token_id(self, id: int) -> None:
|
|
self.add_uint32(Keys.Tokenizer.SEP_ID, id)
|
|
|
|
def add_pad_token_id(self, id: int) -> None:
|
|
self.add_uint32(Keys.Tokenizer.PAD_ID, id)
|
|
|
|
def add_add_bos_token(self, value: bool) -> None:
|
|
self.add_bool(Keys.Tokenizer.ADD_BOS, value)
|
|
|
|
def add_add_eos_token(self, value: bool) -> None:
|
|
self.add_bool(Keys.Tokenizer.ADD_EOS, value)
|
|
|
|
def add_chat_template(self, value: str) -> None:
|
|
self.add_string(Keys.Tokenizer.CHAT_TEMPLATE, value)
|
|
|
|
def _pack(self, fmt: str, value: Any, skip_pack_prefix: bool = False) -> bytes:
|
|
pack_prefix = ''
|
|
if not skip_pack_prefix:
|
|
pack_prefix = '<' if self.endianess == GGUFEndian.LITTLE else '>'
|
|
return struct.pack(f'{pack_prefix}{fmt}', value)
|
|
|
|
def _write_packed(self, fmt: str, value: Any, skip_pack_prefix: bool = False) -> None:
|
|
self.fout.write(self._pack(fmt, value, skip_pack_prefix))
|