llama.cpp/examples/server-parallel/server.cpp
2023-10-05 15:12:39 -04:00

872 lines
28 KiB
C++

#include <chrono>
#include "../server/httplib.h"
#include "../server/json.hpp"
#include <iostream>
#include <sstream>
#include <thread>
#include <vector>
#include "frontend.h"
#include "common.h"
#include "llama.h"
using namespace httplib;
using namespace std;
using namespace nlohmann;
struct server_params
{
std::string hostname = "127.0.0.1";
std::string public_path = "examples/server/public";
int32_t port = 8080;
int32_t read_timeout = 600;
int32_t write_timeout = 600;
};
// utils functions taken of examples/server
static bool ends_with(const std::string &str, const std::string &suffix)
{
return str.size() >= suffix.size() &&
0 == str.compare(str.size() - suffix.size(), suffix.size(), suffix);
}
static size_t find_partial_stop_string(const std::string &stop,
const std::string &text)
{
if (!text.empty() && !stop.empty())
{
const char text_last_char = text.back();
for (int64_t char_index = stop.size() - 1; char_index >= 0; char_index--)
{
if (stop[char_index] == text_last_char)
{
const std::string current_partial = stop.substr(0, char_index + 1);
if (ends_with(text, current_partial))
{
return text.size() - char_index - 1;
}
}
}
}
return std::string::npos;
}
enum stop_type
{
STOP_FULL,
STOP_PARTIAL,
};
enum slot_state
{
IDLE,
PROCESSING
};
enum slot_command {
NONE,
LOAD_PROMPT,
RELEASE
};
struct llama_client_slot
{
int id;
int32_t n_prompt = 0;
int32_t n_decoded = 0;
int32_t i_batch = -1;
string prompt = "";
string sampled_token_str;
string generated_text = "";
llama_token sampled;
std::vector<llama_token> tokens_prev;
slot_state state = IDLE;
slot_command command = NONE;
bool newToken = false;
float temperature = 0.1f;
void start(string prompt_, float temp_) {
prompt = prompt_;
command = LOAD_PROMPT;
temperature = temp_;
newToken = false;
}
bool hasNewToken() {
if(newToken) {
newToken = false;
return true;
}
return false;
}
bool available() {
return state == IDLE && command == NONE;
}
void nofity() {
newToken = !newToken;
}
void release() {
if(state == PROCESSING) {
command = RELEASE;
}
}
};
struct server_parallel_context {
// example props
vector<llama_client_slot> slots;
std::string system_prompt = "";
bool update_system_prompt = true;
// broadcast to all clients to keep the same prompt format
std::string user_name = ""; // this should be the anti prompt
std::string assistant_name = ""; // this is for generate the prompt
// llama native props
gpt_params params;
llama_model *model = NULL;
llama_context *ctx = NULL;
int n_ctx;
int n_vocab;
std::vector<llama_token_data> candidates;
std::vector<llama_token> tokens_system;
int32_t n_tokens_system = 0;
llama_batch batch;
bool loadModel(gpt_params params_) {
params = params_;
std::tie(model, ctx) = llama_init_from_gpt_params(params);
if (model == nullptr)
{
LOG_TEE("unable to load model: %s", params.model.c_str());
return false;
}
n_ctx = llama_n_ctx(ctx);
n_vocab = llama_n_vocab(model);
candidates.reserve(n_vocab);
return true;
}
void initialize() {
// create slots
LOG_TEE("Available slots:\n");
for (int i = 0; i < params.n_parallel; i++)
{
llama_client_slot slot;
slot.id = i;
slot.prompt = "default";
slot.state = IDLE;
slot.tokens_prev.resize(std::max(256, params.n_predict));
std::fill(slot.tokens_prev.begin(), slot.tokens_prev.end(), 0);
LOG_TEE(" - slot %i\n", slot.id);
slots.push_back(slot);
}
batch = llama_batch_init(params.n_ctx, 0);
// always assign a default system prompt
system_prompt = system_prompt_default;
user_name = "User:";
assistant_name = "Assistant:";
params.antiprompt.push_back(user_name);
}
void updateSystemPrompt() {
tokens_system = ::llama_tokenize(ctx, system_prompt, true);
n_tokens_system = tokens_system.size();
batch.n_tokens = n_tokens_system;
// clear the entire KV cache
for (int i = 0; i < params.n_parallel; ++i)
{
llama_kv_cache_seq_rm(ctx, i, 0, -1);
}
for (int32_t i = 0; i < batch.n_tokens; ++i)
{
batch.token[i] = tokens_system[i];
batch.pos[i] = i;
batch.seq_id[i] = 0;
batch.logits[i] = false;
}
if (llama_decode(ctx, batch) != 0)
{
LOG_TEE("%s: llama_decode() failed\n", __func__);
return;
}
// assign the system KV cache to all parallel sequences
for (int32_t i = 1; i < params.n_parallel; ++i)
{
llama_kv_cache_seq_cp(ctx, 0, i, 0, n_tokens_system);
}
LOG_TEE("system prompt updated\n");
update_system_prompt = false;
}
void notifySystemPromptChanged() {
// release all slots
for (llama_client_slot &slot : slots)
{
slot.release();
}
waitAllAreIdle();
// wait until system prompt load
update_system_prompt = true;
while(update_system_prompt) {
this_thread::sleep_for(chrono::milliseconds(5));
}
// system prompt loaded, continue
}
llama_client_slot* requestCompletion(json data) {
if(data.contains("system_prompt") &&
data.contains("anti_prompt") &&
data.contains("assistant_name")) {
system_prompt = data.value("system_prompt", "");
user_name = data.value("anti_prompt", "");
assistant_name = data.value("assistant_name", "");
params.antiprompt.clear();
params.antiprompt.push_back(user_name);
notifySystemPromptChanged();
}
int slot_id = data.value("slot_id", -1);
float temperature = data.value("temperature", 0.1f);
string prompt = data.value("prompt", "");
for (llama_client_slot & slot : slots)
{
if (
slot_id == -1 && slot.available() ||
slot.id == slot_id)
{
slot.start(prompt, temperature);
LOG_TEE("slot %i is processing\n", slot.id);
return &slot; // return a pointer to slot (thread safe?)
}
}
return nullptr;
}
size_t findStoppingStrings(const std::string &text, const size_t last_token_size,
const stop_type type)
{
size_t stop_pos = std::string::npos;
for (const std::string &word : params.antiprompt)
{
size_t pos;
if (type == STOP_FULL)
{
const size_t tmp = word.size() + last_token_size;
const size_t from_pos = text.size() > tmp ? text.size() - tmp : 0;
pos = text.find(word, from_pos);
}
else
{
pos = find_partial_stop_string(word, text);
}
if (pos != std::string::npos &&
(stop_pos == std::string::npos || pos < stop_pos))
{
stop_pos = pos;
}
}
return stop_pos;
}
void waitAllAreIdle() {
bool wait = true;
while(wait) {
wait = false;
for (auto &slot : slots)
{
if (!slot.available())
{
wait = true;
break;
}
}
}
}
bool updateSlots() {
// update the system prompt wait until all slots are idle state
if(update_system_prompt) {
updateSystemPrompt();
}
batch.n_tokens = 0;
// decode any currently ongoing sequences
for (auto & slot : slots) {
if (slot.state == PROCESSING && slot.command == RELEASE)
{
LOG_TEE("slot %i released\n", slot.id);
llama_kv_cache_seq_rm(ctx, slot.id, n_tokens_system, n_ctx);
slot.state = IDLE;
slot.command = NONE;
continue;
}
// no decode wait until the token had been send to client
// improves performance and avoid decoherence?
if (slot.state == IDLE || slot.newToken) {
continue;
}
batch.token [batch.n_tokens] = slot.sampled;
batch.pos [batch.n_tokens] = n_tokens_system + slot.n_prompt + slot.n_decoded;
batch.seq_id[batch.n_tokens] = slot.id;
batch.logits[batch.n_tokens] = true;
slot.n_decoded += 1;
slot.i_batch = batch.n_tokens;
batch.n_tokens += 1;
}
// assign workload to the slots
if (params.cont_batching || batch.n_tokens == 0) {
for (llama_client_slot & slot : slots) {
// need process the prompt
if (slot.state == IDLE && slot.command == LOAD_PROMPT) {
slot.state = PROCESSING;
slot.command = NONE;
//LOG_TEE("slot %i process prompt:\n%s%s'------------------------------\n", slot.id, system_prompt.c_str(), slot.prompt.c_str());
std::fill(slot.tokens_prev.begin(), slot.tokens_prev.end(), 0);
// do not prepend BOS because we have a system prompt!
std::vector<llama_token> tokens_prompt;
tokens_prompt = ::llama_tokenize(ctx, slot.prompt, false);
for (size_t i = 0; i < tokens_prompt.size(); ++i) {
batch.token [batch.n_tokens] = tokens_prompt[i];
batch.pos [batch.n_tokens] = i + n_tokens_system;
batch.seq_id[batch.n_tokens] = slot.id;
batch.logits[batch.n_tokens] = false;
batch.n_tokens += 1;
}
// extract the logits only for the last token
if (batch.n_tokens > 0) {
batch.logits[batch.n_tokens - 1] = true;
}
slot.n_prompt = tokens_prompt.size();
slot.n_decoded = 0;
slot.i_batch = batch.n_tokens - 1;
// insert new requests one-by-one
//if (cont_batching) {
// break;
//}
}
}
}
if (batch.n_tokens == 0) {
return true;
}
// process in chunks of params.n_batch
int32_t n_batch = params.n_batch;
for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += n_batch) {
// experiment: process in powers of 2
//if (i + n_batch > (int32_t) batch.n_tokens && n_batch > 32) {
// n_batch /= 2;
// i -= n_batch;
// continue;
//}
const int32_t n_tokens = std::min(n_batch, (int32_t) (batch.n_tokens - i));
llama_batch batch_view = {
n_tokens,
batch.token + i,
nullptr,
batch.pos + i,
batch.seq_id + i,
batch.logits + i,
0, 0, 0, // unused
};
const int ret = llama_decode(ctx, batch_view);
if (ret != 0) {
if (n_batch == 1 || ret < 0) {
// if you get here, it means the KV cache is full - try increasing it via the context size
LOG_TEE("%s : failed to decode the batch, n_batch = %d, ret = %d\n", __func__, n_batch, ret);
return false;
}
LOG("%s : failed to decode the batch, retrying with n_batch = %d\n", __func__, n_batch / 2);
// retry with half the batch size to try to find a free slot in the KV cache
n_batch /= 2;
i -= n_batch;
continue;
}
for (auto & slot : slots) {
if (slot.i_batch < (int) i || slot.i_batch >= (int) (i + n_tokens)) {
continue;
}
params.temp = slot.temperature;
const llama_token id = llama_sample_token(ctx, NULL, NULL, params, slot.tokens_prev, candidates, slot.i_batch - i);
// remember which tokens were sampled - used for repetition penalties during sampling
slot.tokens_prev.erase(slot.tokens_prev.begin());
slot.tokens_prev.push_back(id);
const std::string token_str = llama_token_to_piece(ctx, id);
slot.generated_text += token_str;
slot.sampled = id;
size_t pos = 0;
size_t stop_pos =
findStoppingStrings(slot.generated_text, token_str.size(), STOP_FULL);
slot.sampled_token_str = token_str;
// notify new token
slot.nofity();
if (slot.n_decoded > 2 &&
(id == llama_token_eos(ctx) ||
(params.n_predict > 0 &&
slot.n_decoded + slot.n_prompt >=
params.n_predict) ||
stop_pos != std::string::npos)) {
//LOG_TEE("slot %i generated text:\n%s'------------------------------\n", slot.id, slot.generated_text.c_str());
slot.generated_text.clear();
slot.release();
}
slot.i_batch = -1;
}
}
return true;
}
};
static void server_print_usage(const char *argv0, const gpt_params &params,
const server_params &sparams)
{
printf("usage: %s [options]\n", argv0);
printf("\n");
printf("options:\n");
printf(" -h, --help show this help message and exit\n");
printf(" -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads);
printf(" -c N, --ctx-size N size of the prompt context (default: %d)\n", params.n_ctx);
printf(" --rope-freq-base N RoPE base frequency (default: loaded from model)\n");
printf(" --rope-freq-scale N RoPE frequency scaling factor (default: loaded from model)\n");
printf(" -b N, --batch-size N batch size for prompt processing (default: %d)\n", params.n_batch);
printf(" --memory-f32 use f32 instead of f16 for memory key+value (default: disabled)\n");
printf(" not recommended: doubles context memory required and no measurable increase in quality\n");
if (llama_mlock_supported())
{
printf(" --mlock force system to keep model in RAM rather than swapping or compressing\n");
}
if (llama_mmap_supported())
{
printf(" --no-mmap do not memory-map model (slower load but may reduce pageouts if not using mlock)\n");
}
printf(" --numa attempt optimizations that help on some NUMA systems\n");
#ifdef LLAMA_SUPPORTS_GPU_OFFLOAD
printf(" -ngl N, --n-gpu-layers N\n");
printf(" number of layers to store in VRAM\n");
printf(" -ts SPLIT --tensor-split SPLIT\n");
printf(" how to split tensors across multiple GPUs, comma-separated list of proportions, e.g. 3,1\n");
printf(" -mg i, --main-gpu i the GPU to use for scratch and small tensors\n");
printf(" -nommq, --no-mul-mat-q\n");
printf(" use cuBLAS instead of custom mul_mat_q CUDA kernels.\n");
printf(" Not recommended since this is both slower and uses more VRAM.\n");
#endif
printf(" -m FNAME, --model FNAME\n");
printf(" model path (default: %s)\n", params.model.c_str());
printf(" -a ALIAS, --alias ALIAS\n");
printf(" set an alias for the model, will be added as `model` field in completion response\n");
printf(" --lora FNAME apply LoRA adapter (implies --no-mmap)\n");
printf(" --lora-base FNAME optional model to use as a base for the layers modified by the LoRA adapter\n");
printf(" --host ip address to listen (default (default: %s)\n", sparams.hostname.c_str());
printf(" --port PORT port to listen (default (default: %d)\n", sparams.port);
printf(" --path PUBLIC_PATH path from which to serve static files (default %s)\n", sparams.public_path.c_str());
printf(" -to N, --timeout N server read/write timeout in seconds (default: %d)\n", sparams.read_timeout);
// new arguments
printf(" -np N, --parallel N number of parallel sequences to decode (default: %d)\n", params.n_parallel);
printf(" -cb, --cont-batching enable continuous batching (a.k.a dynamic batching) (default: disabled)\n");
printf(" -f FNAME, --file FNAME\n");
printf(" load a system prompt from a file.\n");
printf("\n");
}
static void server_params_parse(int argc, char **argv, server_params &sparams,
gpt_params &params)
{
gpt_params default_params;
server_params default_sparams;
std::string arg;
bool invalid_param = false;
for (int i = 1; i < argc; i++)
{
arg = argv[i];
if (arg == "--port")
{
if (++i >= argc)
{
invalid_param = true;
break;
}
sparams.port = std::stoi(argv[i]);
}
else if (arg == "--host")
{
if (++i >= argc)
{
invalid_param = true;
break;
}
sparams.hostname = argv[i];
}
else if (arg == "--path")
{
if (++i >= argc)
{
invalid_param = true;
break;
}
sparams.public_path = argv[i];
}
else if (arg == "--timeout" || arg == "-to")
{
if (++i >= argc)
{
invalid_param = true;
break;
}
sparams.read_timeout = std::stoi(argv[i]);
sparams.write_timeout = std::stoi(argv[i]);
}
else if (arg == "-m" || arg == "--model")
{
if (++i >= argc)
{
invalid_param = true;
break;
}
params.model = argv[i];
}
else if (arg == "-a" || arg == "--alias")
{
if (++i >= argc)
{
invalid_param = true;
break;
}
params.model_alias = argv[i];
}
else if (arg == "-h" || arg == "--help")
{
server_print_usage(argv[0], default_params, default_sparams);
exit(0);
}
else if (arg == "-c" || arg == "--ctx-size" || arg == "--ctx_size")
{
if (++i >= argc)
{
invalid_param = true;
break;
}
params.n_ctx = std::stoi(argv[i]);
}
else if (arg == "--rope-freq-base")
{
if (++i >= argc)
{
invalid_param = true;
break;
}
params.rope_freq_base = std::stof(argv[i]);
}
else if (arg == "--rope-freq-scale")
{
if (++i >= argc)
{
invalid_param = true;
break;
}
params.rope_freq_scale = std::stof(argv[i]);
}
else if (arg == "--memory-f32" || arg == "--memory_f32")
{
params.memory_f16 = false;
}
else if (arg == "--threads" || arg == "-t")
{
if (++i >= argc)
{
invalid_param = true;
break;
}
params.n_threads = std::stoi(argv[i]);
}
else if (arg == "-b" || arg == "--batch-size")
{
if (++i >= argc)
{
invalid_param = true;
break;
}
params.n_batch = std::stoi(argv[i]);
params.n_batch = std::min(512, params.n_batch);
}
else if (arg == "--gpu-layers" || arg == "-ngl" || arg == "--n-gpu-layers")
{
if (++i >= argc)
{
invalid_param = true;
break;
}
#ifdef LLAMA_SUPPORTS_GPU_OFFLOAD
params.n_gpu_layers = std::stoi(argv[i]);
#else
LOG_TEE("Not compiled with GPU offload support, --n-gpu-layers option will be ignored. "
"See main README.md for information on enabling GPU BLAS support\n");
#endif
}
else if (arg == "--tensor-split" || arg == "-ts")
{
if (++i >= argc)
{
invalid_param = true;
break;
}
#ifdef GGML_USE_CUBLAS
std::string arg_next = argv[i];
// split string by , and /
const std::regex regex{R"([,/]+)"};
std::sregex_token_iterator it{arg_next.begin(), arg_next.end(), regex, -1};
std::vector<std::string> split_arg{it, {}};
GGML_ASSERT(split_arg.size() <= LLAMA_MAX_DEVICES);
for (size_t i_device = 0; i_device < LLAMA_MAX_DEVICES; ++i_device)
{
if (i_device < split_arg.size())
{
params.tensor_split[i_device] = std::stof(split_arg[i_device]);
}
else
{
params.tensor_split[i_device] = 0.0f;
}
}
#else
LOG_TEE("llama.cpp was compiled without cuBLAS. It is not possible to set a tensor split.\n");
#endif // GGML_USE_CUBLAS
}
else if (arg == "--no-mul-mat-q" || arg == "-nommq")
{
#ifdef GGML_USE_CUBLAS
params.mul_mat_q = false;
#else
LOG_TEE("warning: llama.cpp was compiled without cuBLAS. Disabling mul_mat_q kernels has no effect.\n");
#endif // GGML_USE_CUBLAS
}
else if (arg == "--main-gpu" || arg == "-mg")
{
if (++i >= argc)
{
invalid_param = true;
break;
}
#ifdef GGML_USE_CUBLAS
params.main_gpu = std::stoi(argv[i]);
#else
LOG_TEE("llama.cpp was compiled without cuBLAS. It is not possible to set a main GPU.");
#endif
}
else if (arg == "--lora")
{
if (++i >= argc)
{
invalid_param = true;
break;
}
params.lora_adapter.push_back({argv[i], 1.0f});
params.use_mmap = false;
}
else if (arg == "--lora-scaled")
{
if (++i >= argc)
{
invalid_param = true;
break;
}
const char * lora_adapter = argv[i];
if (++i >= argc)
{
invalid_param = true;
break;
}
params.lora_adapter.push_back(make_tuple(lora_adapter, std::stof(argv[i])));
params.use_mmap = false;
}
else if (arg == "--lora-base")
{
if (++i >= argc)
{
invalid_param = true;
break;
}
params.lora_base = argv[i];
}
else if (arg == "--mlock")
{
params.use_mlock = true;
}
else if (arg == "--no-mmap")
{
params.use_mmap = false;
}
else if (arg == "--numa")
{
params.numa = true;
} else if (arg == "-cb" || arg == "--cont-batching") {
params.cont_batching = true;
} else if (arg == "-np" || arg == "--parallel") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.n_parallel = std::stoi(argv[i]);
} else if (arg == "-n" || arg == "--n-predict") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.n_predict = std::stoi(argv[i]);
}
else
{
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
server_print_usage(argv[0], default_params, default_sparams);
exit(1);
}
}
if (invalid_param)
{
fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
server_print_usage(argv[0], default_params, default_sparams);
exit(1);
}
}
int main(int argc, char **argv)
{
gpt_params params;
server_params sparams;
server_params_parse(argc, argv, sparams, params);
#ifndef LOG_DISABLE_LOGS
log_set_target(log_filename_generator("server-parallel", "log"));
LOG_TEE("Log start\n");
log_dump_cmdline(argc, argv);
#endif // LOG_DISABLE_LOGS
llama_backend_init(params.numa);
// load the target model
params.logits_all = true;
server_parallel_context llama;
if(!llama.loadModel(params)) {
return 1;
}
llama.initialize();
Server svr;
svr.Get("/", [&](const Request & /*req*/, Response &res)
{ res.set_content(index_html_, "text/html"); });
svr.Get("/index.js", [&](const Request & /*req*/, Response &res)
{ res.set_content(index_js_, "text/html"); });
svr.Get("/props", [&llama](const Request & /*req*/, Response &res)
{
json data = {
{ "user_name", llama.user_name.c_str() },
{ "assistant_name", llama.assistant_name.c_str() }
};
res.set_content(data.dump(), "application/json"); });
svr.Post("/completion", [&llama](const Request &req, Response &res)
{
llama_client_slot* slot = llama.requestCompletion(json::parse(req.body));
// Verify if the slot exist
if (slot) {
res.set_chunked_content_provider("text/event-stream",
[slot](size_t /*offset*/, DataSink &sink) {
if(slot->available()) { // slot has been released
sink.done();
return false;
}
if(slot->hasNewToken()) { // new token notification
stringstream ss;
json res_d = {{ "content", slot->sampled_token_str }};
ss << "data: " << res_d.dump() << "\n\n";
string result = ss.str();
if(!sink.write(result.c_str(), result.size())) {
slot->release();
return false;
}
}
return true;
});
} else {
LOG_TEE("slot unavailable\n");
res.status = 404;
res.set_content("slot_error", "text/plain");
} });
thread t([&llama]()
{
bool running = true;
while (running)
{
running = llama.updateSlots();
} });
svr.set_read_timeout(sparams.read_timeout);
svr.set_write_timeout(sparams.write_timeout);
if (!svr.bind_to_port(sparams.hostname, sparams.port))
{
fprintf(stderr, "\ncouldn't bind to server socket: hostname=%s port=%d\n\n", sparams.hostname.c_str(), sparams.port);
return 1;
}
// Set the base directory for serving static files
svr.set_base_dir(sparams.public_path);
// to make it ctrl+clickable:
printf("\nllama server listening at http://%s:%d\n\n", sparams.hostname.c_str(), sparams.port);
if (!svr.listen_after_bind())
{
return 1;
}
}