llama.cpp/gguf-py/scripts/gguf_hash.py
Brian f7cab35ef9
gguf-hash: model wide and per tensor hashing using xxhash and sha1 (#8048)
CLI to hash GGUF files to detect difference on a per model and per tensor level

The hash type we support is:

- `--xxh64`: use xhash 64bit hash mode (default)
- `--sha1`: use sha1
- `--uuid`: use uuid
- `--sha256`: use sha256

While most POSIX systems already have hash checking programs like sha256sum, it
is designed to check entire files. This is not ideal for our purpose if we want
to check for consistency of the tensor data even if the metadata content of the
gguf KV store has been updated.

This program is designed to hash a gguf tensor payload on a 'per tensor layer'
in addition to a 'entire tensor model' hash. The intent is that the entire
tensor layer can be checked first but if there is any detected inconsistencies,
then the per tensor hash can be used to narrow down the specific tensor layer
that has inconsistencies.

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-07-07 22:58:43 +10:00

92 lines
3.1 KiB
Python
Executable File

#!/usr/bin/env python3
from __future__ import annotations
import uuid
import hashlib
import logging
import argparse
import os
import sys
from pathlib import Path
from tqdm import tqdm
# Necessary to load the local gguf package
if "NO_LOCAL_GGUF" not in os.environ and (Path(__file__).parent.parent.parent / 'gguf-py').exists():
sys.path.insert(0, str(Path(__file__).parent.parent))
from gguf import GGUFReader # noqa: E402
logger = logging.getLogger("gguf-hash")
# UUID_NAMESPACE_LLAMA_CPP = uuid.uuid5(uuid.NAMESPACE_URL, 'en.wikipedia.org/wiki/Llama.cpp')
UUID_NAMESPACE_LLAMA_CPP = uuid.UUID('ef001206-dadc-5f6d-a15f-3359e577d4e5')
# For more information about what field.parts and field.data represent,
# please see the comments in the modify_gguf.py example.
def gguf_hash(reader: GGUFReader, filename: str, disable_progress_bar) -> None:
sha1 = hashlib.sha1()
uuidv5_sha1 = hashlib.sha1()
uuidv5_sha1.update(UUID_NAMESPACE_LLAMA_CPP.bytes)
# Total Weight Calculation For Progress Bar
total_weights = 0
for n, tensor in enumerate(reader.tensors, 1):
# We don't need these
if tensor.name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
continue
# Calculate Tensor Volume
sum_weights_in_tensor = 1
for dim in tensor.shape:
sum_weights_in_tensor *= dim
total_weights += sum_weights_in_tensor
# Hash Progress Bar
bar = tqdm(desc="Hashing", total=total_weights, unit="weights", unit_scale=True, disable=disable_progress_bar)
# Hashing Process
for n, tensor in enumerate(reader.tensors, 1):
# We don't need these
if tensor.name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
continue
# Progressbar
sum_weights_in_tensor = 1
for dim in tensor.shape:
sum_weights_in_tensor *= dim
bar.update(sum_weights_in_tensor)
sha1_layer = hashlib.sha1()
sha1_layer.update(tensor.data)
sha1.update(tensor.data)
uuidv5_sha1.update(tensor.data)
print("sha1 {0} {1}:{2}".format(sha1_layer.hexdigest(), filename, tensor.name)) # noqa: NP100
# Flush Hash Progress Bar
bar.close()
# Display Hash Output
print("sha1 {0} {1}".format(sha1.hexdigest(), filename)) # noqa: NP100
print("UUIDv5 {0} {1}".format(uuid.UUID(bytes=uuidv5_sha1.digest()[:16], version=5), filename)) # noqa: NP100
def main() -> None:
parser = argparse.ArgumentParser(description="Dump GGUF file metadata")
parser.add_argument("model", type=str, help="GGUF format model filename")
parser.add_argument("--verbose", action="store_true", help="increase output verbosity")
parser.add_argument("--progressbar", action="store_true", help="enable progressbar")
args = parser.parse_args(None if len(sys.argv) > 1 else ["--help"])
logging.basicConfig(level=logging.DEBUG if args.verbose else logging.INFO)
reader = GGUFReader(args.model, 'r')
gguf_hash(reader, args.model, not args.progressbar)
if __name__ == '__main__':
main()