f3f65429c4
* scripts : update sync [no ci] * files : relocate [no ci] * ci : disable kompute build [no ci] * cmake : fixes [no ci] * server : fix mingw build ggml-ci * cmake : minor [no ci] * cmake : link math library [no ci] * cmake : build normal ggml library (not object library) [no ci] * cmake : fix kompute build ggml-ci * make,cmake : fix LLAMA_CUDA + replace GGML_CDEF_PRIVATE ggml-ci * move public backend headers to the public include directory (#8122) * move public backend headers to the public include directory * nix test * spm : fix metal header --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * scripts : fix sync paths [no ci] * scripts : sync ggml-blas.h [no ci] --------- Co-authored-by: slaren <slarengh@gmail.com> |
||
---|---|---|
.. | ||
CMakeLists.txt | ||
README.md | ||
rpc-server.cpp |
Overview
The rpc-server
allows running ggml
backend on a remote host.
The RPC backend communicates with one or several instances of rpc-server
and offloads computations to them.
This can be used for distributed LLM inference with llama.cpp
in the following way:
flowchart TD
rpcb---|TCP|srva
rpcb---|TCP|srvb
rpcb-.-|TCP|srvn
subgraph hostn[Host N]
srvn[rpc-server]-.-backend3["Backend (CUDA,Metal,etc.)"]
end
subgraph hostb[Host B]
srvb[rpc-server]---backend2["Backend (CUDA,Metal,etc.)"]
end
subgraph hosta[Host A]
srva[rpc-server]---backend["Backend (CUDA,Metal,etc.)"]
end
subgraph host[Main Host]
ggml[llama.cpp]---rpcb[RPC backend]
end
style hostn stroke:#66,stroke-width:2px,stroke-dasharray: 5 5
Each host can run a different backend, e.g. one with CUDA and another with Metal.
You can also run multiple rpc-server
instances on the same host, each with a different backend.
Usage
On each host, build the corresponding backend with cmake
and add -DGGML_RPC=ON
to the build options.
For example, to build the CUDA backend with RPC support:
mkdir build-rpc-cuda
cd build-rpc-cuda
cmake .. -DGGML_CUDA=ON -DGGML_RPC=ON
cmake --build . --config Release
Then, start the rpc-server
with the backend:
$ bin/rpc-server -p 50052
create_backend: using CUDA backend
ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no
ggml_cuda_init: CUDA_USE_TENSOR_CORES: yes
ggml_cuda_init: found 1 CUDA devices:
Device 0: NVIDIA T1200 Laptop GPU, compute capability 7.5, VMM: yes
Starting RPC server on 0.0.0.0:50052
When using the CUDA backend, you can specify the device with the CUDA_VISIBLE_DEVICES
environment variable, e.g.:
$ CUDA_VISIBLE_DEVICES=0 bin/rpc-server -p 50052
This way you can run multiple rpc-server
instances on the same host, each with a different CUDA device.
On the main host build llama.cpp
only with -DGGML_RPC=ON
:
mkdir build-rpc
cd build-rpc
cmake .. -DGGML_RPC=ON
cmake --build . --config Release
Finally, use the --rpc
option to specify the host and port of each rpc-server
:
$ bin/llama-cli -m ../models/tinyllama-1b/ggml-model-f16.gguf -p "Hello, my name is" --repeat-penalty 1.0 -n 64 --rpc 192.168.88.10:50052,192.168.88.11:50052 -ngl 99