llama.cpp/examples/save-load-state/save-load-state.cpp
compilade 4c676c85e5
llama : refactor session file management (#8699)
* llama : refactor session file management

* llama : saving and restoring state checks for overflow

The size of the buffers should now be given to the functions working
with them, otherwise a truncated file could cause out of bound reads.

* llama : stream from session file instead of copying into a big buffer

Loading session files should no longer cause a memory usage spike.

* llama : llama_state_get_size returns the actual size instead of max

This is a breaking change, but makes that function *much* easier
to keep up to date, and it also makes it reflect the behavior
of llama_state_seq_get_size.

* llama : share code between whole and seq_id-specific state saving

Both session file types now use a more similar format.

* llama : no longer store all hparams in session files

Instead, the model arch name is stored.
The layer count and the embedding dimensions of the KV cache
are still verified when loading.
Storing all the hparams is not necessary.

* llama : fix uint64_t format type

* llama : various integer type cast and format string fixes

Some platforms use "%lu" and others "%llu" for uint64_t.
Not sure how to handle that, so casting to size_t when displaying errors.

* llama : remove _context suffix for llama_data_context

* llama : fix session file loading

llama_state_get_size cannot be used to get the max size anymore.

* llama : more graceful error handling of invalid session files

* llama : remove LLAMA_MAX_RNG_STATE

It's no longer necessary to limit the size of the RNG state,
because the max size of session files is not estimated anymore.

* llama : cast seq_id in comparison with unsigned n_seq_max
2024-07-28 00:42:05 -04:00

254 lines
8.3 KiB
C++

#include "common.h"
#include "llama.h"
#include <vector>
#include <cstdio>
#include <chrono>
int main(int argc, char ** argv) {
gpt_params params;
params.prompt = "The quick brown fox";
if (!gpt_params_parse(argc, argv, params)) {
gpt_params_print_usage(argc, argv, params);
return 1;
}
print_build_info();
if (params.n_predict < 0) {
params.n_predict = 16;
}
auto n_past = 0;
std::string result0;
std::string result1;
std::string result2;
// init
llama_model * model;
llama_context * ctx;
std::tie(model, ctx) = llama_init_from_gpt_params(params);
if (model == nullptr || ctx == nullptr) {
fprintf(stderr, "%s : failed to init\n", __func__);
return 1;
}
// tokenize prompt
auto tokens = llama_tokenize(ctx, params.prompt, true);
// evaluate prompt
llama_decode(ctx, llama_batch_get_one(tokens.data(), tokens.size(), n_past, 0));
n_past += tokens.size();
// save state (rng, logits, embedding and kv_cache) to file
{
std::vector<uint8_t> state_mem(llama_state_get_size(ctx));
const size_t written = llama_state_get_data(ctx, state_mem.data(), state_mem.size());
FILE *fp_write = fopen("dump_state.bin", "wb");
fwrite(state_mem.data(), 1, written, fp_write);
fclose(fp_write);
fprintf(stderr, "%s : serialized state into %zd out of a maximum of %zd bytes\n", __func__, written, state_mem.size());
}
// save state (last tokens)
const auto n_past_saved = n_past;
// first run
printf("\nfirst run: %s", params.prompt.c_str());
for (auto i = 0; i < params.n_predict; i++) {
auto * logits = llama_get_logits(ctx);
auto n_vocab = llama_n_vocab(model);
std::vector<llama_token_data> candidates;
candidates.reserve(n_vocab);
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
}
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
auto next_token = llama_sample_token(ctx, &candidates_p);
auto next_token_str = llama_token_to_piece(ctx, next_token);
printf("%s", next_token_str.c_str());
result0 += next_token_str;
if (llama_decode(ctx, llama_batch_get_one(&next_token, 1, n_past, 0))) {
fprintf(stderr, "\n%s : failed to evaluate\n", __func__);
llama_free(ctx);
llama_free_model(model);
return 1;
}
n_past += 1;
}
printf("\n\n");
// free old context
llama_free(ctx);
// make new context
auto * ctx2 = llama_new_context_with_model(model, llama_context_params_from_gpt_params(params));
printf("\nsecond run: %s", params.prompt.c_str());
// load state (rng, logits, embedding and kv_cache) from file
{
std::vector<uint8_t> state_mem;
FILE * fp_read = fopen("dump_state.bin", "rb");
fseek(fp_read, 0, SEEK_END);
state_mem.resize(ftell(fp_read));
fseek(fp_read, 0, SEEK_SET);
const size_t read = fread(state_mem.data(), 1, state_mem.size(), fp_read);
fclose(fp_read);
if (read != llama_state_set_data(ctx2, state_mem.data(), state_mem.size())) {
fprintf(stderr, "\n%s : failed to read state\n", __func__);
llama_free(ctx2);
llama_free_model(model);
return 1;
}
fprintf(stderr, "%s : deserialized state from %zd out of a maximum of %zd bytes\n", __func__, read, state_mem.size());
}
// restore state (last tokens)
n_past = n_past_saved;
// second run
for (auto i = 0; i < params.n_predict; i++) {
auto * logits = llama_get_logits(ctx2);
auto n_vocab = llama_n_vocab(model);
std::vector<llama_token_data> candidates;
candidates.reserve(n_vocab);
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
}
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
auto next_token = llama_sample_token(ctx2, &candidates_p);
auto next_token_str = llama_token_to_piece(ctx2, next_token);
printf("%s", next_token_str.c_str());
result1 += next_token_str;
if (llama_decode(ctx2, llama_batch_get_one(&next_token, 1, n_past, 0))) {
fprintf(stderr, "\n%s : failed to evaluate\n", __func__);
llama_free(ctx2);
llama_free_model(model);
return 1;
}
n_past += 1;
}
printf("\n\n");
llama_free(ctx2);
if (result0 != result1) {
fprintf(stderr, "\n%s : error : the 2 generations are different\n", __func__);
return 1;
}
// make new context
auto* ctx3 = llama_new_context_with_model(model, llama_context_params_from_gpt_params(params));
printf("\nsingle seq run: %s", params.prompt.c_str());
// load state (rng, logits, embedding and kv_cache) from file
{
std::vector<uint8_t> state_mem;
FILE * fp_read = fopen("dump_state.bin", "rb");
fseek(fp_read, 0, SEEK_END);
state_mem.resize(ftell(fp_read));
fseek(fp_read, 0, SEEK_SET);
const size_t read = fread(state_mem.data(), 1, state_mem.size(), fp_read);
fclose(fp_read);
if (read != llama_state_set_data(ctx3, state_mem.data(), state_mem.size())) {
fprintf(stderr, "\n%s : failed to read state\n", __func__);
llama_free(ctx3);
llama_free_model(model);
return 1;
}
fprintf(stderr, "%s : deserialized state from %zd out of a maximum of %zd bytes\n", __func__, read, state_mem.size());
}
// restore state (last tokens)
n_past = n_past_saved;
// save seq 0 and load into seq 1
{
// save kv of seq 0
std::vector<uint8_t> seq_store(llama_state_seq_get_size(ctx3, 0));
const size_t ncopy = llama_state_seq_get_data(ctx3, seq_store.data(), seq_store.size(), 0);
if (ncopy != seq_store.size()) {
fprintf(stderr, "\n%s : seq copy data length %zd does not match expected length %zd\n", __func__, ncopy, seq_store.size());
llama_free(ctx3);
llama_free_model(model);
return 1;
}
fprintf(stderr, "%s : seq 0 copied, %zd bytes\n", __func__, ncopy);
// erase whole kv
llama_kv_cache_clear(ctx3);
fprintf(stderr, "%s : kv cache cleared\n", __func__);
// restore kv into seq 1
const size_t nset = llama_state_seq_set_data(ctx3, seq_store.data(), seq_store.size(), 1);
if (nset != seq_store.size()) {
fprintf(stderr, "\n%s : seq set data length %zd does not match expected length %zd\n", __func__, nset, seq_store.size());
llama_free(ctx3);
llama_free_model(model);
return 1;
}
fprintf(stderr, "%s : seq 1 restored, %zd bytes\n", __func__, nset);
}
// third run with seq 1 instead of 0
for (auto i = 0; i < params.n_predict; i++) {
auto * logits = llama_get_logits(ctx3);
auto n_vocab = llama_n_vocab(model);
std::vector<llama_token_data> candidates;
candidates.reserve(n_vocab);
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
}
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
auto next_token = llama_sample_token(ctx3, &candidates_p);
auto next_token_str = llama_token_to_piece(ctx3, next_token);
printf("%s", next_token_str.c_str());
result2 += next_token_str;
if (llama_decode(ctx3, llama_batch_get_one(&next_token, 1, n_past, 1))) {
fprintf(stderr, "\n%s : failed to evaluate\n", __func__);
llama_free(ctx3);
llama_free_model(model);
return 1;
}
n_past += 1;
}
printf("\n");
llama_free(ctx3);
llama_free_model(model);
if (result0 != result2) {
fprintf(stderr, "\n%s : error : the seq restore generation is different\n", __func__);
return 1;
}
fprintf(stderr, "\n%s : success\n", __func__);
return 0;
}