llama.cpp/examples/export-lora
Johannes Gäßler 53ff6b9b9f
GGUF: C++ refactor, backend support, misc fixes (#11030)
* GGUF: C++ refactor, backend support, misc fixes

remove ggml_tensor.backend

update CODEOWNERS [no ci]

remove gguf_get_data from API

revise GGUF API data types
2025-01-07 18:01:58 +01:00
..
CMakeLists.txt ggml : move AMX to the CPU backend (#10570) 2024-11-29 21:54:58 +01:00
export-lora.cpp GGUF: C++ refactor, backend support, misc fixes (#11030) 2025-01-07 18:01:58 +01:00
README.md export-lora : throw error if lora is quantized (#9002) 2024-08-13 11:41:14 +02:00

export-lora

Apply LORA adapters to base model and export the resulting model.

usage: llama-export-lora [options]

options:
  -m,    --model                  model path from which to load base model (default '')
         --lora FNAME             path to LoRA adapter  (can be repeated to use multiple adapters)
         --lora-scaled FNAME S    path to LoRA adapter with user defined scaling S  (can be repeated to use multiple adapters)
  -t,    --threads N              number of threads to use during computation (default: 4)
  -o,    --output FNAME           output file (default: 'ggml-lora-merged-f16.gguf')

For example:

./bin/llama-export-lora \
    -m open-llama-3b-v2.gguf \
    -o open-llama-3b-v2-english2tokipona-chat.gguf \
    --lora lora-open-llama-3b-v2-english2tokipona-chat-LATEST.gguf

Multiple LORA adapters can be applied by passing multiple --lora FNAME or --lora-scaled FNAME S command line parameters:

./bin/llama-export-lora \
    -m your_base_model.gguf \
    -o your_merged_model.gguf \
    --lora-scaled lora_task_A.gguf 0.5 \
    --lora-scaled lora_task_B.gguf 0.5