mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-12-25 19:04:35 +00:00
557410b8f0
* llama : greatly reduce logits memory usage * llama : more compact state saving and reloading * llama : fix lctx.n_outputs not being set before building graph * perplexity : adapt to the logits API changes * perplexity : fix Winogrande, use correct logits for second choice start The first logits used to evaluate the second choice were not from the end of the common prefix; instead, they were the logits from the end of the first choice. This has been corrected. The previous implementation sometimes had outliers in the scores of choices for some tasks, and the logic to skip choices words in the log-likelihood evaluation probably was an attempt to reduce those, but it was complex and didn't quite seem to be the right thing. This is simpler now, and the outlier scores aren't there anymore. * perplexity : normalize spaces and punctuation in Winogrande sentences * llama : fix embedding conditions * llama : fix llama_get_embeddings_ith when the resulting id is 0 * llama : fix wrong n_outputs in llama_set_inputs A mismatch happened when using a smaller n_ubatch than n_batch and then using llama_batch_get_one(). The decision of what n_outputs should be now almost fully depends on how lctx.n_outputs is set in llama_decode_internal. The conditions are simpler this way. * llama : when saving the state, recalculate n_outputs This ensures the correct number of outputs for the entire previous batch is stored in the session file, even when n_ubatch is smaller than n_batch. * llama : fix not-skipping outputs of non-causal models * llama : fix running a batch with n_outputs == 0 It previously worked because lctx.inp_out_ids was not initialized, so it pointed to some garbage address which was somehow still valid when I ran my tests. * llama : keep same graph topology even when n_outputs == 0 * ggml : saner ggml_can_repeat with empty tensors * ggml : future-proof ggml_is_empty by using GGML_MAX_DIMS - 1 * ggml : do not multi-thread ops returning empty tensors * ggml : make ggml_is_empty public and work with views * llama : use a vector for ctx->output_ids * llama : rework reallocation logic for llama_output_reserve Now comparing the actual size with the new total size of the output buffer to allow more efficient enabling and disabling of the embeddings and/or logits output in the future. * ggml : skip empty tensors in all backends * llama : fix llama_output_reserve nullptr deref when new_size is 0 * perplexity : make Winogrande work as it does on master The problems with the Winogrande implementation will need to be fixed in a separate PR to ease review. * llama : clearer error messages for invalid logits or embeddings ids * llama : assert all models that can have inp_out_ids Since the graph topology is now constant, this presence check can be done even when there are no outputs. * llama : assert logits and embd buffers exist before writing to them * llama : handle errors from llama_output_reserve at call sites * perplexity : make hellaswag and multiple-choice outputs identical to master Due to how the KV cache is updated, the logprobs for tokens in a batch are very slightly affected by the other tokens present in the batch, so to make hellaswag and multiple-choice return exactly the same results as on master, the last token of each sequence needs to be evaluated even though its output is not used at all. This will probably be changed back in the future to make these benchmarks a tiny bit faster. * perplexity : fix division by zero when using less than 100 multiple-choice tasks * llama : allow loading state saved with a different ctx size When loading a session file, the context size is now only required to be at least enough to load the KV cells contained in that session file, instead of requiring to use exactly the same context size as when saving. Doing this enables the use-case of extending or shrinking the context size of a saved session. This breaks existing session files because the meaning of kv_buf_size is slightly changed (previously it was the size of the whole KV cache, now it's only the size of the saved part of it). This allows for finer-grained sanity checks when loading in an effort to keep kv_buf_size useful even when the kv_size is changed. * llama : minor ggml-ci * readme : update recent API changes, and warn about Vulkan --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
1942 lines
72 KiB
C++
1942 lines
72 KiB
C++
#include "common.h"
|
|
#include "llama.h"
|
|
|
|
#include <cmath>
|
|
#include <cstdio>
|
|
#include <cstring>
|
|
#include <ctime>
|
|
#include <sstream>
|
|
#include <thread>
|
|
#include <mutex>
|
|
#include <atomic>
|
|
#include <vector>
|
|
#include <array>
|
|
#include <fstream>
|
|
#include <sstream>
|
|
|
|
#if defined(_MSC_VER)
|
|
#pragma warning(disable: 4244 4267) // possible loss of data
|
|
#endif
|
|
|
|
struct results_perplexity {
|
|
std::vector<llama_token> tokens;
|
|
double ppl_value;
|
|
std::vector<float> logits;
|
|
std::vector<float> probs;
|
|
};
|
|
|
|
struct results_log_softmax {
|
|
double log_softmax;
|
|
float logit;
|
|
float prob;
|
|
};
|
|
|
|
static void write_logfile(
|
|
const llama_context * ctx, const gpt_params & params, const llama_model * model,
|
|
const struct results_perplexity & results
|
|
) {
|
|
if (params.logdir.empty()) {
|
|
return;
|
|
}
|
|
|
|
if (params.hellaswag) {
|
|
fprintf(stderr, "%s: warning: logging results is not implemented for HellaSwag. No files will be written.\n", __func__);
|
|
return;
|
|
}
|
|
|
|
const std::string timestamp = get_sortable_timestamp();
|
|
|
|
const bool success = create_directory_with_parents(params.logdir);
|
|
if (!success) {
|
|
fprintf(stderr, "%s: warning: failed to create logdir %s, cannot write logfile\n",
|
|
__func__, params.logdir.c_str());
|
|
return;
|
|
}
|
|
|
|
const std::string logfile_path = params.logdir + timestamp + ".yml";
|
|
FILE * logfile = fopen(logfile_path.c_str(), "w");
|
|
|
|
if (logfile == NULL) {
|
|
fprintf(stderr, "%s: failed to open logfile %s\n", __func__, logfile_path.c_str());
|
|
return;
|
|
}
|
|
|
|
fprintf(logfile, "binary: main\n");
|
|
char model_desc[128];
|
|
llama_model_desc(model, model_desc, sizeof(model_desc));
|
|
dump_non_result_info_yaml(logfile, params, ctx, timestamp, results.tokens, model_desc);
|
|
|
|
fprintf(logfile, "\n");
|
|
fprintf(logfile, "######################\n");
|
|
fprintf(logfile, "# Perplexity Results #\n");
|
|
fprintf(logfile, "######################\n");
|
|
fprintf(logfile, "\n");
|
|
|
|
dump_vector_float_yaml(logfile, "logits", results.logits);
|
|
fprintf(logfile, "ppl_value: %f\n", results.ppl_value);
|
|
dump_vector_float_yaml(logfile, "probs", results.probs);
|
|
|
|
llama_dump_timing_info_yaml(logfile, ctx);
|
|
fclose(logfile);
|
|
}
|
|
|
|
static std::vector<float> softmax(const std::vector<float>& logits) {
|
|
std::vector<float> probs(logits.size());
|
|
float max_logit = logits[0];
|
|
for (float v : logits) {
|
|
max_logit = std::max(max_logit, v);
|
|
}
|
|
double sum_exp = 0.0;
|
|
for (size_t i = 0; i < logits.size(); i++) {
|
|
// Subtract the maximum logit value from the current logit value for numerical stability
|
|
const float logit = logits[i] - max_logit;
|
|
const float exp_logit = expf(logit);
|
|
sum_exp += exp_logit;
|
|
probs[i] = exp_logit;
|
|
}
|
|
for (size_t i = 0; i < probs.size(); i++) {
|
|
probs[i] /= sum_exp;
|
|
}
|
|
return probs;
|
|
}
|
|
|
|
static results_log_softmax log_softmax(int n_vocab, const float * logits, int tok) {
|
|
float max_logit = logits[0];
|
|
for (int i = 1; i < n_vocab; ++i) {
|
|
max_logit = std::max(max_logit, logits[i]);
|
|
}
|
|
double sum_exp = 0.0;
|
|
for (int i = 0; i < n_vocab; ++i) {
|
|
sum_exp += expf(logits[i] - max_logit);
|
|
}
|
|
return {logits[tok] - max_logit - log(sum_exp), logits[tok], expf(logits[tok] - max_logit) / (float) sum_exp};
|
|
}
|
|
|
|
static inline int nearest_int(float fval) {
|
|
//assert(fval <= 4194303.f);
|
|
float val = fval + 12582912.f;
|
|
int i; memcpy(&i, &val, sizeof(int));
|
|
return (i & 0x007fffff) - 0x00400000;
|
|
}
|
|
|
|
static double log_softmax(int n_vocab, const float * logits, uint16_t * log_prob, int tok) {
|
|
float max_logit = logits[0];
|
|
float min_logit = logits[0];
|
|
for (int i = 1; i < n_vocab; ++i) {
|
|
max_logit = std::max(max_logit, logits[i]);
|
|
min_logit = std::min(min_logit, logits[i]);
|
|
}
|
|
min_logit = std::max(min_logit, max_logit - 16);
|
|
double sum_exp = 0.0;
|
|
for (int i = 0; i < n_vocab; ++i) {
|
|
sum_exp += expf(logits[i] - max_logit);
|
|
}
|
|
const float log_sum_exp = log(sum_exp);
|
|
const float min_log_prob = min_logit - max_logit - log_sum_exp;
|
|
const float scale = (max_logit - min_logit)/65535.f;
|
|
float * d = (float *)log_prob;
|
|
d[0] = scale;
|
|
d[1] = min_log_prob;
|
|
log_prob += 4;
|
|
if (scale) {
|
|
const float inv_scale = 1/scale;
|
|
for (int i = 0; i < n_vocab; ++i) {
|
|
log_prob[i] = logits[i] > min_logit ? nearest_int(inv_scale*(logits[i] - min_logit)) : 0;
|
|
}
|
|
} else {
|
|
std::memset(log_prob, 0, n_vocab*sizeof(uint16_t));
|
|
}
|
|
return max_logit + log_sum_exp - logits[tok];
|
|
}
|
|
|
|
static void process_logits(
|
|
int n_vocab, const float * logits, const int * tokens, int n_token, std::vector<std::thread> & workers,
|
|
double & nll, double & nll2, float * logit_history, float * prob_history
|
|
) {
|
|
std::mutex mutex;
|
|
int counter = 0;
|
|
auto compute = [&mutex, &counter, &nll, &nll2, logit_history, prob_history, n_vocab, logits, tokens, n_token] () {
|
|
double local_nll = 0;
|
|
double local_nll2 = 0;
|
|
while (true) {
|
|
std::unique_lock<std::mutex> lock(mutex);
|
|
int i = counter++;
|
|
if (i >= n_token) {
|
|
nll += local_nll; nll2 += local_nll2;
|
|
break;
|
|
}
|
|
lock.unlock();
|
|
const results_log_softmax results = log_softmax(n_vocab, logits + i*n_vocab, tokens[i+1]);
|
|
const double v = -results.log_softmax;
|
|
local_nll += v;
|
|
local_nll2 += v*v;
|
|
|
|
logit_history[i] = results.logit;
|
|
prob_history[i] = results.prob;
|
|
}
|
|
};
|
|
for (auto & w : workers) {
|
|
w = std::thread(compute);
|
|
}
|
|
compute();
|
|
for (auto & w : workers) {
|
|
w.join();
|
|
}
|
|
}
|
|
|
|
static void process_logits(std::ostream& out, int n_vocab, const float * logits, const int * tokens, int n_token,
|
|
std::vector<std::thread> & workers, std::vector<uint16_t> & log_probs, double & nll, double & nll2) {
|
|
std::mutex mutex;
|
|
const int nv = 2*((n_vocab + 1)/2) + 4;
|
|
int counter = 0;
|
|
auto compute = [&mutex, &counter, &log_probs, &nll, &nll2, n_vocab, logits, tokens, n_token, nv] () {
|
|
double local_nll = 0;
|
|
double local_nll2 = 0;
|
|
while (true) {
|
|
std::unique_lock<std::mutex> lock(mutex);
|
|
int i = counter++;
|
|
if (i >= n_token) {
|
|
nll += local_nll; nll2 += local_nll2;
|
|
break;
|
|
}
|
|
lock.unlock();
|
|
const double v = log_softmax(n_vocab, logits + i*n_vocab, log_probs.data() + i*nv, tokens[i+1]);
|
|
local_nll += v;
|
|
local_nll2 += v*v;
|
|
}
|
|
};
|
|
for (auto & w : workers) {
|
|
w = std::thread(compute);
|
|
}
|
|
compute();
|
|
for (auto & w : workers) {
|
|
w.join();
|
|
}
|
|
out.write((const char *)log_probs.data(), n_token*nv*sizeof(uint16_t));
|
|
}
|
|
|
|
struct kl_divergence_result {
|
|
double sum_nll = 0;
|
|
double sum_nll2 = 0;
|
|
double sum_kld = 0;
|
|
double sum_kld2 = 0;
|
|
double sum_nll_diff = 0;
|
|
double sum_nll_diff2 = 0;
|
|
size_t n_same_top = 0;
|
|
size_t count = 0;
|
|
};
|
|
|
|
static double log_softmax(int n_vocab, const float * logits, const uint16_t * base_log_prob, int tok, kl_divergence_result & kld) {
|
|
float max_logit = logits[0];
|
|
int imax = 0;
|
|
for (int i = 1; i < n_vocab; ++i) {
|
|
if (logits[i] > max_logit) {
|
|
max_logit = logits[i];
|
|
imax = i;
|
|
}
|
|
}
|
|
double sum_exp = 0.0;
|
|
for (int i = 0; i < n_vocab; ++i) {
|
|
sum_exp += expf(logits[i] - max_logit);
|
|
}
|
|
const float log_sum_exp = log(sum_exp);
|
|
const float * d = (const float *)base_log_prob;
|
|
const float scale = d[0];
|
|
const float min_log_prob = d[1];
|
|
base_log_prob += 4;
|
|
float nll = max_logit + log_sum_exp - logits[tok];
|
|
kld.sum_nll += nll;
|
|
kld.sum_nll2 += nll*nll;
|
|
nll += (scale*base_log_prob[tok] + min_log_prob);
|
|
kld.sum_nll_diff += nll;
|
|
kld.sum_nll_diff2 += nll*nll;
|
|
max_logit += log_sum_exp;
|
|
double sum = 0;
|
|
int imax_base = -1;
|
|
float p_log_base_max = 0;
|
|
for (int i = 0; i < n_vocab; ++i) {
|
|
const float p_log_base = scale*base_log_prob[i] + min_log_prob;
|
|
if (i == 0 || p_log_base > p_log_base_max) {
|
|
p_log_base_max = p_log_base;
|
|
imax_base = i;
|
|
}
|
|
if (p_log_base > -16.f) {
|
|
const float p_base = expf(p_log_base);
|
|
sum += p_base * (p_log_base - logits[i] + max_logit);
|
|
}
|
|
}
|
|
kld.sum_kld += sum;
|
|
kld.sum_kld2 += sum*sum;
|
|
++kld.count;
|
|
if (imax == imax_base) ++kld.n_same_top;
|
|
return sum;
|
|
}
|
|
|
|
static void process_logits(int n_vocab, const float * logits, const int * tokens, int n_token,
|
|
std::vector<std::thread> & workers, const std::vector<uint16_t> & base_log_probs, kl_divergence_result & kld,
|
|
float * kld_values) {
|
|
std::mutex mutex;
|
|
const int nv = 2*((n_vocab + 1)/2) + 4;
|
|
int counter = 0;
|
|
auto compute = [&mutex, &counter, &base_log_probs, &kld, n_vocab, logits, tokens, n_token, nv, kld_values] () {
|
|
kl_divergence_result local_kld;
|
|
while (true) {
|
|
std::unique_lock<std::mutex> lock(mutex);
|
|
int i = counter++;
|
|
if (i >= n_token) {
|
|
kld.sum_nll += local_kld.sum_nll;
|
|
kld.sum_nll2 += local_kld.sum_nll2;
|
|
kld.sum_kld += local_kld.sum_kld;
|
|
kld.sum_kld2 += local_kld.sum_kld2;
|
|
kld.sum_nll_diff += local_kld.sum_nll_diff;
|
|
kld.sum_nll_diff2 += local_kld.sum_nll_diff2;
|
|
kld.n_same_top += local_kld.n_same_top;
|
|
kld.count += local_kld.count;
|
|
break;
|
|
}
|
|
lock.unlock();
|
|
double v = log_softmax(n_vocab, logits + i*n_vocab, base_log_probs.data() + i*nv, tokens[i+1], local_kld);
|
|
kld_values[i] = (float)v;
|
|
}
|
|
};
|
|
for (auto & w : workers) {
|
|
w = std::thread(compute);
|
|
}
|
|
compute();
|
|
for (auto & w : workers) {
|
|
w.join();
|
|
}
|
|
}
|
|
|
|
static results_perplexity perplexity_v2(llama_context * ctx, const gpt_params & params) {
|
|
// Download: https://huggingface.co/datasets/ggml-org/ci/resolve/main/wikitext-2-raw-v1.zip
|
|
// Run `./perplexity -m models/7B/ggml-model-q4_0.bin -f wiki.test.raw`
|
|
// Output: `perplexity: 13.5106 [114/114]`
|
|
// BOS tokens will be added for each chunk before eval
|
|
|
|
const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx));
|
|
|
|
fprintf(stderr, "%s: tokenizing the input ..\n", __func__);
|
|
|
|
std::vector<llama_token> tokens = ::llama_tokenize(ctx, params.prompt, add_bos);
|
|
|
|
const int n_ctx = llama_n_ctx(ctx);
|
|
|
|
if (int(tokens.size()) < 2*n_ctx) {
|
|
fprintf(stderr, "%s: you need at least %d tokens to evaluate perplexity with a context of %d\n",__func__,2*n_ctx,
|
|
n_ctx);
|
|
fprintf(stderr, "%s: the data file you provided tokenizes to only %zu tokens\n",__func__,tokens.size());
|
|
return {std::move(tokens), 0., {}, {}};
|
|
}
|
|
|
|
std::vector<float> logit_history;
|
|
std::vector<float> prob_history;
|
|
|
|
logit_history.resize(tokens.size());
|
|
prob_history.resize(tokens.size());
|
|
|
|
if (params.ppl_stride <= 0) {
|
|
fprintf(stderr, "%s: stride is %d but must be greater than zero!\n",__func__,params.ppl_stride);
|
|
return {tokens, -1, logit_history, prob_history};
|
|
}
|
|
|
|
const int calc_chunk = n_ctx;
|
|
|
|
fprintf(stderr, "%s: have %zu tokens. Calculation chunk = %d\n", __func__, tokens.size(), calc_chunk);
|
|
|
|
if (int(tokens.size()) <= calc_chunk) {
|
|
fprintf(stderr, "%s: there are only %zu tokens, this is not enough for a context size of %d and stride %d\n",__func__,
|
|
tokens.size(), n_ctx, params.ppl_stride);
|
|
return {tokens, -1, logit_history, prob_history};
|
|
}
|
|
|
|
const int n_chunk_max = (tokens.size() - calc_chunk + params.ppl_stride - 1) / params.ppl_stride;
|
|
|
|
const int n_chunk = params.n_chunks < 0 ? n_chunk_max : std::min(params.n_chunks, n_chunk_max);
|
|
const int n_vocab = llama_n_vocab(llama_get_model(ctx));
|
|
const int n_batch = params.n_batch;
|
|
|
|
int count = 0;
|
|
double nll = 0.0;
|
|
|
|
fprintf(stderr, "%s: calculating perplexity over %d chunks, batch_size=%d\n", __func__, n_chunk, n_batch);
|
|
|
|
for (int i = 0; i < n_chunk; ++i) {
|
|
const int start = i * params.ppl_stride;
|
|
const int end = start + calc_chunk;
|
|
|
|
const int num_batches = (calc_chunk + n_batch - 1) / n_batch;
|
|
//fprintf(stderr, "%s: evaluating %d...%d using %d batches\n", __func__, start, end, num_batches);
|
|
|
|
std::vector<float> logits;
|
|
|
|
const auto t_start = std::chrono::high_resolution_clock::now();
|
|
|
|
// clear the KV cache
|
|
llama_kv_cache_clear(ctx);
|
|
|
|
for (int j = 0; j < num_batches; ++j) {
|
|
const int batch_start = start + j * n_batch;
|
|
const int batch_size = std::min(end - batch_start, n_batch);
|
|
|
|
//fprintf(stderr, " Batch %d: starts at %d, size is %d, n_past is %d\n",j,batch_start,batch_size,j * n_batch);
|
|
// TODO: use llama_batch.logits instead of relying on logits_all == true
|
|
if (llama_decode(ctx, llama_batch_get_one(tokens.data() + batch_start, batch_size, j * n_batch, 0))) {
|
|
//fprintf(stderr, "%s : failed to eval\n", __func__);
|
|
return {tokens, -1, logit_history, prob_history};
|
|
}
|
|
|
|
// save original token and restore it after eval
|
|
const auto token_org = tokens[batch_start];
|
|
|
|
// add BOS token for the first batch of each chunk
|
|
if (add_bos && j == 0) {
|
|
tokens[batch_start] = llama_token_bos(llama_get_model(ctx));
|
|
}
|
|
|
|
const auto batch_logits = llama_get_logits(ctx);
|
|
logits.insert(logits.end(), batch_logits, batch_logits + batch_size * n_vocab);
|
|
|
|
if (j == 0) {
|
|
tokens[batch_start] = token_org;
|
|
}
|
|
}
|
|
|
|
const auto t_end = std::chrono::high_resolution_clock::now();
|
|
|
|
if (i == 0) {
|
|
const float t_total = std::chrono::duration<float>(t_end - t_start).count();
|
|
fprintf(stderr, "%s: %.2f seconds per pass - ETA ", __func__, t_total);
|
|
int total_seconds = (int)(t_total * n_chunk);
|
|
if (total_seconds >= 60*60) {
|
|
fprintf(stderr, "%d hours ", total_seconds / (60*60));
|
|
total_seconds = total_seconds % (60*60);
|
|
}
|
|
fprintf(stderr, "%.2f minutes\n", total_seconds / 60.0);
|
|
}
|
|
|
|
//fprintf(stderr, "%s: using tokens %d...%d\n",__func__,params.n_ctx - params.ppl_stride + start, params.n_ctx + start);
|
|
for (int j = n_ctx - params.ppl_stride - 1; j < n_ctx - 1; ++j) {
|
|
|
|
// Calculate probability of next token, given the previous ones.
|
|
const std::vector<float> tok_logits(
|
|
logits.begin() + (j + 0) * n_vocab,
|
|
logits.begin() + (j + 1) * n_vocab);
|
|
|
|
const float prob = softmax(tok_logits)[tokens[start + j + 1]];
|
|
logit_history[start + j + 1] = tok_logits[tokens[start + j + 1]];
|
|
prob_history[start + j + 1] = prob;
|
|
|
|
nll += -std::log(prob);
|
|
++count;
|
|
}
|
|
// perplexity is e^(average negative log-likelihood)
|
|
if (params.ppl_output_type == 0) {
|
|
printf("[%d]%.4lf,", i + 1, std::exp(nll / count));
|
|
} else {
|
|
printf("%8d %.4lf\n", i*params.ppl_stride, std::exp(nll / count));
|
|
}
|
|
fflush(stdout);
|
|
}
|
|
printf("\n");
|
|
|
|
return {tokens, std::exp(nll / count), logit_history, prob_history};
|
|
}
|
|
|
|
static results_perplexity perplexity(llama_context * ctx, const gpt_params & params, const int32_t n_ctx) {
|
|
if (params.ppl_stride > 0) {
|
|
return perplexity_v2(ctx, params);
|
|
}
|
|
|
|
// Download: https://huggingface.co/datasets/ggml-org/ci/resolve/main/wikitext-2-raw-v1.zip
|
|
// Run `./perplexity -m models/7B/ggml-model-q4_0.bin -f wiki.test.raw`
|
|
// Output: `perplexity: 13.5106 [114/114]`
|
|
// BOS tokens will be added for each chunk before eval
|
|
|
|
const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx));
|
|
|
|
std::ofstream logits_stream;
|
|
if (!params.logits_file.empty()) {
|
|
logits_stream.open(params.logits_file.c_str(), std::ios::binary);
|
|
if (!logits_stream.is_open()) {
|
|
fprintf(stderr, "%s: failed to open %s for writing\n", __func__, params.logits_file.c_str());
|
|
return {};
|
|
}
|
|
fprintf(stderr, "%s: saving all logits to %s\n", __func__, params.logits_file.c_str());
|
|
logits_stream.write("_logits_", 8);
|
|
logits_stream.write(reinterpret_cast<const char *>(&n_ctx), sizeof(n_ctx));
|
|
}
|
|
|
|
auto tim1 = std::chrono::high_resolution_clock::now();
|
|
fprintf(stderr, "%s: tokenizing the input ..\n", __func__);
|
|
|
|
std::vector<llama_token> tokens = ::llama_tokenize(ctx, params.prompt, add_bos);
|
|
|
|
auto tim2 = std::chrono::high_resolution_clock::now();
|
|
fprintf(stderr, "%s: tokenization took %g ms\n",__func__,1e-3*std::chrono::duration_cast<std::chrono::microseconds>(tim2-tim1).count());
|
|
|
|
if (int(tokens.size()) < 2*n_ctx) {
|
|
fprintf(stderr, "%s: you need at least %d tokens to evaluate perplexity with a context of %d\n",__func__,2*n_ctx,
|
|
n_ctx);
|
|
fprintf(stderr, "%s: the data file you provided tokenizes to only %zu tokens\n",__func__,tokens.size());
|
|
return {std::move(tokens), 0., {}, {}};
|
|
}
|
|
|
|
std::vector<float> logit_history;
|
|
logit_history.resize(tokens.size());
|
|
|
|
std::vector<float> prob_history;
|
|
prob_history.resize(tokens.size());
|
|
|
|
const int n_chunk_max = tokens.size() / n_ctx;
|
|
|
|
const int n_chunk = params.n_chunks < 0 ? n_chunk_max : std::min(params.n_chunks, n_chunk_max);
|
|
const int n_vocab = llama_n_vocab(llama_get_model(ctx));
|
|
const int n_batch = params.n_batch;
|
|
|
|
int count = 0;
|
|
double nll = 0.0;
|
|
double nll2 = 0.0;
|
|
|
|
const int num_batches = (n_ctx + n_batch - 1) / n_batch;
|
|
const int n_seq = std::max(1, n_batch / n_ctx);
|
|
|
|
GGML_ASSERT(n_batch < n_ctx || n_batch % n_ctx == 0);
|
|
GGML_ASSERT(params.n_ctx == n_seq * n_ctx);
|
|
|
|
llama_batch batch = llama_batch_init(std::min(n_batch, n_ctx*n_seq), 0, 1);
|
|
|
|
std::vector<float> logits;
|
|
if (num_batches > 1) {
|
|
logits.reserve((size_t)n_ctx * n_vocab);
|
|
}
|
|
|
|
fprintf(stderr, "%s: calculating perplexity over %d chunks, n_ctx=%d, batch_size=%d, n_seq=%d\n", __func__, n_chunk, n_ctx, n_batch, n_seq);
|
|
|
|
std::vector<std::thread> workers(std::thread::hardware_concurrency() - 1);
|
|
|
|
std::vector<uint16_t> log_probs;
|
|
if (!params.logits_file.empty()) {
|
|
logits_stream.write((const char *)&n_vocab, sizeof(n_vocab));
|
|
logits_stream.write((const char *)&n_chunk, sizeof(n_chunk));
|
|
logits_stream.write((const char *)tokens.data(), n_chunk*n_ctx*sizeof(tokens[0]));
|
|
const int nv = 2*((n_vocab + 1)/2) + 4;
|
|
log_probs.resize(n_ctx * nv);
|
|
}
|
|
|
|
// We get the logits for all the tokens in the context window (params.n_ctx)
|
|
// from llama_eval above. Now, based on https://huggingface.co/docs/transformers/perplexity,
|
|
// calculate the perplexity over the last half of the window (so the model always has
|
|
// some context to predict the token).
|
|
//
|
|
// We rely on the fact that attention in the forward pass only looks at previous
|
|
// tokens here, so the logits returned for each token are an accurate representation
|
|
// of what the model would have predicted at that point.
|
|
//
|
|
// Example, we have a context window of 512, we will compute perplexity for each of the
|
|
// last 256 tokens. Then, we split the input up into context window size chunks to
|
|
// process the entire prompt.
|
|
const int first = n_ctx/2;
|
|
|
|
for (int i = 0; i < n_chunk; i += n_seq) {
|
|
const int start = i * n_ctx;
|
|
const int end = start + n_ctx;
|
|
|
|
const int n_seq_batch = std::min(n_seq, n_chunk - i);
|
|
|
|
const auto t_start = std::chrono::high_resolution_clock::now();
|
|
|
|
// clear the KV cache
|
|
llama_kv_cache_clear(ctx);
|
|
|
|
for (int j = 0; j < num_batches; ++j) {
|
|
const int batch_start = start + j * n_batch;
|
|
const int batch_size = std::min(end - batch_start, n_batch);
|
|
|
|
int n_outputs = 0;
|
|
|
|
batch.n_tokens = 0;
|
|
for (int seq = 0; seq < n_seq_batch; seq++) {
|
|
int seq_start = batch_start + seq*n_ctx;
|
|
|
|
// save original token and restore it after eval
|
|
const auto token_org = tokens[seq_start];
|
|
|
|
// add BOS token for the first batch of each chunk
|
|
if (add_bos && j == 0) {
|
|
tokens[seq_start] = llama_token_bos(llama_get_model(ctx));
|
|
}
|
|
|
|
for (int k = 0; k < batch_size; ++k) {
|
|
const int idx = seq*n_ctx + k;
|
|
batch.token [idx] = tokens[seq_start + k];
|
|
batch.pos [idx] = j*n_batch + k;
|
|
batch.n_seq_id[idx] = 1;
|
|
batch.seq_id [idx][0] = seq;
|
|
batch.logits [idx] = batch.pos[idx] >= first ? 1 : 0;
|
|
|
|
n_outputs += batch.logits[idx] != 0;
|
|
}
|
|
batch.n_tokens += batch_size;
|
|
|
|
// restore the original token in case it was set to BOS
|
|
tokens[seq_start] = token_org;
|
|
}
|
|
|
|
if (llama_decode(ctx, batch)) {
|
|
fprintf(stderr, "%s : failed to eval\n", __func__);
|
|
return {tokens, -1, logit_history, prob_history};
|
|
}
|
|
|
|
if (num_batches > 1 && n_outputs > 0) {
|
|
const auto * batch_logits = llama_get_logits(ctx);
|
|
logits.insert(logits.end(), batch_logits, batch_logits + n_outputs * n_vocab);
|
|
}
|
|
}
|
|
|
|
|
|
if (i == 0) {
|
|
llama_synchronize(ctx);
|
|
const auto t_end = std::chrono::high_resolution_clock::now();
|
|
const float t_total = std::chrono::duration<float>(t_end - t_start).count();
|
|
fprintf(stderr, "%s: %.2f seconds per pass - ETA ", __func__, t_total);
|
|
int total_seconds = (int)(t_total*n_chunk/n_seq);
|
|
if (total_seconds >= 60*60) {
|
|
fprintf(stderr, "%d hours ", total_seconds / (60*60));
|
|
total_seconds = total_seconds % (60*60);
|
|
}
|
|
fprintf(stderr, "%.2f minutes\n", total_seconds / 60.0);
|
|
}
|
|
|
|
for (int seq = 0; seq < n_seq_batch; seq++) {
|
|
const float * all_logits = num_batches > 1 ? logits.data() : llama_get_logits_ith(ctx, seq*n_ctx + first);
|
|
|
|
llama_token * tokens_data = tokens.data() + start + seq*n_ctx + first;
|
|
if (!params.logits_file.empty()) {
|
|
process_logits(logits_stream, n_vocab, all_logits,
|
|
tokens_data, n_ctx - 1 - first,
|
|
workers, log_probs, nll, nll2);
|
|
} else {
|
|
process_logits(n_vocab, all_logits,
|
|
tokens_data, n_ctx - 1 - first,
|
|
workers, nll, nll2,
|
|
logit_history.data() + start + seq*n_ctx + first,
|
|
prob_history.data() + start + seq*n_ctx + first);
|
|
}
|
|
count += n_ctx - first - 1;
|
|
|
|
// perplexity is e^(average negative log-likelihood)
|
|
if (params.ppl_output_type == 0) {
|
|
printf("[%d]%.4lf,", i + seq + 1, std::exp(nll / count));
|
|
} else {
|
|
double av = nll/count;
|
|
double av2 = nll2/count - av*av;
|
|
if (av2 > 0) av2 = sqrt(av2/(count-1));
|
|
printf("%8d %.4lf %4lf %4lf\n", i*n_ctx, std::exp(nll / count), av, av2);
|
|
}
|
|
}
|
|
fflush(stdout);
|
|
|
|
logits.clear();
|
|
}
|
|
printf("\n");
|
|
|
|
nll2 /= count;
|
|
nll /= count;
|
|
const double ppl = exp(nll);
|
|
nll2 -= nll * nll;
|
|
if (nll2 > 0) {
|
|
nll2 = sqrt(nll2/(count-1));
|
|
printf("Final estimate: PPL = %.4lf +/- %.5lf\n", ppl, nll2*ppl);
|
|
} else {
|
|
printf("Unexpected negative standard deviation of log(prob)\n");
|
|
}
|
|
|
|
llama_batch_free(batch);
|
|
|
|
return {tokens, ppl, logit_history, prob_history};
|
|
}
|
|
|
|
static bool decode_helper(llama_context * ctx, llama_batch & batch, std::vector<float> & batch_logits, int32_t n_batch, int32_t n_vocab) {
|
|
int prev_outputs = 0;
|
|
for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += n_batch) {
|
|
const int32_t n_tokens = std::min(n_batch, (int32_t) (batch.n_tokens - i));
|
|
|
|
llama_batch batch_view = {
|
|
n_tokens,
|
|
batch.token + i,
|
|
nullptr,
|
|
batch.pos + i,
|
|
batch.n_seq_id + i,
|
|
batch.seq_id + i,
|
|
batch.logits + i,
|
|
0, 0, 0, // unused
|
|
};
|
|
|
|
const int ret = llama_decode(ctx, batch_view);
|
|
if (ret != 0) {
|
|
LOG_TEE("failed to decode the batch, n_batch = %d, ret = %d\n", n_batch, ret);
|
|
return false;
|
|
}
|
|
|
|
int n_outputs = 0;
|
|
for (int i = 0; i < n_tokens; ++i) {
|
|
n_outputs += batch_view.logits[i] != 0;
|
|
}
|
|
|
|
memcpy(batch_logits.data() + prev_outputs*n_vocab, llama_get_logits(ctx), n_outputs*n_vocab*sizeof(float));
|
|
|
|
prev_outputs += n_outputs;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
#define K_TOKEN_CHUNK 4
|
|
|
|
static void compute_logprobs(const float * batch_logits, int n_vocab, std::vector<std::thread>& workers,
|
|
const std::vector<std::pair<size_t, llama_token>>& eval_pairs, std::vector<float>& eval_results) {
|
|
if (eval_results.size() != eval_pairs.size()) {
|
|
eval_results.resize(eval_pairs.size());
|
|
}
|
|
if (eval_pairs.empty()) return;
|
|
|
|
size_t max_threads = std::min((eval_pairs.size() + K_TOKEN_CHUNK - 1)/K_TOKEN_CHUNK, workers.size());
|
|
|
|
std::atomic<int> counter(0);
|
|
auto compute = [&counter, &eval_pairs, &eval_results, batch_logits, n_vocab] () {
|
|
float local_logprobs[K_TOKEN_CHUNK];
|
|
while (true) {
|
|
size_t first = counter.fetch_add(K_TOKEN_CHUNK, std::memory_order_relaxed);
|
|
if (first >= eval_results.size()) break;
|
|
size_t last = std::min(first + K_TOKEN_CHUNK, eval_results.size());
|
|
for (size_t i = first; i < last; ++i) {
|
|
auto logits = batch_logits + eval_pairs[i].first * n_vocab;
|
|
float max_logit = logits[0];
|
|
for (int j = 1; j < n_vocab; ++j) {
|
|
max_logit = std::max(max_logit, logits[j]);
|
|
}
|
|
float sum_p = 0.f;
|
|
for (int j = 0; j < n_vocab; ++j) {
|
|
sum_p += expf(logits[j] - max_logit);
|
|
}
|
|
local_logprobs[i - first] = logits[eval_pairs[i].second] - max_logit - std::log(sum_p);
|
|
}
|
|
std::memcpy(eval_results.data() + first, local_logprobs, (last - first)*sizeof(float));
|
|
}
|
|
};
|
|
|
|
for (size_t it = 0; it < max_threads; ++it) {
|
|
workers[it] = std::thread(compute);
|
|
}
|
|
for (size_t it = 0; it < max_threads; ++it) {
|
|
workers[it].join();
|
|
}
|
|
}
|
|
|
|
static void hellaswag_score(llama_context * ctx, const gpt_params & params) {
|
|
// Calculates hellaswag score (acc_norm) from prompt
|
|
//
|
|
// Data extracted from the HellaSwag validation dataset (MIT license) https://github.com/rowanz/hellaswag/blob/master/data/hellaswag_val.jsonl
|
|
// All used data fields are preprocessed as in https://github.com/EleutherAI/lm-evaluation-harness/blob/df3da98c5405deafd519c2ddca52bb7c3fe36bef/lm_eval/tasks/hellaswag.py#L62-L68
|
|
//
|
|
// All 10042 tasks should be extracted to keep the results standardized like other implementations.
|
|
//
|
|
// Datafile layout:
|
|
// ['??'] denotes json fields
|
|
// 6 lines per task:
|
|
// ['activity_label'] + ": " +['ctx'] - The first part of the query, the context
|
|
// ['label'] - The index the best common sense ending aka gold ending
|
|
// ['endings'][0] - Endings added to the first part of the query
|
|
// ['endings'][1]
|
|
// ['endings'][2]
|
|
// ['endings'][3]
|
|
|
|
std::vector<std::string> prompt_lines;
|
|
std::istringstream strstream(params.prompt);
|
|
std::string line;
|
|
|
|
while (std::getline(strstream,line,'\n')) {
|
|
prompt_lines.push_back(line);
|
|
}
|
|
|
|
if (prompt_lines.size() % 6 != 0) {
|
|
fprintf(stderr, "%s : number of lines in prompt not a multiple of 6.\n", __func__);
|
|
return;
|
|
}
|
|
|
|
size_t hs_task_count = prompt_lines.size()/6;
|
|
fprintf(stderr, "%s : loaded %zu tasks from prompt.\n", __func__, hs_task_count);
|
|
|
|
const bool is_spm = llama_vocab_type(llama_get_model(ctx)) == LLAMA_VOCAB_TYPE_SPM;
|
|
fprintf(stderr, "================================= is_spm = %d\n", is_spm);
|
|
|
|
// This is needed as usual for LLaMA models
|
|
const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx));
|
|
|
|
// The tasks should be randomized so the score stabilizes quickly.
|
|
bool randomize_tasks = true;
|
|
|
|
// Number of tasks to use when computing the score
|
|
if (params.hellaswag_tasks < hs_task_count) {
|
|
hs_task_count = params.hellaswag_tasks;
|
|
}
|
|
|
|
// The random seed should not impact the final result if the computation is done over enough tasks, so kept hardcoded for now
|
|
std::mt19937 rng(1);
|
|
|
|
// Dataholder for hellaswag tasks
|
|
struct hs_data_t {
|
|
std::string context;
|
|
size_t gold_ending_idx;
|
|
std::string ending[4];
|
|
size_t ending_logprob_count[4];
|
|
double ending_logprob[4];
|
|
|
|
size_t i_logits; // starting index of logits in the llama_batch
|
|
size_t common_prefix; // max number of initial tokens that are the same in all sentences
|
|
size_t required_tokens; // needed number of tokens to evaluate all 4 endings
|
|
std::vector<llama_token> seq_tokens[4];
|
|
};
|
|
|
|
fprintf(stderr, "%s : selecting %zu %s tasks.\n", __func__, hs_task_count, (randomize_tasks?"randomized":"the first") );
|
|
|
|
// Select and read data from prompt lines
|
|
std::vector<hs_data_t> hs_data(hs_task_count);
|
|
for (size_t i = 0; i < hs_task_count; i++) {
|
|
size_t idx = i;
|
|
|
|
auto & hs_cur = hs_data[i];
|
|
|
|
// Select a random example of those left in the prompt
|
|
if (randomize_tasks) {
|
|
std::uniform_int_distribution<size_t> dist(0, prompt_lines.size()/6-1 ) ;
|
|
idx = dist(rng);
|
|
}
|
|
|
|
hs_cur.context = prompt_lines[idx*6];
|
|
hs_cur.gold_ending_idx = std::stoi( prompt_lines[idx*6+1] );
|
|
for (size_t j = 0; j < 4; j++) {
|
|
hs_cur.ending[j] = prompt_lines[idx*6+2+j];
|
|
hs_cur.seq_tokens[j] = ::llama_tokenize(ctx, hs_cur.context + " " + hs_cur.ending[j], add_bos);
|
|
}
|
|
|
|
// determine the common prefix of the endings
|
|
hs_cur.common_prefix = 0;
|
|
for (size_t k = 0; k < hs_cur.seq_tokens[0].size(); k++) {
|
|
if (hs_cur.seq_tokens[0][k] != hs_cur.seq_tokens[1][k] ||
|
|
hs_cur.seq_tokens[0][k] != hs_cur.seq_tokens[2][k] ||
|
|
hs_cur.seq_tokens[0][k] != hs_cur.seq_tokens[3][k]) {
|
|
break;
|
|
}
|
|
hs_cur.common_prefix++;
|
|
}
|
|
hs_cur.required_tokens = hs_cur.common_prefix +
|
|
hs_cur.seq_tokens[0].size() - hs_cur.common_prefix +
|
|
hs_cur.seq_tokens[1].size() - hs_cur.common_prefix +
|
|
hs_cur.seq_tokens[2].size() - hs_cur.common_prefix +
|
|
hs_cur.seq_tokens[3].size() - hs_cur.common_prefix;
|
|
|
|
//GGML_ASSERT(hs_cur.common_prefix >= ::llama_tokenize(ctx, hs_cur.context, add_bos).size());
|
|
|
|
// Delete the selected random example from the prompt
|
|
if (randomize_tasks) {
|
|
prompt_lines.erase( std::next(prompt_lines.begin(),idx*6) , std::next(prompt_lines.begin(),idx*6+6) );
|
|
}
|
|
}
|
|
|
|
fprintf(stderr, "%s : calculating hellaswag score over selected tasks.\n", __func__);
|
|
|
|
printf("\ntask\tacc_norm\n");
|
|
|
|
double acc = 0.0f;
|
|
|
|
const int n_vocab = llama_n_vocab(llama_get_model(ctx));
|
|
const int n_ctx = llama_n_ctx(ctx);
|
|
const int n_batch = params.n_batch;
|
|
|
|
const int max_tasks_per_batch = 32;
|
|
const int max_seq = std::min(4*max_tasks_per_batch, (int) llama_n_seq_max(ctx));
|
|
|
|
llama_batch batch = llama_batch_init(n_ctx, 0, 4);
|
|
|
|
std::vector<float> tok_logits(n_vocab);
|
|
// TODO: this could be made smaller; it's currently the worst-case size
|
|
std::vector<float> batch_logits(n_vocab*n_ctx);
|
|
|
|
std::vector<std::pair<size_t, llama_token>> eval_pairs;
|
|
std::vector<float> eval_results;
|
|
std::vector<std::thread> workers(std::thread::hardware_concurrency());
|
|
|
|
for (size_t i0 = 0; i0 < hs_task_count; i0++) {
|
|
int n_cur = 0;
|
|
|
|
size_t i1 = i0;
|
|
size_t i_logits = 0; // this tells us how many logits were needed before this point in the batch
|
|
|
|
llama_batch_clear(batch);
|
|
|
|
// batch as much tasks as possible into the available context
|
|
// each task has 4 unique sequence ids - one for each ending
|
|
// the common prefix is shared among the 4 sequences to save tokens
|
|
// we extract logits only from the last common token and from all ending tokens of each sequence
|
|
while (n_cur + (int) hs_data[i1].required_tokens <= n_ctx) {
|
|
auto & hs_cur = hs_data[i1];
|
|
int n_logits = 0;
|
|
|
|
const int s0 = 4*(i1 - i0);
|
|
if (s0 + 4 > max_seq) {
|
|
break;
|
|
}
|
|
|
|
for (size_t i = 0; i < hs_cur.common_prefix; ++i) {
|
|
llama_batch_add(batch, hs_cur.seq_tokens[0][i], i, { s0 + 0, s0 + 1, s0 + 2, s0 + 3 }, false);
|
|
}
|
|
batch.logits[batch.n_tokens - 1] = true; // we need logits for the last token of the common prefix
|
|
n_logits += 1;
|
|
|
|
for (int s = 0; s < 4; ++s) {
|
|
const size_t seq_tokens_size = hs_cur.seq_tokens[s].size();
|
|
// TODO: don't evaluate the last token of each sequence
|
|
for (size_t i = hs_cur.common_prefix; i < seq_tokens_size; ++i) {
|
|
const bool needs_logits = i < seq_tokens_size - 1;
|
|
llama_batch_add(batch, hs_cur.seq_tokens[s][i], i, { s0 + s }, needs_logits);
|
|
n_logits += needs_logits;
|
|
}
|
|
}
|
|
|
|
hs_cur.i_logits = i_logits;
|
|
i_logits += n_logits;
|
|
|
|
n_cur += hs_data[i1].required_tokens;
|
|
if (++i1 == hs_task_count) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (i0 == i1) {
|
|
fprintf(stderr, "%s : task %zu does not fit in the context window\n", __func__, i0);
|
|
return;
|
|
}
|
|
|
|
llama_kv_cache_clear(ctx);
|
|
|
|
// decode all tasks [i0, i1)
|
|
if (!decode_helper(ctx, batch, batch_logits, n_batch, n_vocab)) {
|
|
fprintf(stderr, "%s: llama_decode() failed\n", __func__);
|
|
return;
|
|
}
|
|
|
|
// Compute log-probs in parallel
|
|
// First we collect all tasks
|
|
eval_pairs.clear();
|
|
for (size_t i = i0; i < i1; ++i) {
|
|
auto & hs_cur = hs_data[i];
|
|
size_t li = 1; // skip the last logit of the common prefix (computed separately below)
|
|
for (int s = 0; s < 4; ++s) {
|
|
for (size_t j = hs_cur.common_prefix; j < hs_cur.seq_tokens[s].size() - 1; j++) {
|
|
eval_pairs.emplace_back(hs_cur.i_logits + li++, hs_cur.seq_tokens[s][j + 1]);
|
|
}
|
|
}
|
|
}
|
|
// Then we do the actual calculation
|
|
compute_logprobs(batch_logits.data(), n_vocab, workers, eval_pairs, eval_results);
|
|
|
|
size_t ir = 0;
|
|
|
|
// compute the logprobs for each ending of the decoded tasks
|
|
for (size_t i = i0; i < i1; ++i) {
|
|
auto & hs_cur = hs_data[i];
|
|
|
|
// get the logits of the last token of the common prefix
|
|
std::memcpy(tok_logits.data(), batch_logits.data() + n_vocab*hs_cur.i_logits, n_vocab*sizeof(float));
|
|
|
|
const auto first_probs = softmax(tok_logits);
|
|
|
|
for (int s = 0; s < 4; ++s) {
|
|
hs_cur.ending_logprob_count[s] = 1;
|
|
hs_cur.ending_logprob[s] = std::log(first_probs[hs_cur.seq_tokens[s][hs_cur.common_prefix]]);
|
|
for (size_t j = hs_cur.common_prefix; j < hs_cur.seq_tokens[s].size() - 1; j++) {
|
|
hs_cur.ending_logprob[s] += eval_results[ir++];
|
|
hs_cur.ending_logprob_count[s]++;
|
|
}
|
|
hs_cur.ending_logprob[s] /= hs_cur.ending_logprob_count[s];
|
|
}
|
|
|
|
// Find the ending with maximum logprob
|
|
size_t ending_logprob_max_idx = 0;
|
|
double ending_logprob_max_val = hs_cur.ending_logprob[0];
|
|
for (size_t s = 1; s < 4; s++) {
|
|
if (hs_cur.ending_logprob[s] > ending_logprob_max_val) {
|
|
ending_logprob_max_idx = s;
|
|
ending_logprob_max_val = hs_cur.ending_logprob[s];
|
|
}
|
|
}
|
|
|
|
//printf("max logprob ending idx %lu, gold ending idx %lu\n", ending_logprob_max_idx, hs_cur.gold_ending_idx);
|
|
|
|
// If the gold ending got the maximum logprobe add one accuracy point
|
|
if (ending_logprob_max_idx == hs_cur.gold_ending_idx) {
|
|
acc += 1.0;
|
|
}
|
|
|
|
// Print the accumulated accuracy mean x 100
|
|
printf("%zu\t%.8lf\n", i + 1, acc/double(i + 1)*100.0);
|
|
fflush(stdout);
|
|
}
|
|
|
|
i0 = i1 - 1;
|
|
}
|
|
|
|
llama_batch_free(batch);
|
|
|
|
printf("\n");
|
|
}
|
|
|
|
struct winogrande_entry {
|
|
std::string first;
|
|
std::string second;
|
|
std::array<std::string, 2> choices;
|
|
int answer;
|
|
|
|
size_t i_logits;
|
|
size_t common_prefix;
|
|
size_t required_tokens;
|
|
size_t n_base1; // number of tokens for context + choice 1
|
|
size_t n_base2; // number of tokens for context + choice 2
|
|
std::vector<llama_token> seq_tokens[2];
|
|
};
|
|
|
|
static std::vector<winogrande_entry> load_winogrande_from_csv(const std::string& prompt) {
|
|
std::vector<winogrande_entry> result;
|
|
std::istringstream in(prompt);
|
|
std::string line;
|
|
std::array<int, 4> comma_pos;
|
|
while (true) {
|
|
std::getline(in, line);
|
|
if (in.fail() || in.eof()) break;
|
|
int ipos = 0;
|
|
bool quote_open = false;
|
|
for (int i = 0; i < int(line.size()); ++i) {
|
|
if (!quote_open) {
|
|
if (line[i] == ',') {
|
|
comma_pos[ipos++] = i;
|
|
if (ipos == 4) break;
|
|
}
|
|
else if (line[i] == '"') {
|
|
quote_open = true;
|
|
}
|
|
}
|
|
else {
|
|
if (line[i] == '"') {
|
|
quote_open = false;
|
|
}
|
|
}
|
|
}
|
|
if (ipos != 4) {
|
|
printf("%s: failed to find comma separators in <%s>\n", __func__, line.c_str());
|
|
continue;
|
|
}
|
|
auto sentence = line[comma_pos[0]+1] == '"' ? line.substr(comma_pos[0]+2, comma_pos[1] - comma_pos[0] - 3)
|
|
: line.substr(comma_pos[0]+1, comma_pos[1] - comma_pos[0] - 1);
|
|
auto choice1 = line.substr(comma_pos[1]+1, comma_pos[2] - comma_pos[1] - 1);
|
|
auto choice2 = line.substr(comma_pos[2]+1, comma_pos[3] - comma_pos[2] - 1);
|
|
auto answer = line.substr(comma_pos[3]+1, line.size() - comma_pos[3] - 1);
|
|
auto index = line.substr(0, comma_pos[0]);
|
|
int where = 0;
|
|
for ( ; where < int(sentence.size()); ++where) {
|
|
if (sentence[where] == '_') break;
|
|
}
|
|
if (where == int(sentence.size())) {
|
|
printf("%s: no _ in <%s>\n", __func__, sentence.c_str());
|
|
continue;
|
|
}
|
|
std::istringstream stream(answer.c_str());
|
|
int i_answer; stream >> i_answer;
|
|
if (stream.fail() || i_answer < 1 || i_answer > 2) {
|
|
printf("%s: failed to parse answer <%s>\n", __func__, answer.c_str());
|
|
continue;
|
|
}
|
|
result.emplace_back();
|
|
auto& wg = result.back();
|
|
wg.first = sentence.substr(0, where);
|
|
wg.second = sentence.substr(where + 1, sentence.size() - where - 1);
|
|
wg.choices[0] = std::move(choice1);
|
|
wg.choices[1] = std::move(choice2);
|
|
wg.answer = i_answer;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* Evaluates the Winogrande score.
|
|
* Uses a CSV containing task index, dentence, choice 1, choice 2, answer (1 or 2)
|
|
* You can get one such dataset from e.g. https://huggingface.co/datasets/ikawrakow/winogrande-eval-for-llama.cpp
|
|
* As an example, the 1st row in the above dataset is
|
|
*
|
|
* 0,Sarah was a much better surgeon than Maria so _ always got the easier cases.,Sarah,Maria,2
|
|
*
|
|
*/
|
|
static void winogrande_score(llama_context * ctx, const gpt_params & params) {
|
|
|
|
constexpr int k_min_trailing_ctx = 3;
|
|
|
|
auto data = load_winogrande_from_csv(params.prompt);
|
|
if (data.empty()) {
|
|
fprintf(stderr, "%s: no tasks\n", __func__);
|
|
return;
|
|
}
|
|
|
|
fprintf(stderr, "%s : loaded %zu tasks from prompt.\n", __func__, data.size());
|
|
|
|
if (params.winogrande_tasks > 0 && params.winogrande_tasks < data.size()) {
|
|
fprintf(stderr, "%s : selecting %zu random tasks\n", __func__, params.winogrande_tasks);
|
|
std::mt19937 rng(1);
|
|
std::vector<int> aux(data.size());
|
|
for (int i = 0; i < int(data.size()); ++i) {
|
|
aux[i] = i;
|
|
}
|
|
float scale = 1/(1.f + (float)rng.max());
|
|
std::vector<winogrande_entry> selected;
|
|
selected.resize(params.winogrande_tasks);
|
|
for (int i = 0; i < int(params.winogrande_tasks); ++i) {
|
|
int j = int(scale*rng()*aux.size());
|
|
selected[i] = std::move(data[aux[j]]);
|
|
aux[j] = aux.back();
|
|
aux.pop_back();
|
|
}
|
|
data = std::move(selected);
|
|
}
|
|
|
|
fprintf(stderr, "%s : tokenizing selected tasks\n", __func__);
|
|
|
|
// This is needed as usual for LLaMA models
|
|
const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx));
|
|
|
|
for (auto & task : data) {
|
|
task.seq_tokens[0] = ::llama_tokenize(ctx, task.first + task.choices[0] + task.second, add_bos);
|
|
task.seq_tokens[1] = ::llama_tokenize(ctx, task.first + task.choices[1] + task.second, add_bos);
|
|
|
|
task.common_prefix = 0;
|
|
for (size_t k = 0; k < task.seq_tokens[0].size(); k++) {
|
|
if (task.seq_tokens[0][k] != task.seq_tokens[1][k]) {
|
|
break;
|
|
}
|
|
task.common_prefix++;
|
|
}
|
|
|
|
// TODO: the last token of each of the sequences don't need to be evaluated
|
|
task.required_tokens = task.common_prefix +
|
|
task.seq_tokens[0].size() - task.common_prefix +
|
|
task.seq_tokens[1].size() - task.common_prefix;
|
|
|
|
task.n_base1 = ::llama_tokenize(ctx, task.first + task.choices[0], add_bos).size();
|
|
task.n_base2 = ::llama_tokenize(ctx, task.first + task.choices[1], add_bos).size();
|
|
}
|
|
|
|
fprintf(stderr, "%s : calculating winogrande score over selected tasks.\n", __func__);
|
|
|
|
const int n_vocab = llama_n_vocab(llama_get_model(ctx));
|
|
const int n_ctx = llama_n_ctx(ctx);
|
|
const int n_batch = params.n_batch;
|
|
|
|
const int max_tasks_per_batch = 128;
|
|
const int max_seq = std::min(2*max_tasks_per_batch, (int) llama_n_seq_max(ctx));
|
|
|
|
llama_batch batch = llama_batch_init(n_ctx, 0, 2);
|
|
|
|
std::vector<float> tok_logits(n_vocab);
|
|
// TODO: this could be made smaller; it's currently the worst-case size
|
|
std::vector<float> batch_logits(n_vocab*n_ctx);
|
|
|
|
std::vector<std::pair<size_t, llama_token>> eval_pairs;
|
|
std::vector<float> eval_results;
|
|
std::vector<std::thread> workers(std::thread::hardware_concurrency());
|
|
|
|
int n_correct = 0;
|
|
int n_done = 0;
|
|
|
|
for (size_t i0 = 0; i0 < data.size(); i0++) {
|
|
int n_cur = 0;
|
|
|
|
size_t i1 = i0;
|
|
size_t i_logits = 0;
|
|
|
|
llama_batch_clear(batch);
|
|
|
|
while (n_cur + (int) data[i1].required_tokens <= n_ctx) {
|
|
int n_logits = 0;
|
|
const int s0 = 2*(i1 - i0);
|
|
if (s0 + 2 > max_seq) {
|
|
break;
|
|
}
|
|
|
|
for (size_t i = 0; i < data[i1].common_prefix; ++i) {
|
|
llama_batch_add(batch, data[i1].seq_tokens[0][i], i, { s0 + 0, s0 + 1 }, false);
|
|
}
|
|
batch.logits[batch.n_tokens - 1] = true;
|
|
n_logits += 1;
|
|
|
|
for (int s = 0; s < 2; ++s) {
|
|
// TODO: end before the last token, no need to predict past the end of the sequences
|
|
for (size_t i = data[i1].common_prefix; i < data[i1].seq_tokens[s].size(); ++i) {
|
|
llama_batch_add(batch, data[i1].seq_tokens[s][i], i, { s0 + s }, true);
|
|
n_logits += 1;
|
|
}
|
|
}
|
|
|
|
data[i1].i_logits = i_logits;
|
|
i_logits += n_logits;
|
|
|
|
n_cur += data[i1].required_tokens;
|
|
if (++i1 == data.size()) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (i0 == i1) {
|
|
fprintf(stderr, "%s : task %zu does not fit in the context window\n", __func__, i0);
|
|
return;
|
|
}
|
|
|
|
llama_kv_cache_clear(ctx);
|
|
|
|
// decode all tasks [i0, i1)
|
|
if (!decode_helper(ctx, batch, batch_logits, n_batch, n_vocab)) {
|
|
fprintf(stderr, "%s: llama_decode() failed\n", __func__);
|
|
return;
|
|
}
|
|
|
|
eval_pairs.clear();
|
|
for (size_t i = i0; i < i1; ++i) {
|
|
auto & task = data[i];
|
|
|
|
const bool skip_choice =
|
|
task.seq_tokens[0].size() - task.common_prefix > k_min_trailing_ctx &&
|
|
task.seq_tokens[1].size() - task.common_prefix > k_min_trailing_ctx;
|
|
|
|
const auto& n_base1 = skip_choice ? task.n_base1 : task.common_prefix;
|
|
const int last_1st = task.seq_tokens[0].size() - n_base1 > 1 ? 1 : 0;
|
|
size_t li = n_base1 - task.common_prefix;
|
|
for (size_t j = n_base1-1; j < task.seq_tokens[0].size()-1-last_1st; ++j) {
|
|
eval_pairs.emplace_back(task.i_logits + li++, task.seq_tokens[0][j+1]);
|
|
}
|
|
const auto& n_base2 = skip_choice ? task.n_base2 : task.common_prefix;
|
|
const int last_2nd = task.seq_tokens[1].size() - n_base2 > 1 ? 1 : 0;
|
|
// FIXME: this uses the wrong first logits when not skipping the choice word
|
|
li = task.seq_tokens[0].size() - task.common_prefix + n_base2 - task.common_prefix;
|
|
for (size_t j = n_base2-1; j < task.seq_tokens[1].size()-1-last_2nd; ++j) {
|
|
eval_pairs.emplace_back(task.i_logits + li++, task.seq_tokens[1][j+1]);
|
|
}
|
|
}
|
|
compute_logprobs(batch_logits.data(), n_vocab, workers, eval_pairs, eval_results);
|
|
|
|
size_t ir = 0;
|
|
for (size_t i = i0; i < i1; ++i) {
|
|
auto & task = data[i];
|
|
|
|
const bool skip_choice =
|
|
task.seq_tokens[0].size() - task.common_prefix > k_min_trailing_ctx &&
|
|
task.seq_tokens[1].size() - task.common_prefix > k_min_trailing_ctx;
|
|
|
|
float score_1st = 0;
|
|
const auto& n_base1 = skip_choice ? task.n_base1 : task.common_prefix;
|
|
const int last_1st = task.seq_tokens[0].size() - n_base1 > 1 ? 1 : 0;
|
|
for (size_t j = n_base1-1; j < task.seq_tokens[0].size()-1-last_1st; ++j) {
|
|
score_1st += eval_results[ir++];
|
|
}
|
|
score_1st /= (task.seq_tokens[0].size() - n_base1 - last_1st);
|
|
|
|
float score_2nd = 0;
|
|
const auto& n_base2 = skip_choice ? task.n_base2 : task.common_prefix;
|
|
const int last_2nd = task.seq_tokens[1].size() - n_base2 > 1 ? 1 : 0;
|
|
for (size_t j = n_base2-1; j < task.seq_tokens[1].size()-1-last_2nd; ++j) {
|
|
score_2nd += eval_results[ir++];
|
|
}
|
|
score_2nd /= (task.seq_tokens[1].size() - n_base2 - last_2nd);
|
|
|
|
int result = score_1st > score_2nd ? 1 : 2;
|
|
|
|
if (result == task.answer) {
|
|
++n_correct;
|
|
}
|
|
++n_done;
|
|
|
|
// print the accumulated accuracy mean x 100
|
|
printf("%zu\t%.4lf\t%10.6f %10.6f %d %d\n", i+1, 100.0 * n_correct/n_done, score_1st, score_2nd, result, task.answer);
|
|
fflush(stdout);
|
|
}
|
|
|
|
i0 = i1 - 1;
|
|
}
|
|
|
|
printf("\n");
|
|
|
|
if (n_done < 100) return;
|
|
|
|
const float p = 1.f*n_correct/n_done;
|
|
const float sigma = 100.f*sqrt(p*(1-p)/(n_done-1));
|
|
printf("Final Winogrande score(%d tasks): %.4lf +/- %.4lf\n", n_done, 100*p, sigma);
|
|
}
|
|
|
|
static bool deserialize_string(std::istream & in, std::string & str) {
|
|
uint32_t size;
|
|
if (!in.read((char *)&size, sizeof(size)).fail()) {
|
|
str.resize(size);
|
|
if (!in.read((char *)&str[0], size).fail()) return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
struct multiple_choice_answers {
|
|
std::vector<std::string> answers;
|
|
std::vector<int> labels;
|
|
bool deserialize(std::istream& in) {
|
|
uint32_t n;
|
|
in.read((char *)&n, sizeof(n));
|
|
if (in.fail() || n > 100) return false; // 100 as max. number of answers should be good enough for any practical purpose
|
|
answers.resize(n);
|
|
labels.resize(n);
|
|
for (auto& a : answers) {
|
|
if (!deserialize_string(in, a)) return false;
|
|
}
|
|
in.read((char *)labels.data(), n*sizeof(int));
|
|
return !in.fail();
|
|
}
|
|
};
|
|
|
|
struct multiple_choice_task {
|
|
std::string question; // the question (or context that needs to be continued)
|
|
multiple_choice_answers mc1; // possible answers (continuations) with a single correct answer
|
|
multiple_choice_answers mc2; // possible answers (continuations) with multiple correct answers - not handled yet
|
|
bool deserialize(std::istream& in) {
|
|
if (!deserialize_string(in, question)) return false;
|
|
return mc1.deserialize(in) && mc2.deserialize(in);
|
|
}
|
|
|
|
// For evaluation
|
|
size_t i_logits; // starting index of logits in the llama_batch
|
|
size_t common_prefix; // max number of initial tokens that are the same in all sentences
|
|
size_t required_tokens; // needed number of tokens to evaluate all answers
|
|
std::vector<std::vector<llama_token>> seq_tokens;
|
|
std::vector<float> log_probs;
|
|
};
|
|
|
|
static bool multiple_choice_prepare_one_task(llama_context * ctx, bool add_bos, multiple_choice_task& task, bool log_error) {
|
|
if (task.question.empty() || task.mc1.answers.empty()) {
|
|
if (log_error) {
|
|
printf("%s: found bad task with empty question and/or answers\n", __func__);
|
|
}
|
|
return false;
|
|
}
|
|
task.seq_tokens.reserve(task.mc1.answers.size());
|
|
for (auto& answer : task.mc1.answers) {
|
|
if (answer.empty()) {
|
|
if (log_error) {
|
|
printf("%s: found empty answer\n", __func__);
|
|
}
|
|
return false;
|
|
}
|
|
task.seq_tokens.emplace_back(::llama_tokenize(ctx, task.question + " " + answer, add_bos));
|
|
}
|
|
auto min_len = task.seq_tokens.front().size();
|
|
for (auto& seq : task.seq_tokens) {
|
|
min_len = std::min(min_len, seq.size());
|
|
}
|
|
task.common_prefix = 0;
|
|
for (size_t k = 0; k < min_len; ++k) {
|
|
auto token = task.seq_tokens[0][k];
|
|
bool all_same = true;
|
|
for (size_t i = 1; i < task.seq_tokens.size(); ++i) {
|
|
if (task.seq_tokens[i][k] != token) {
|
|
all_same = false;
|
|
break;
|
|
}
|
|
}
|
|
if (!all_same) {
|
|
break;
|
|
}
|
|
++task.common_prefix;
|
|
}
|
|
task.required_tokens = task.common_prefix;
|
|
for (auto& seq : task.seq_tokens) {
|
|
task.required_tokens += seq.size() - task.common_prefix;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
//
|
|
// Calculates score for multiple choice tasks with single correct answer from prompt.
|
|
// Commonly used LLM evaluation metrics of this type are
|
|
// * ARC
|
|
// * HellaSwag
|
|
// * MMLU
|
|
// * TruthfulQA
|
|
//
|
|
// Validation datasets for these 4 tests can be found at
|
|
// https://huggingface.co/datasets/ikawrakow/validation-datasets-for-llama.cpp
|
|
// The data for these datasets was extracted from
|
|
// git@hf.co:datasets/allenai/ai2_arc
|
|
// https://github.com/rowanz/hellaswag/blob/master/data/hellaswag_val.jsonl
|
|
// git@hf.co:datasets/Stevross/mmlu
|
|
// https://huggingface.co/datasets/truthful_qa
|
|
//
|
|
static void multiple_choice_score(llama_context * ctx, const gpt_params & params) {
|
|
|
|
std::istringstream strstream(params.prompt);
|
|
uint32_t n_task;
|
|
strstream.read((char *)&n_task, sizeof(n_task));
|
|
if (strstream.fail() || n_task == 0) {
|
|
printf("%s: no tasks\n", __func__);
|
|
return;
|
|
}
|
|
printf("%s: there are %u tasks in prompt\n", __func__, n_task);
|
|
std::vector<uint32_t> task_pos(n_task);
|
|
strstream.read((char *)task_pos.data(), task_pos.size()*sizeof(uint32_t));
|
|
if (strstream.fail()) {
|
|
printf("%s: failed to read task positions from prompt\n", __func__);
|
|
return;
|
|
}
|
|
|
|
std::vector<multiple_choice_task> tasks;
|
|
if (params.multiple_choice_tasks == 0 || params.multiple_choice_tasks >= (size_t)n_task) {
|
|
// Use all tasks
|
|
tasks.resize(n_task);
|
|
printf("%s: reading tasks", __func__);
|
|
int n_dot = n_task/100;
|
|
int i = 0;
|
|
for (auto& task : tasks) {
|
|
++i;
|
|
if (!task.deserialize(strstream)) {
|
|
printf("%s: failed to read task %d of %u\n", __func__, i, n_task);
|
|
return;
|
|
}
|
|
if (i%n_dot == 0) printf(".");
|
|
}
|
|
printf("done\n");
|
|
}
|
|
else {
|
|
printf("%s: selecting %zu random tasks from %u tasks available\n", __func__, params.multiple_choice_tasks, n_task);
|
|
std::mt19937 rng(1);
|
|
std::vector<int> aux(n_task);
|
|
for (uint32_t i = 0; i < n_task; ++i) aux[i] = i;
|
|
float scale = 1.f/(1.f + (float)std::mt19937::max());
|
|
tasks.resize(params.multiple_choice_tasks);
|
|
for (auto& task : tasks) {
|
|
int j = (int)(scale * rng() * aux.size());
|
|
int idx = aux[j];
|
|
aux[j] = aux.back();
|
|
aux.pop_back();
|
|
strstream.seekg(task_pos[idx], std::ios::beg);
|
|
if (!task.deserialize(strstream)) {
|
|
printf("%s: failed to read task %d at position %u\n", __func__, idx, task_pos[idx]);
|
|
return;
|
|
}
|
|
}
|
|
n_task = params.multiple_choice_tasks;
|
|
}
|
|
|
|
// This is needed as usual for LLaMA models
|
|
const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx));
|
|
|
|
printf("%s: preparing task data", __func__);
|
|
fflush(stdout);
|
|
if (n_task > 500) {
|
|
printf("...");
|
|
fflush(stdout);
|
|
std::atomic<int> counter(0);
|
|
std::atomic<int> n_bad(0);
|
|
auto prepare = [&counter, &n_bad, &tasks, ctx, add_bos] () {
|
|
int num_tasks = tasks.size();
|
|
int n_bad_local = 0;
|
|
while (true) {
|
|
int first = counter.fetch_add(K_TOKEN_CHUNK);
|
|
if (first >= num_tasks) {
|
|
if (n_bad_local > 0) n_bad += n_bad_local;
|
|
break;
|
|
}
|
|
int last = std::min(first + K_TOKEN_CHUNK, num_tasks);
|
|
for (int i = first; i < last; ++i) {
|
|
if (!multiple_choice_prepare_one_task(ctx, add_bos, tasks[i], false)) ++n_bad_local;
|
|
}
|
|
}
|
|
};
|
|
size_t max_thread = std::thread::hardware_concurrency();
|
|
max_thread = std::min(max_thread, (tasks.size() + K_TOKEN_CHUNK - 1)/K_TOKEN_CHUNK);
|
|
std::vector<std::thread> workers(max_thread-1);
|
|
for (auto& w : workers) w = std::thread(prepare);
|
|
prepare();
|
|
for (auto& w : workers) w.join();
|
|
printf("done\n");
|
|
fflush(stdout);
|
|
int nbad = n_bad;
|
|
if (nbad > 0) {
|
|
printf("%s: found %d malformed tasks\n", __func__, nbad);
|
|
return;
|
|
}
|
|
} else {
|
|
int n_dot = std::max((int) n_task/100, 1);
|
|
int i_task = 0;
|
|
for (auto& task : tasks) {
|
|
++i_task;
|
|
if (!multiple_choice_prepare_one_task(ctx, add_bos, task, true)) {
|
|
return;
|
|
}
|
|
if (i_task%n_dot == 0) {
|
|
printf(".");
|
|
fflush(stdout);
|
|
}
|
|
}
|
|
printf("done\n");
|
|
}
|
|
|
|
printf("%s : calculating TruthfulQA score over %zu tasks.\n", __func__, tasks.size());
|
|
|
|
printf("\ntask\tacc_norm\n");
|
|
|
|
const int n_vocab = llama_n_vocab(llama_get_model(ctx));
|
|
const int n_ctx = llama_n_ctx(ctx);
|
|
const int n_batch = params.n_batch;
|
|
|
|
const int max_tasks_per_batch = 32;
|
|
const int max_seq = std::min(4*max_tasks_per_batch, (int) llama_n_seq_max(ctx));
|
|
|
|
llama_batch batch = llama_batch_init(n_ctx, 0, max_seq);
|
|
|
|
std::vector<float> tok_logits(n_vocab);
|
|
std::vector<float> batch_logits(n_vocab*n_ctx);
|
|
|
|
std::vector<std::pair<size_t, llama_token>> eval_pairs;
|
|
std::vector<float> eval_results;
|
|
std::vector<std::thread> workers(std::thread::hardware_concurrency());
|
|
std::vector<int> batch_indeces;
|
|
|
|
int n_done = 0;
|
|
int n_correct = 0;
|
|
int n_tot_answers = 0;
|
|
|
|
for (size_t i0 = 0; i0 < tasks.size(); i0++) {
|
|
int n_cur = 0;
|
|
|
|
size_t i1 = i0;
|
|
size_t i_logits = 0; // this tells us how many logits were needed before this point in the batch
|
|
|
|
llama_batch_clear(batch);
|
|
|
|
// batch as much tasks as possible into the available context
|
|
// each task has 4 unique sequence ids - one for each ending
|
|
// the common prefix is shared among the 4 sequences to save tokens
|
|
// we extract logits only from the last common token and from all ending tokens of each sequence
|
|
int s0 = 0;
|
|
while (n_cur + (int) tasks[i1].required_tokens <= n_ctx) {
|
|
auto& cur_task = tasks[i1];
|
|
int n_logits = 0;
|
|
|
|
int num_answers = cur_task.seq_tokens.size();
|
|
if (s0 + num_answers > max_seq) {
|
|
break;
|
|
}
|
|
|
|
if (int(batch_indeces.size()) != num_answers) {
|
|
batch_indeces.resize(num_answers);
|
|
}
|
|
for (int s = 0; s < num_answers; ++s) batch_indeces[s] = s0 + s;
|
|
|
|
for (size_t i = 0; i < cur_task.common_prefix; ++i) {
|
|
//llama_batch_add(batch, cur_task.seq_tokens[0][i], i, { s0 + 0, s0 + 1, s0 + 2, s0 + 3}, false);
|
|
llama_batch_add(batch, cur_task.seq_tokens[0][i], i, batch_indeces, false);
|
|
}
|
|
batch.logits[batch.n_tokens - 1] = true; // we need logits for the last token of the common prefix
|
|
n_logits += 1;
|
|
|
|
for (int s = 0; s < int(cur_task.seq_tokens.size()); ++s) {
|
|
const size_t seq_tokens_size = cur_task.seq_tokens[s].size();
|
|
// TODO: don't evaluate the last token of each sequence
|
|
for (size_t i = cur_task.common_prefix; i < seq_tokens_size; ++i) {
|
|
const bool needs_logits = i < seq_tokens_size - 1;
|
|
llama_batch_add(batch, cur_task.seq_tokens[s][i], i, { s0 + s }, needs_logits);
|
|
n_logits += needs_logits;
|
|
}
|
|
}
|
|
|
|
s0 += num_answers;
|
|
|
|
cur_task.i_logits = i_logits;
|
|
i_logits += n_logits;
|
|
|
|
n_cur += cur_task.required_tokens;
|
|
if (++i1 == tasks.size()) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (i0 == i1) {
|
|
fprintf(stderr, "%s : task %zu does not fit in the context window\n", __func__, i0);
|
|
return;
|
|
}
|
|
|
|
llama_kv_cache_clear(ctx);
|
|
|
|
// decode all tasks [i0, i1)
|
|
if (!decode_helper(ctx, batch, batch_logits, n_batch, n_vocab)) {
|
|
fprintf(stderr, "%s: llama_decode() failed\n", __func__);
|
|
return;
|
|
}
|
|
|
|
// Compute log-probs in parallel
|
|
// First we collect all tasks
|
|
eval_pairs.clear();
|
|
for (size_t i = i0; i < i1; ++i) {
|
|
auto& cur_task = tasks[i];
|
|
size_t li = 1; // skip the last logit of the common prefix (computed separately below)
|
|
for (int s = 0; s < int(cur_task.seq_tokens.size()); ++s) {
|
|
for (size_t j = cur_task.common_prefix; j < cur_task.seq_tokens[s].size() - 1; j++) {
|
|
eval_pairs.emplace_back(cur_task.i_logits + li++, cur_task.seq_tokens[s][j + 1]);
|
|
}
|
|
}
|
|
}
|
|
// Then we do the actual calculation
|
|
compute_logprobs(batch_logits.data(), n_vocab, workers, eval_pairs, eval_results);
|
|
|
|
size_t ir = 0;
|
|
|
|
// compute the logprobs for each ending of the decoded tasks
|
|
for (size_t i = i0; i < i1; ++i) {
|
|
auto & cur_task = tasks[i];
|
|
//printf("==== Evaluating <%s> with correct answer ", cur_task.question.c_str());
|
|
//for (int j = 0; j < int(cur_task.mc1.labels.size()); ++j) {
|
|
// if (cur_task.mc1.labels[j] == 1) {
|
|
// printf("%d", j+1);
|
|
// }
|
|
//}
|
|
//printf("\n common_prefix: %zu\n", cur_task.common_prefix);
|
|
|
|
// get the logits of the last token of the common prefix
|
|
std::memcpy(tok_logits.data(), batch_logits.data() + n_vocab*cur_task.i_logits, n_vocab*sizeof(float));
|
|
|
|
const auto first_probs = softmax(tok_logits);
|
|
|
|
cur_task.log_probs.resize(cur_task.seq_tokens.size());
|
|
for (int s = 0; s < int(cur_task.seq_tokens.size()); ++s) {
|
|
size_t count = 1;
|
|
float log_prob = std::log(first_probs[cur_task.seq_tokens[s][cur_task.common_prefix]]);
|
|
for (size_t j = cur_task.common_prefix; j < cur_task.seq_tokens[s].size() - 1; j++) {
|
|
//printf(" %zu %g\n", ir, eval_results[ir]);
|
|
++count;
|
|
log_prob += eval_results[ir++];
|
|
}
|
|
cur_task.log_probs[s] = log_prob / count;
|
|
//printf(" Final: %g\n", log_prob / count);
|
|
//printf(" <%s> : %g\n", cur_task.mc1.answers[s].c_str(), log_prob/count);
|
|
}
|
|
|
|
// Find the ending with maximum logprob
|
|
size_t logprob_max_idx = 0;
|
|
float logprob_max_val = cur_task.log_probs[0];
|
|
for (size_t s = 1; s < cur_task.log_probs.size(); s++) {
|
|
if (cur_task.log_probs[s] > logprob_max_val) {
|
|
logprob_max_val = cur_task.log_probs[s];
|
|
logprob_max_idx = s;
|
|
}
|
|
}
|
|
|
|
n_tot_answers += cur_task.log_probs.size();
|
|
if (cur_task.mc1.labels[logprob_max_idx] == 1) {
|
|
++n_correct;
|
|
}
|
|
++n_done;
|
|
|
|
// Print the accumulated accuracy mean x 100
|
|
printf("%d\t%.8lf\n", n_done, 100.*n_correct/n_done);
|
|
fflush(stdout);
|
|
}
|
|
|
|
i0 = i1 - 1;
|
|
}
|
|
|
|
llama_batch_free(batch);
|
|
|
|
if (n_done < 100) return;
|
|
|
|
float p = 1.f*n_correct/n_done;
|
|
float sigma = sqrt(p*(1-p)/(n_done-1));
|
|
printf("\n Final result: %.4f +/- %.4f\n", 100.f*p, 100.f*sigma);
|
|
p = 1.f*n_done/n_tot_answers;
|
|
sigma = sqrt(p*(1-p)/(n_done-1));
|
|
printf("Random chance: %.4f +/- %.4f\n", 100.f*p, 100.f*sigma);
|
|
|
|
printf("\n");
|
|
}
|
|
|
|
static void kl_divergence(llama_context * ctx, const gpt_params & params) {
|
|
if (params.logits_file.empty()) {
|
|
fprintf(stderr, "%s: you must provide a name of a file containing the log probabilities of the base model\n", __func__);
|
|
return;
|
|
}
|
|
std::ifstream in(params.logits_file.c_str(), std::ios::binary);
|
|
if (!in) {
|
|
fprintf(stderr, "%s: failed to open %s\n", __func__, params.logits_file.c_str());
|
|
return;
|
|
}
|
|
{
|
|
char check[9]; check[8] = 0;
|
|
in.read(check, 8);
|
|
if (in.fail() || strncmp("_logits_", check, 8) != 0) {
|
|
fprintf(stderr, "%s: %s does not look like a file containing log-probabilities\n", __func__, params.logits_file.c_str());
|
|
return;
|
|
}
|
|
}
|
|
|
|
uint32_t n_ctx;
|
|
in.read((char *)&n_ctx, sizeof(n_ctx));
|
|
if (n_ctx > llama_n_ctx(ctx)) {
|
|
fprintf(stderr, "%s: %s has been computed with %u, while the current context is %d. Increase it with -c and retry\n",
|
|
__func__, params.logits_file.c_str(), n_ctx, params.n_ctx);
|
|
}
|
|
|
|
int n_vocab, n_chunk;
|
|
in.read((char *)&n_vocab, sizeof(n_vocab));
|
|
in.read((char *)&n_chunk, sizeof(n_chunk));
|
|
if (in.fail()) {
|
|
fprintf(stderr, "%s: failed reading n_vocab, n_chunk from %s\n", __func__, params.logits_file.c_str());
|
|
return;
|
|
}
|
|
if (n_vocab != llama_n_vocab(llama_get_model(ctx))) {
|
|
fprintf(stderr, "%s: inconsistent vocabulary (%d vs %d)\n", __func__, n_vocab, llama_n_vocab(llama_get_model(ctx)));
|
|
}
|
|
|
|
std::vector<llama_token> tokens(n_ctx * n_chunk);
|
|
if (in.read((char *)tokens.data(), tokens.size()*sizeof(tokens[0])).fail()) {
|
|
fprintf(stderr, "%s: failed reading evaluation tokens from %s\n", __func__, params.logits_file.c_str());
|
|
return;
|
|
}
|
|
|
|
const int n_batch = params.n_batch;
|
|
const int num_batches = (n_ctx + n_batch - 1)/n_batch;
|
|
const int nv = 2*((n_vocab + 1)/2) + 4;
|
|
const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx));
|
|
|
|
std::vector<uint16_t> log_probs_uint16(size_t(n_ctx - 1 - n_ctx/2) * nv);
|
|
std::vector<float> kld_values(size_t(n_ctx - 1 - n_ctx/2)*n_chunk);
|
|
std::vector<float> logits;
|
|
if (num_batches > 1) {
|
|
logits.reserve(n_ctx * n_vocab);
|
|
}
|
|
|
|
std::vector<std::thread> workers(std::thread::hardware_concurrency() - 1);
|
|
|
|
auto mean_and_uncertainty = [] (double sum, double sum2, size_t count) {
|
|
if (count < 1) {
|
|
return std::make_pair(0., 0.);
|
|
}
|
|
double f = sum/count;
|
|
double df = sum2/count - f*f;
|
|
df = df > 0 && count > 10 ? sqrt(df/(count-1)) : 0.;
|
|
return std::make_pair(f, df);
|
|
};
|
|
|
|
kl_divergence_result kld;
|
|
auto kld_ptr = kld_values.data();
|
|
|
|
for (int i = 0; i < n_chunk; ++i) {
|
|
const int start = i * n_ctx;
|
|
const int end = start + n_ctx;
|
|
|
|
const auto t_start = std::chrono::high_resolution_clock::now();
|
|
|
|
if (in.read((char *)log_probs_uint16.data(), log_probs_uint16.size()*sizeof(uint16_t)).fail()) {
|
|
fprintf(stderr, "%s: failed reading log-probs for chunk %d\n", __func__, i);
|
|
return;
|
|
}
|
|
|
|
// clear the KV cache
|
|
llama_kv_cache_clear(ctx);
|
|
|
|
for (int j = 0; j < num_batches; ++j) {
|
|
const int batch_start = start + j * n_batch;
|
|
const int batch_size = std::min(end - batch_start, n_batch);
|
|
|
|
// save original token and restore it after eval
|
|
const auto token_org = tokens[batch_start];
|
|
|
|
// add BOS token for the first batch of each chunk
|
|
if (add_bos && j == 0) {
|
|
tokens[batch_start] = llama_token_bos(llama_get_model(ctx));
|
|
}
|
|
|
|
// TODO: use llama_batch.logits instead of relying on logits_all == true
|
|
if (llama_decode(ctx, llama_batch_get_one(tokens.data() + batch_start, batch_size, j * n_batch, 0))) {
|
|
fprintf(stderr, "%s : failed to eval\n", __func__);
|
|
return;
|
|
}
|
|
|
|
// restore the original token in case it was set to BOS
|
|
tokens[batch_start] = token_org;
|
|
|
|
if (num_batches > 1) {
|
|
const auto * batch_logits = llama_get_logits(ctx);
|
|
logits.insert(logits.end(), batch_logits, batch_logits + batch_size * n_vocab);
|
|
}
|
|
}
|
|
|
|
const auto t_end = std::chrono::high_resolution_clock::now();
|
|
|
|
if (i == 0) {
|
|
const float t_total = std::chrono::duration<float>(t_end - t_start).count();
|
|
fprintf(stderr, "%s: %.2f seconds per pass - ETA ", __func__, t_total);
|
|
int total_seconds = (int)(t_total * n_chunk);
|
|
if (total_seconds >= 60*60) {
|
|
fprintf(stderr, "%d hours ", total_seconds / (60*60));
|
|
total_seconds = total_seconds % (60*60);
|
|
}
|
|
fprintf(stderr, "%.2f minutes\n", total_seconds / 60.0);
|
|
|
|
printf("\nchunk PPL ln(PPL(Q)/PPL(base)) KL-Divergence Same top\n");
|
|
}
|
|
|
|
const int first = n_ctx/2;
|
|
const float * all_logits = num_batches > 1 ? logits.data() : llama_get_logits(ctx);
|
|
process_logits(n_vocab, all_logits + first*n_vocab, tokens.data() + start + first, n_ctx - 1 - first,
|
|
workers, log_probs_uint16, kld, kld_ptr);
|
|
kld_ptr += n_ctx - 1 - first;
|
|
|
|
auto ppl = mean_and_uncertainty(kld.sum_nll, kld.sum_nll2, kld.count);
|
|
auto log_ppl_ratio = mean_and_uncertainty(kld.sum_nll_diff, kld.sum_nll_diff2, kld.count);
|
|
auto kl_div = mean_and_uncertainty(kld.sum_kld, kld.sum_kld2, kld.count);
|
|
auto p_top = 1.*kld.n_same_top/kld.count;
|
|
auto d_p_top = sqrt(p_top*(1 - p_top)/(kld.count - 1));
|
|
|
|
printf("%4d %10.4lf %10.5lf ± %10.5f %10.5f ± %10.5lf %.5f ± %.5f\n", i+1, exp(ppl.first),
|
|
log_ppl_ratio.first, log_ppl_ratio.second, kl_div.first, kl_div.second,
|
|
p_top, d_p_top);
|
|
|
|
fflush(stdout);
|
|
|
|
logits.clear();
|
|
}
|
|
printf("\n");
|
|
|
|
if (kld.count < 100) return; // we do not wish to do statistics on so few values
|
|
|
|
std::sort(kld_values.begin(), kld_values.end());
|
|
|
|
printf("===== KL-divergence statistics\n");
|
|
auto kl_div = mean_and_uncertainty(kld.sum_kld, kld.sum_kld2, kld.count);
|
|
printf("Average: %10.6f ±%10.6lf\n", kl_div.first, kl_div.second);
|
|
auto kld_median = kld_values.size()%2 == 0 ? 0.5f*(kld_values[kld_values.size()/2] + kld_values[kld_values.size()/2-1])
|
|
: kld_values[kld_values.size()/2];
|
|
printf("Median : %10.6f\n", kld_median);
|
|
|
|
auto percentile = [&kld_values] (float fraction) {
|
|
if (fraction <= 0) return kld_values.front();
|
|
if (fraction >= 1) return kld_values.back();
|
|
float p = fraction*(kld_values.size() - 1);
|
|
size_t ip = size_t(p); p -= ip;
|
|
return (1 - p)*kld_values[ip] + p*kld_values[std::min(ip+1, kld_values.size()-1)];
|
|
};
|
|
|
|
printf("Maximum: %10.6f\n", kld_values.back());
|
|
printf("KLD_99 : %10.6f\n", percentile(0.99f));
|
|
printf("KLD_95 : %10.6f\n", percentile(0.95f));
|
|
printf("KLD_90 : %10.6f\n", percentile(0.90f));
|
|
|
|
printf("Minimum: %10.6f\n", kld_values.front());
|
|
printf("KLD_01 : %10.6f\n", percentile(0.01f));
|
|
printf("KLD_05 : %10.6f\n", percentile(0.05f));
|
|
printf("KLD_10 : %10.6f\n", percentile(0.10f));
|
|
|
|
}
|
|
|
|
int main(int argc, char ** argv) {
|
|
gpt_params params;
|
|
|
|
if (!gpt_params_parse(argc, argv, params)) {
|
|
return 1;
|
|
}
|
|
|
|
params.logits_all = true;
|
|
|
|
const int32_t n_ctx = params.n_ctx;
|
|
|
|
const bool ppl = !params.hellaswag && !params.winogrande && !params.multiple_choice && !params.kl_divergence;
|
|
if (ppl) {
|
|
int n_seq = std::max(1, params.n_batch / n_ctx);
|
|
int32_t n_kv = n_seq * n_ctx;
|
|
params.n_parallel = n_seq;
|
|
params.n_ctx = n_kv;
|
|
params.n_batch = std::min(params.n_batch, n_kv);
|
|
} else {
|
|
params.n_batch = std::min(params.n_batch, params.n_ctx);
|
|
}
|
|
|
|
if (params.ppl_stride > 0) {
|
|
fprintf(stderr, "Will perform strided perplexity calculation -> adjusting context size from %d to %d\n",
|
|
params.n_ctx, params.n_ctx + params.ppl_stride/2);
|
|
params.n_ctx += params.ppl_stride/2;
|
|
}
|
|
|
|
print_build_info();
|
|
|
|
if (params.seed == LLAMA_DEFAULT_SEED) {
|
|
params.seed = time(NULL);
|
|
}
|
|
|
|
fprintf(stderr, "%s: seed = %u\n", __func__, params.seed);
|
|
|
|
std::mt19937 rng(params.seed);
|
|
if (params.random_prompt) {
|
|
params.prompt = gpt_random_prompt(rng);
|
|
}
|
|
|
|
llama_backend_init();
|
|
llama_numa_init(params.numa);
|
|
|
|
llama_model * model;
|
|
llama_context * ctx;
|
|
|
|
// ensure there's at least enough seq_ids for HellaSwag
|
|
params.n_parallel = std::max(4, params.n_parallel);
|
|
|
|
// load the model and apply lora adapter, if any
|
|
std::tie(model, ctx) = llama_init_from_gpt_params(params);
|
|
if (model == NULL) {
|
|
fprintf(stderr, "%s: error: unable to load model\n", __func__);
|
|
return 1;
|
|
}
|
|
|
|
const int n_ctx_train = llama_n_ctx_train(model);
|
|
if (params.n_ctx > n_ctx_train) {
|
|
fprintf(stderr, "%s: warning: model was trained on only %d context tokens (%d specified)\n",
|
|
__func__, n_ctx_train, params.n_ctx);
|
|
}
|
|
|
|
// print system information
|
|
{
|
|
fprintf(stderr, "\n");
|
|
fprintf(stderr, "%s\n", get_system_info(params).c_str());
|
|
}
|
|
|
|
struct results_perplexity results;
|
|
if (params.hellaswag) {
|
|
hellaswag_score(ctx, params);
|
|
} else if (params.winogrande) {
|
|
winogrande_score(ctx, params);
|
|
} else if (params.multiple_choice) {
|
|
multiple_choice_score(ctx, params);
|
|
} else if (params.kl_divergence) {
|
|
kl_divergence(ctx, params);
|
|
} else {
|
|
results = perplexity(ctx, params, n_ctx);
|
|
}
|
|
|
|
llama_print_timings(ctx);
|
|
write_logfile(ctx, params, model, results);
|
|
|
|
llama_free(ctx);
|
|
llama_free_model(model);
|
|
|
|
llama_backend_free();
|
|
|
|
return 0;
|
|
}
|