mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-12-24 10:24:35 +00:00
99009e72f8
* Starting to add k-quantization to ggml I think it is better to have quantization separate from ggml. For now just adding the k-quants there, but it would be better to also factor out the existing ggml quantizations. * Adding Q3_K and Q8_K (de)-quantization * Q3_K now working on CUDA and AVX2/scalar CUDA is not ideal - ~50% slower than Q4_0 for single token prediction, about the same in batch mode (perplexity). CPU single token is ~55 ms (on Ryzen 7950X). * Some improvement for Q3_K on CUDA It is now ~22.5 ms/token on my GPU, so ~30% slower than Q4_0. * Some more CUDA optimizations for Q3_K Single token is now 20.5 ms/token (~20% slower than Q4_0). Perplexity is on par with Q4_0. * Adding Q4_K - scalar, AVX2, CUDA Performance is the same or perhaps very slightly better than Q4_0 on the CPU. On the GPU, single token prediction is ~10% better than Q4_0, batch mode (perplexity is about the same). * Adding Q6_K - scalar, AVX2, CUDA Performance is ~40% lower compared to Q4_K on the CPU. This is to be expected, considering that we are memory bound on the CPU and the 6-bit model is ~44% larger than the 4-bit. On the GPU, single token prediction is ~6% lower than Q4_0, batch mode (perplexity) is even closer (but still slower). * Adding Q5_K - scalar, AVX2, CUDA Performance is ~20% lower compared to Q4_K on the CPU. This is to be expected, considering that we are memory bound on the CPU and the 5-bit model is ~22% larger than the 4-bit. On the GPU, single token prediction is about the same as Q4_0 for both, single token and batch prediction. * Per convention, all QX_K quantizations use Q5_K for output.weight * Adding quantization mixes * Quantization mixes: didn't quite get what I wanted in the last commit * Q4_K dot product for ARM_NEON * Q6_K dot product for ARM_NEON * Q5_K dot product for ARM_NEON * Adding Q3_K dot for ARM_NEON It is 22% slower than Q4_K, despite the smaller model size. On x86_64, where we are memory bound, the Q3_K model is quite a bit faster than Q4_K. * A very slightly faster ARM_NEON Q3_K dot * Adding Q2_K - just CUDA for now Token prediction is pretty good - about 15.5 ms on a RTX 4080. Perplexity is about the same as Q4_K. * Adding scalar and AVX2 Q2_K dot * Adding ARM_NEON Q2_K dot About the same performance as Q4_K. * A slightly faster ARM_NEON Q2_K dot Single token prediction is now ~36 ms on M2 Max. The code is much simpler too. * Fixed bug in Q2_K CUDA dot product kernel Stranegly enough, for the few prompts I tried with the 7B model the responses looked perfectly reasonable. Only realized something is not quite right when I tried the larger models and started getting nonse back. In any case, Q2_K single token evaluation time on an RTX 4080 in a Ryzen7950X box iusing CUDA and model fully loaded on the GPU are ~15.5 ms for 7B, ~25.4 ms for 13B, and ~55.8 ms for 30B. The max number of layers that fit in VRAM for The 65B is 32. With that, we get ~330 ms per token, which is not that much faster than just running on the CPU (~470 ms per token). * Don't print zeros/NaNs when no count histogram has been collected * A 10% faster CUDA vector dot kernel for Q3_K Q3_K is now running at ~18.5 ms / token on CUDA, so the gap to Q4_0 is only 10%. It seems memory acccess pattern is more important for performance than the amount of computation the kernel does. * A slightly daster Q4_K AVX2 dot product For perplexity, where we are less memory bound, time per pass drops by ~5%. Barely measurable difference for single token prediction. * A slightly faster ARM_NEON A4_K dot product * Minor * Fix quantization error test We cannot possibly be expecting rmse < 0.002 for 2- and 3-bit quantization variants. * Fix docker build I have been sloppy with vector reinterpret casts on ARM_NEON. It seems clang is very forgiving in that regard. * Added forgotten ggml.o dependence on k_quants.h to the Makefile * Had unintentionally committed the Makefile with -Ofast enabled * ggml : rename k_quants -> ggml-quants-k, use lowercase in code --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
1174 lines
39 KiB
C
1174 lines
39 KiB
C
#pragma once
|
|
|
|
//
|
|
// GGML Tensor Library
|
|
//
|
|
// This documentation is still a work in progress.
|
|
// If you wish some specific topics to be covered, feel free to drop a comment:
|
|
//
|
|
// https://github.com/ggerganov/whisper.cpp/issues/40
|
|
//
|
|
// ## Overview
|
|
//
|
|
// This library implements:
|
|
//
|
|
// - a set of tensor operations
|
|
// - automatic differentiation
|
|
// - basic optimization algorithms
|
|
//
|
|
// The aim of this library is to provide a minimalistic approach for various machine learning tasks. This includes,
|
|
// but is not limited to, the following:
|
|
//
|
|
// - linear regression
|
|
// - support vector machines
|
|
// - neural networks
|
|
//
|
|
// The library allows the user to define a certain function using the available tensor operations. This function
|
|
// definition is represented internally via a computation graph. Each tensor operation in the function definition
|
|
// corresponds to a node in the graph. Having the computation graph defined, the user can choose to compute the
|
|
// function's value and/or its gradient with respect to the input variables. Optionally, the function can be optimized
|
|
// using one of the available optimization algorithms.
|
|
//
|
|
// For example, here we define the function: f(x) = a*x^2 + b
|
|
//
|
|
// {
|
|
// struct ggml_init_params params = {
|
|
// .mem_size = 16*1024*1024,
|
|
// .mem_buffer = NULL,
|
|
// };
|
|
//
|
|
// // memory allocation happens here
|
|
// struct ggml_context * ctx = ggml_init(params);
|
|
//
|
|
// struct ggml_tensor * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
|
|
//
|
|
// ggml_set_param(ctx, x); // x is an input variable
|
|
//
|
|
// struct ggml_tensor * a = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
|
|
// struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
|
|
// struct ggml_tensor * x2 = ggml_mul(ctx, x, x);
|
|
// struct ggml_tensor * f = ggml_add(ctx, ggml_mul(ctx, a, x2), b);
|
|
//
|
|
// ...
|
|
// }
|
|
//
|
|
// Notice that the function definition above does not involve any actual computation. The computation is performed only
|
|
// when the user explicitly requests it. For example, to compute the function's value at x = 2.0:
|
|
//
|
|
// {
|
|
// ...
|
|
//
|
|
// struct ggml_cgraph gf = ggml_build_forward(f);
|
|
//
|
|
// // set the input variable and parameter values
|
|
// ggml_set_f32(x, 2.0f);
|
|
// ggml_set_f32(a, 3.0f);
|
|
// ggml_set_f32(b, 4.0f);
|
|
//
|
|
// ggml_graph_compute(ctx0, &gf);
|
|
//
|
|
// printf("f = %f\n", ggml_get_f32_1d(f, 0));
|
|
//
|
|
// ...
|
|
// }
|
|
//
|
|
// The actual computation is performed in the ggml_graph_compute() function.
|
|
//
|
|
// The ggml_new_tensor_...() functions create new tensors. They are allocated in the memory buffer provided to the
|
|
// ggml_init() function. You have to be careful not to exceed the memory buffer size. Therefore, you have to know
|
|
// in advance how much memory you need for your computation. Alternatively, you can allocate a large enough memory
|
|
// and after defining the computation graph, call the ggml_used_mem() function to find out how much memory was
|
|
// actually needed.
|
|
//
|
|
// The ggml_set_param() function marks a tensor as an input variable. This is used by the automatic
|
|
// differentiation and optimization algorithms.
|
|
//
|
|
// The described approach allows to define the function graph once and then compute its forward or backward graphs
|
|
// multiple times. All computations will use the same memory buffer allocated in the ggml_init() function. This way
|
|
// the user can avoid the memory allocation overhead at runtime.
|
|
//
|
|
// The library supports multi-dimensional tensors - up to 4 dimensions. The FP16 and FP32 data types are first class
|
|
// citizens, but in theory the library can be extended to support FP8 and integer data types.
|
|
//
|
|
// Each tensor operation produces a new tensor. Initially the library was envisioned to support only the use of unary
|
|
// and binary operations. Most of the available operations fall into one of these two categories. With time, it became
|
|
// clear that the library needs to support more complex operations. The way to support these operations is not clear
|
|
// yet, but a few examples are demonstrated in the following operations:
|
|
//
|
|
// - ggml_permute()
|
|
// - ggml_conv_1d_1s()
|
|
// - ggml_conv_1d_2s()
|
|
//
|
|
// For each tensor operator, the library implements a forward and backward computation function. The forward function
|
|
// computes the output tensor value given the input tensor values. The backward function computes the adjoint of the
|
|
// input tensors given the adjoint of the output tensor. For a detailed explanation of what this means, take a
|
|
// calculus class, or watch the following video:
|
|
//
|
|
// What is Automatic Differentiation?
|
|
// https://www.youtube.com/watch?v=wG_nF1awSSY
|
|
//
|
|
//
|
|
// ## Tensor data (struct ggml_tensor)
|
|
//
|
|
// The tensors are stored in memory via the ggml_tensor struct. The structure provides information about the size of
|
|
// the tensor, the data type, and the memory buffer where the tensor data is stored. Additionally, it contains
|
|
// pointers to the "source" tensors - i.e. the tensors that were used to compute the current tensor. For example:
|
|
//
|
|
// {
|
|
// struct ggml_tensor * c = ggml_add(ctx, a, b);
|
|
//
|
|
// assert(c->src[0] == a);
|
|
// assert(c->src[1] == b);
|
|
// }
|
|
//
|
|
// The multi-dimensional tensors are stored in row-major order. The ggml_tensor struct contains fields for the
|
|
// number of elements in each dimension ("ne") as well as the number of bytes ("nb", a.k.a. stride). This allows
|
|
// to store tensors that are not contiguous in memory, which is useful for operations such as transposition and
|
|
// permutation. All tensor operations have to take the stride into account and not assume that the tensor is
|
|
// contiguous in memory.
|
|
//
|
|
// The data of the tensor is accessed via the "data" pointer. For example:
|
|
//
|
|
// {
|
|
// struct ggml_tensor * a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 2, 3);
|
|
//
|
|
// // a[1, 2] = 1.0f;
|
|
// *(float *) ((char *) a->data + 2*a->nb[1] + 1*a->nb[0]) = 1.0f;
|
|
//
|
|
// // a[2, 0] = 2.0f;
|
|
// *(float *) ((char *) a->data + 0*a->nb[1] + 2*a->nb[0]) = 2.0f;
|
|
//
|
|
// ...
|
|
// }
|
|
//
|
|
// Alternatively, there are helper functions, such as ggml_get_f32_1d() and ggml_set_f32_1d() that can be used.
|
|
//
|
|
// ## The matrix multiplication operator (ggml_mul_mat)
|
|
//
|
|
// TODO
|
|
//
|
|
//
|
|
// ## Multi-threading
|
|
//
|
|
// TODO
|
|
//
|
|
//
|
|
// ## Overview of ggml.c
|
|
//
|
|
// TODO
|
|
//
|
|
//
|
|
// ## SIMD optimizations
|
|
//
|
|
// TODO
|
|
//
|
|
//
|
|
// ## Debugging ggml
|
|
//
|
|
// TODO
|
|
//
|
|
//
|
|
|
|
#ifdef GGML_SHARED
|
|
# if defined(_WIN32) && !defined(__MINGW32__)
|
|
# ifdef GGML_BUILD
|
|
# define GGML_API __declspec(dllexport)
|
|
# else
|
|
# define GGML_API __declspec(dllimport)
|
|
# endif
|
|
# else
|
|
# define GGML_API __attribute__ ((visibility ("default")))
|
|
# endif
|
|
#else
|
|
# define GGML_API
|
|
#endif
|
|
|
|
#include <stdint.h>
|
|
#include <stddef.h>
|
|
#include <stdbool.h>
|
|
|
|
#define GGML_FILE_MAGIC 0x67676d6c // "ggml"
|
|
#define GGML_FILE_VERSION 1
|
|
|
|
#define GGML_QNT_VERSION 2 // bump this on quantization format changes
|
|
#define GGML_QNT_VERSION_FACTOR 1000 // do not change this
|
|
|
|
#define GGML_MAX_DIMS 4
|
|
#define GGML_MAX_NODES 4096
|
|
#define GGML_MAX_PARAMS 256
|
|
#define GGML_MAX_CONTEXTS 64
|
|
#define GGML_MAX_OPT 4
|
|
#define GGML_MAX_NAME 32
|
|
#define GGML_DEFAULT_N_THREADS 4
|
|
|
|
#define GGML_ASSERT(x) \
|
|
do { \
|
|
if (!(x)) { \
|
|
fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
|
|
abort(); \
|
|
} \
|
|
} while (0)
|
|
|
|
#ifdef __cplusplus
|
|
extern "C" {
|
|
#endif
|
|
|
|
#ifdef __ARM_NEON
|
|
// we use the built-in 16-bit float type
|
|
typedef __fp16 ggml_fp16_t;
|
|
#else
|
|
typedef uint16_t ggml_fp16_t;
|
|
#endif
|
|
|
|
// convert FP16 <-> FP32
|
|
GGML_API float ggml_fp16_to_fp32(ggml_fp16_t x);
|
|
GGML_API ggml_fp16_t ggml_fp32_to_fp16(float x);
|
|
|
|
GGML_API void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, size_t n);
|
|
GGML_API void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, size_t n);
|
|
|
|
struct ggml_object;
|
|
struct ggml_context;
|
|
|
|
enum ggml_type {
|
|
GGML_TYPE_F32 = 0,
|
|
GGML_TYPE_F16 = 1,
|
|
GGML_TYPE_Q4_0 = 2,
|
|
GGML_TYPE_Q4_1 = 3,
|
|
// GGML_TYPE_Q4_2 = 4, support has been removed
|
|
// GGML_TYPE_Q4_3 (5) support has been removed
|
|
GGML_TYPE_Q5_0 = 6,
|
|
GGML_TYPE_Q5_1 = 7,
|
|
GGML_TYPE_Q8_0 = 8,
|
|
GGML_TYPE_Q8_1 = 9,
|
|
// k-quantizations
|
|
GGML_TYPE_Q2_K = 10,
|
|
GGML_TYPE_Q3_K = 11,
|
|
GGML_TYPE_Q4_K = 12,
|
|
GGML_TYPE_Q5_K = 13,
|
|
GGML_TYPE_Q6_K = 14,
|
|
GGML_TYPE_Q8_K = 15,
|
|
GGML_TYPE_I8,
|
|
GGML_TYPE_I16,
|
|
GGML_TYPE_I32,
|
|
GGML_TYPE_COUNT,
|
|
};
|
|
|
|
enum ggml_backend {
|
|
GGML_BACKEND_CPU = 0,
|
|
GGML_BACKEND_CUDA = 1,
|
|
GGML_BACKEND_CL = 2,
|
|
};
|
|
|
|
// model file types
|
|
enum ggml_ftype {
|
|
GGML_FTYPE_UNKNOWN = -1,
|
|
GGML_FTYPE_ALL_F32 = 0,
|
|
GGML_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
|
|
GGML_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
|
|
GGML_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
|
|
GGML_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
|
|
GGML_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
|
|
GGML_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
|
|
GGML_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
|
|
GGML_FTYPE_MOSTLY_Q2_K = 10, // except 1d tensors
|
|
GGML_FTYPE_MOSTLY_Q3_K = 11, // except 1d tensors
|
|
GGML_FTYPE_MOSTLY_Q4_K = 12, // except 1d tensors
|
|
GGML_FTYPE_MOSTLY_Q5_K = 13, // except 1d tensors
|
|
GGML_FTYPE_MOSTLY_Q6_K = 14, // except 1d tensors
|
|
};
|
|
|
|
// available tensor operations:
|
|
enum ggml_op {
|
|
GGML_OP_NONE = 0,
|
|
|
|
GGML_OP_DUP,
|
|
GGML_OP_ADD,
|
|
GGML_OP_ADD1,
|
|
GGML_OP_ACC,
|
|
GGML_OP_SUB,
|
|
GGML_OP_MUL,
|
|
GGML_OP_DIV,
|
|
GGML_OP_SQR,
|
|
GGML_OP_SQRT,
|
|
GGML_OP_LOG,
|
|
GGML_OP_SUM,
|
|
GGML_OP_SUM_ROWS,
|
|
GGML_OP_MEAN,
|
|
GGML_OP_REPEAT,
|
|
GGML_OP_ABS,
|
|
GGML_OP_SGN,
|
|
GGML_OP_NEG,
|
|
GGML_OP_STEP,
|
|
GGML_OP_RELU,
|
|
GGML_OP_GELU,
|
|
GGML_OP_SILU,
|
|
GGML_OP_SILU_BACK,
|
|
GGML_OP_NORM, // normalize
|
|
GGML_OP_RMS_NORM,
|
|
GGML_OP_RMS_NORM_BACK,
|
|
|
|
GGML_OP_MUL_MAT,
|
|
|
|
GGML_OP_SCALE,
|
|
GGML_OP_SET,
|
|
GGML_OP_CPY,
|
|
GGML_OP_CONT,
|
|
GGML_OP_RESHAPE,
|
|
GGML_OP_VIEW,
|
|
GGML_OP_PERMUTE,
|
|
GGML_OP_TRANSPOSE,
|
|
GGML_OP_GET_ROWS,
|
|
GGML_OP_GET_ROWS_BACK,
|
|
GGML_OP_DIAG,
|
|
GGML_OP_DIAG_MASK_INF,
|
|
GGML_OP_DIAG_MASK_ZERO,
|
|
GGML_OP_SOFT_MAX,
|
|
GGML_OP_ROPE,
|
|
GGML_OP_ROPE_BACK,
|
|
GGML_OP_ALIBI,
|
|
GGML_OP_CLAMP,
|
|
GGML_OP_CONV_1D_1S,
|
|
GGML_OP_CONV_1D_2S,
|
|
|
|
GGML_OP_FLASH_ATTN,
|
|
GGML_OP_FLASH_FF,
|
|
|
|
GGML_OP_MAP_UNARY,
|
|
GGML_OP_MAP_BINARY,
|
|
|
|
GGML_OP_COUNT,
|
|
};
|
|
|
|
|
|
// ggml object
|
|
struct ggml_object {
|
|
size_t offs;
|
|
size_t size;
|
|
|
|
struct ggml_object * next;
|
|
|
|
char padding[8];
|
|
};
|
|
|
|
static const size_t GGML_OBJECT_SIZE = sizeof(struct ggml_object);
|
|
|
|
// n-dimensional tensor
|
|
struct ggml_tensor {
|
|
enum ggml_type type;
|
|
enum ggml_backend backend;
|
|
|
|
int n_dims;
|
|
int64_t ne[GGML_MAX_DIMS]; // number of elements
|
|
size_t nb[GGML_MAX_DIMS]; // stride in bytes:
|
|
// nb[0] = sizeof(type)
|
|
// nb[1] = nb[0] * ne[0] + padding
|
|
// nb[i] = nb[i-1] * ne[i-1]
|
|
|
|
// compute data
|
|
enum ggml_op op;
|
|
|
|
bool is_param;
|
|
|
|
struct ggml_tensor * grad;
|
|
struct ggml_tensor * src0;
|
|
struct ggml_tensor * src1;
|
|
struct ggml_tensor * opt[GGML_MAX_OPT];
|
|
|
|
// thread scheduling
|
|
int n_tasks;
|
|
|
|
// performance
|
|
int perf_runs;
|
|
int64_t perf_cycles;
|
|
int64_t perf_time_us;
|
|
|
|
void * data;
|
|
|
|
char name[GGML_MAX_NAME];
|
|
|
|
char padding[16];
|
|
};
|
|
|
|
static const size_t GGML_TENSOR_SIZE = sizeof(struct ggml_tensor);
|
|
|
|
// computation graph
|
|
struct ggml_cgraph {
|
|
int n_nodes;
|
|
int n_leafs;
|
|
int n_threads;
|
|
|
|
size_t work_size;
|
|
struct ggml_tensor * work;
|
|
|
|
struct ggml_tensor * nodes[GGML_MAX_NODES];
|
|
struct ggml_tensor * grads[GGML_MAX_NODES];
|
|
struct ggml_tensor * leafs[GGML_MAX_NODES];
|
|
|
|
// performance
|
|
int perf_runs;
|
|
int64_t perf_cycles;
|
|
int64_t perf_time_us;
|
|
};
|
|
|
|
// scratch buffer
|
|
struct ggml_scratch {
|
|
size_t offs;
|
|
size_t size;
|
|
void * data;
|
|
};
|
|
|
|
struct ggml_init_params {
|
|
// memory pool
|
|
size_t mem_size; // bytes
|
|
void * mem_buffer; // if NULL, memory will be allocated internally
|
|
bool no_alloc; // don't allocate memory for the tensor data
|
|
};
|
|
|
|
// misc
|
|
|
|
GGML_API void ggml_time_init(void); // call this once at the beginning of the program
|
|
GGML_API int64_t ggml_time_ms(void);
|
|
GGML_API int64_t ggml_time_us(void);
|
|
GGML_API int64_t ggml_cycles(void);
|
|
GGML_API int64_t ggml_cycles_per_ms(void);
|
|
|
|
GGML_API void ggml_print_object (const struct ggml_object * obj);
|
|
GGML_API void ggml_print_objects(const struct ggml_context * ctx);
|
|
|
|
GGML_API int64_t ggml_nelements(const struct ggml_tensor * tensor);
|
|
GGML_API int64_t ggml_nrows (const struct ggml_tensor * tensor);
|
|
GGML_API size_t ggml_nbytes (const struct ggml_tensor * tensor);
|
|
|
|
GGML_API int ggml_blck_size (enum ggml_type type);
|
|
GGML_API size_t ggml_type_size (enum ggml_type type); // size in bytes for all elements in a block
|
|
GGML_API float ggml_type_sizef(enum ggml_type type); // ggml_type_size()/ggml_blck_size() as float
|
|
|
|
GGML_API const char * ggml_type_name(enum ggml_type type);
|
|
GGML_API const char * ggml_op_name (enum ggml_op op);
|
|
|
|
GGML_API size_t ggml_element_size(const struct ggml_tensor * tensor);
|
|
|
|
GGML_API bool ggml_is_quantized(enum ggml_type type);
|
|
|
|
// TODO: temporary until model loading of ggml examples is refactored
|
|
GGML_API enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype);
|
|
|
|
GGML_API bool ggml_is_transposed(const struct ggml_tensor * tensor);
|
|
GGML_API bool ggml_is_contiguous(const struct ggml_tensor * tensor);
|
|
|
|
// use this to compute the memory overhead of a tensor
|
|
GGML_API size_t ggml_tensor_overhead(void);
|
|
|
|
// main
|
|
|
|
GGML_API struct ggml_context * ggml_init(struct ggml_init_params params);
|
|
GGML_API void ggml_free(struct ggml_context * ctx);
|
|
|
|
GGML_API size_t ggml_used_mem(const struct ggml_context * ctx);
|
|
|
|
GGML_API size_t ggml_set_scratch (struct ggml_context * ctx, struct ggml_scratch scratch);
|
|
GGML_API void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc);
|
|
|
|
GGML_API void * ggml_get_mem_buffer(struct ggml_context * ctx);
|
|
GGML_API size_t ggml_get_mem_size (struct ggml_context * ctx);
|
|
|
|
GGML_API struct ggml_tensor * ggml_new_tensor(
|
|
struct ggml_context * ctx,
|
|
enum ggml_type type,
|
|
int n_dims,
|
|
const int64_t *ne);
|
|
|
|
GGML_API struct ggml_tensor * ggml_new_tensor_1d(
|
|
struct ggml_context * ctx,
|
|
enum ggml_type type,
|
|
int64_t ne0);
|
|
|
|
GGML_API struct ggml_tensor * ggml_new_tensor_2d(
|
|
struct ggml_context * ctx,
|
|
enum ggml_type type,
|
|
int64_t ne0,
|
|
int64_t ne1);
|
|
|
|
GGML_API struct ggml_tensor * ggml_new_tensor_3d(
|
|
struct ggml_context * ctx,
|
|
enum ggml_type type,
|
|
int64_t ne0,
|
|
int64_t ne1,
|
|
int64_t ne2);
|
|
|
|
GGML_API struct ggml_tensor * ggml_new_tensor_4d(
|
|
struct ggml_context * ctx,
|
|
enum ggml_type type,
|
|
int64_t ne0,
|
|
int64_t ne1,
|
|
int64_t ne2,
|
|
int64_t ne3);
|
|
|
|
GGML_API struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value);
|
|
GGML_API struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value);
|
|
|
|
GGML_API struct ggml_tensor * ggml_dup_tensor (struct ggml_context * ctx, const struct ggml_tensor * src);
|
|
GGML_API struct ggml_tensor * ggml_view_tensor(struct ggml_context * ctx, const struct ggml_tensor * src);
|
|
|
|
GGML_API struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name);
|
|
|
|
GGML_API struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor);
|
|
GGML_API struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value);
|
|
GGML_API struct ggml_tensor * ggml_set_f32 (struct ggml_tensor * tensor, float value);
|
|
|
|
GGML_API int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i);
|
|
GGML_API void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value);
|
|
|
|
GGML_API float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i);
|
|
GGML_API void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value);
|
|
|
|
GGML_API void * ggml_get_data (const struct ggml_tensor * tensor);
|
|
GGML_API float * ggml_get_data_f32(const struct ggml_tensor * tensor);
|
|
|
|
GGML_API const char * ggml_get_name(const struct ggml_tensor * tensor);
|
|
GGML_API void ggml_set_name(struct ggml_tensor * tensor, const char * name);
|
|
|
|
//
|
|
// operations on tensors with backpropagation
|
|
//
|
|
|
|
GGML_API struct ggml_tensor * ggml_dup(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
GGML_API struct ggml_tensor * ggml_add(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b);
|
|
|
|
GGML_API struct ggml_tensor * ggml_add_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b);
|
|
|
|
GGML_API struct ggml_tensor * ggml_add1(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b);
|
|
|
|
GGML_API struct ggml_tensor * ggml_acc(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b,
|
|
size_t nb1,
|
|
size_t nb2,
|
|
size_t nb3,
|
|
size_t offset);
|
|
|
|
GGML_API struct ggml_tensor * ggml_acc_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b,
|
|
size_t nb1,
|
|
size_t nb2,
|
|
size_t nb3,
|
|
size_t offset);
|
|
|
|
GGML_API struct ggml_tensor * ggml_sub(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b);
|
|
|
|
GGML_API struct ggml_tensor * ggml_mul(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b);
|
|
|
|
GGML_API struct ggml_tensor * ggml_div(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b);
|
|
|
|
GGML_API struct ggml_tensor * ggml_sqr(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
GGML_API struct ggml_tensor * ggml_sqrt(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
GGML_API struct ggml_tensor * ggml_log(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
GGML_API struct ggml_tensor * ggml_log_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
// return scalar
|
|
GGML_API struct ggml_tensor * ggml_sum(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
// sums along rows, with input shape [a,b,c,d] return shape [1,b,c,d]
|
|
GGML_API struct ggml_tensor * ggml_sum_rows(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
// mean along rows
|
|
GGML_API struct ggml_tensor * ggml_mean(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
// if a is the same shape as b, and a is not parameter, return a
|
|
// otherwise, return a new tensor: repeat(a) to fit in b
|
|
GGML_API struct ggml_tensor * ggml_repeat(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b);
|
|
|
|
GGML_API struct ggml_tensor * ggml_abs(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
GGML_API struct ggml_tensor * ggml_sgn(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
GGML_API struct ggml_tensor * ggml_neg(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
GGML_API struct ggml_tensor * ggml_step(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
GGML_API struct ggml_tensor * ggml_relu(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
// TODO: double-check this computation is correct
|
|
GGML_API struct ggml_tensor * ggml_gelu(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
GGML_API struct ggml_tensor * ggml_silu(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
// a - x
|
|
// b - dy
|
|
GGML_API struct ggml_tensor * ggml_silu_back(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b);
|
|
|
|
// normalize along rows
|
|
// TODO: eps is hardcoded to 1e-5 for now
|
|
GGML_API struct ggml_tensor * ggml_norm(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
GGML_API struct ggml_tensor * ggml_rms_norm(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
// a - x
|
|
// b - dy
|
|
GGML_API struct ggml_tensor * ggml_rms_norm_back(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b);
|
|
|
|
// A: m rows, n columns
|
|
// B: p rows, n columns (i.e. we transpose it internally)
|
|
// result is m columns, p rows
|
|
GGML_API struct ggml_tensor * ggml_mul_mat(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b);
|
|
|
|
//
|
|
// operations on tensors without backpropagation
|
|
//
|
|
|
|
GGML_API struct ggml_tensor * ggml_scale(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b);
|
|
|
|
// in-place, returns view(a)
|
|
GGML_API struct ggml_tensor * ggml_scale_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b);
|
|
|
|
// b -> view(a,offset,nb1,nb2,3), return modified a
|
|
GGML_API struct ggml_tensor * ggml_set(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b,
|
|
size_t nb1,
|
|
size_t nb2,
|
|
size_t nb3,
|
|
size_t offset);
|
|
|
|
// b -> view(a,offset,nb1,nb2,3), return view(a)
|
|
GGML_API struct ggml_tensor * ggml_set_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b,
|
|
size_t nb1,
|
|
size_t nb2,
|
|
size_t nb3,
|
|
size_t offset);
|
|
|
|
GGML_API struct ggml_tensor * ggml_set_1d(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b,
|
|
size_t offset);
|
|
|
|
GGML_API struct ggml_tensor * ggml_set_1d_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b,
|
|
size_t offset);
|
|
|
|
// b -> view(a,offset,nb1,nb2,3), return modified a
|
|
GGML_API struct ggml_tensor * ggml_set_2d(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b,
|
|
size_t nb1,
|
|
size_t offset);
|
|
|
|
// b -> view(a,offset,nb1,nb2,3), return view(a)
|
|
GGML_API struct ggml_tensor * ggml_set_2d_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b,
|
|
size_t nb1,
|
|
size_t offset);
|
|
|
|
|
|
// a -> b, return view(b)
|
|
GGML_API struct ggml_tensor * ggml_cpy(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b);
|
|
|
|
// make contiguous
|
|
GGML_API struct ggml_tensor * ggml_cont(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
// return view(a), b specifies the new shape
|
|
// TODO: when we start computing gradient, make a copy instead of view
|
|
GGML_API struct ggml_tensor * ggml_reshape(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b);
|
|
|
|
// return view(a)
|
|
// TODO: when we start computing gradient, make a copy instead of view
|
|
GGML_API struct ggml_tensor * ggml_reshape_1d(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
int64_t ne0);
|
|
|
|
GGML_API struct ggml_tensor * ggml_reshape_2d(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
int64_t ne0,
|
|
int64_t ne1);
|
|
|
|
// return view(a)
|
|
// TODO: when we start computing gradient, make a copy instead of view
|
|
GGML_API struct ggml_tensor * ggml_reshape_3d(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
int64_t ne0,
|
|
int64_t ne1,
|
|
int64_t ne2);
|
|
|
|
GGML_API struct ggml_tensor * ggml_reshape_4d(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
int64_t ne0,
|
|
int64_t ne1,
|
|
int64_t ne2,
|
|
int64_t ne3);
|
|
|
|
// offset in bytes
|
|
GGML_API struct ggml_tensor * ggml_view_1d(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
int64_t ne0,
|
|
size_t offset);
|
|
|
|
GGML_API struct ggml_tensor * ggml_view_2d(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
int64_t ne0,
|
|
int64_t ne1,
|
|
size_t nb1, // row stride in bytes
|
|
size_t offset);
|
|
|
|
GGML_API struct ggml_tensor * ggml_view_3d(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
int64_t ne0,
|
|
int64_t ne1,
|
|
int64_t ne2,
|
|
size_t nb1, // row stride in bytes
|
|
size_t nb2, // slice stride in bytes
|
|
size_t offset);
|
|
|
|
GGML_API struct ggml_tensor * ggml_view_4d(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
int64_t ne0,
|
|
int64_t ne1,
|
|
int64_t ne2,
|
|
int64_t ne3,
|
|
size_t nb1, // row stride in bytes
|
|
size_t nb2, // slice stride in bytes
|
|
size_t nb3,
|
|
size_t offset);
|
|
|
|
GGML_API struct ggml_tensor * ggml_permute(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
int axis0,
|
|
int axis1,
|
|
int axis2,
|
|
int axis3);
|
|
|
|
// alias for ggml_permute(ctx, a, 1, 0, 2, 3)
|
|
GGML_API struct ggml_tensor * ggml_transpose(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
GGML_API struct ggml_tensor * ggml_get_rows(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b);
|
|
|
|
GGML_API struct ggml_tensor * ggml_get_rows_back(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b,
|
|
struct ggml_tensor * c);
|
|
|
|
GGML_API struct ggml_tensor * ggml_diag(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
// set elements above the diagonal to -INF
|
|
GGML_API struct ggml_tensor * ggml_diag_mask_inf(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
int n_past);
|
|
|
|
// in-place, returns view(a)
|
|
GGML_API struct ggml_tensor * ggml_diag_mask_inf_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
int n_past);
|
|
|
|
// set elements above the diagonal to 0
|
|
GGML_API struct ggml_tensor * ggml_diag_mask_zero(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
int n_past);
|
|
|
|
// in-place, returns view(a)
|
|
GGML_API struct ggml_tensor * ggml_diag_mask_zero_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
int n_past);
|
|
|
|
GGML_API struct ggml_tensor * ggml_soft_max(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
// in-place, returns view(a)
|
|
GGML_API struct ggml_tensor * ggml_soft_max_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
// rotary position embedding
|
|
// if mode & 1 == 1, skip n_past elements
|
|
// if mode & 2 == 1, GPT-NeoX style
|
|
// TODO: avoid creating a new tensor every time
|
|
GGML_API struct ggml_tensor * ggml_rope(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
int n_past,
|
|
int n_dims,
|
|
int mode);
|
|
|
|
// in-place, returns view(a)
|
|
GGML_API struct ggml_tensor * ggml_rope_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
int n_past,
|
|
int n_dims,
|
|
int mode);
|
|
|
|
// rotary position embedding backward, i.e compute dx from dy
|
|
// a - dy
|
|
GGML_API struct ggml_tensor * ggml_rope_back(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
int n_past,
|
|
int n_dims,
|
|
int mode);
|
|
|
|
// alibi position embedding
|
|
// in-place, returns view(a)
|
|
struct ggml_tensor * ggml_alibi(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
int n_past,
|
|
int n_head,
|
|
float bias_max);
|
|
|
|
// clamp
|
|
// in-place, returns view(a)
|
|
struct ggml_tensor * ggml_clamp(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
float min,
|
|
float max);
|
|
|
|
// padding = 1
|
|
// TODO: we don't support extra parameters for now
|
|
// that's why we are hard-coding the stride, padding, and dilation
|
|
// not great ..
|
|
GGML_API struct ggml_tensor * ggml_conv_1d_1s(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b);
|
|
|
|
GGML_API struct ggml_tensor * ggml_conv_1d_2s(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b);
|
|
|
|
GGML_API struct ggml_tensor * ggml_flash_attn(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * q,
|
|
struct ggml_tensor * k,
|
|
struct ggml_tensor * v,
|
|
bool masked);
|
|
|
|
GGML_API struct ggml_tensor * ggml_flash_ff(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b0,
|
|
struct ggml_tensor * b1,
|
|
struct ggml_tensor * c0,
|
|
struct ggml_tensor * c1);
|
|
|
|
// Mapping operations
|
|
typedef void (*ggml_unary_op_f32_t)(const int, float *, const float *);
|
|
typedef void (*ggml_binary_op_f32_t)(const int, float *, const float *, const float *);
|
|
|
|
GGML_API struct ggml_tensor * ggml_map_unary_f32(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
ggml_unary_op_f32_t fun);
|
|
|
|
GGML_API struct ggml_tensor * ggml_map_binary_f32(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b,
|
|
ggml_binary_op_f32_t fun);
|
|
|
|
//
|
|
// automatic differentiation
|
|
//
|
|
|
|
GGML_API void ggml_set_param(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * tensor);
|
|
|
|
GGML_API void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor);
|
|
|
|
GGML_API struct ggml_cgraph ggml_build_forward (struct ggml_tensor * tensor);
|
|
GGML_API struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep);
|
|
|
|
GGML_API void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph);
|
|
GGML_API void ggml_graph_reset (struct ggml_cgraph * cgraph);
|
|
|
|
GGML_API struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name);
|
|
|
|
GGML_API void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname);
|
|
GGML_API struct ggml_cgraph ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval);
|
|
|
|
// print info and performance information for the graph
|
|
GGML_API void ggml_graph_print(const struct ggml_cgraph * cgraph);
|
|
|
|
// dump the graph into a file using the dot format
|
|
GGML_API void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename);
|
|
|
|
//
|
|
// optimization
|
|
//
|
|
|
|
// optimization methods
|
|
enum ggml_opt_type {
|
|
GGML_OPT_ADAM,
|
|
GGML_OPT_LBFGS,
|
|
};
|
|
|
|
// linesearch methods
|
|
enum ggml_linesearch {
|
|
GGML_LINESEARCH_DEFAULT = 1,
|
|
|
|
GGML_LINESEARCH_BACKTRACKING_ARMIJO = 0,
|
|
GGML_LINESEARCH_BACKTRACKING_WOLFE = 1,
|
|
GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE = 2,
|
|
};
|
|
|
|
// optimization return values
|
|
enum ggml_opt_result {
|
|
GGML_OPT_OK = 0,
|
|
GGML_OPT_DID_NOT_CONVERGE,
|
|
GGML_OPT_NO_CONTEXT,
|
|
GGML_OPT_INVALID_WOLFE,
|
|
GGML_OPT_FAIL,
|
|
|
|
GGML_LINESEARCH_FAIL = -128,
|
|
GGML_LINESEARCH_MINIMUM_STEP,
|
|
GGML_LINESEARCH_MAXIMUM_STEP,
|
|
GGML_LINESEARCH_MAXIMUM_ITERATIONS,
|
|
GGML_LINESEARCH_INVALID_PARAMETERS,
|
|
};
|
|
|
|
// optimization parameters
|
|
//
|
|
// see ggml.c (ggml_opt_default_params) for default values
|
|
//
|
|
struct ggml_opt_params {
|
|
enum ggml_opt_type type;
|
|
|
|
int n_threads;
|
|
|
|
// delta-based convergence test
|
|
//
|
|
// if past == 0 - disabled
|
|
// if past > 0:
|
|
// stop if |f(x) - f(x_past)| < delta * max(1, |f(x)|)
|
|
//
|
|
int past;
|
|
float delta;
|
|
|
|
// maximum number of iterations without improvement
|
|
//
|
|
// if 0 - disabled
|
|
// if > 0:
|
|
// assume convergence if no cost improvement in this number of iterations
|
|
//
|
|
int max_no_improvement;
|
|
|
|
bool print_forward_graph;
|
|
bool print_backward_graph;
|
|
|
|
// ADAM parameters
|
|
struct {
|
|
int n_iter;
|
|
|
|
float alpha; // learning rate
|
|
float beta1;
|
|
float beta2;
|
|
float eps; // epsilon for numerical stability
|
|
float eps_f; // epsilon for convergence test
|
|
float eps_g; // epsilon for convergence test
|
|
} adam;
|
|
|
|
// LBFGS parameters
|
|
struct {
|
|
int m; // number of corrections to approximate the inv. Hessian
|
|
int n_iter;
|
|
int max_linesearch;
|
|
|
|
float eps; // convergence tolerance
|
|
float ftol; // line search tolerance
|
|
float wolfe;
|
|
float min_step;
|
|
float max_step;
|
|
|
|
enum ggml_linesearch linesearch;
|
|
} lbfgs;
|
|
};
|
|
|
|
GGML_API struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type);
|
|
|
|
// optimize the function defined by the tensor f
|
|
GGML_API enum ggml_opt_result ggml_opt(
|
|
struct ggml_context * ctx,
|
|
struct ggml_opt_params params,
|
|
struct ggml_tensor * f);
|
|
|
|
//
|
|
// quantization
|
|
//
|
|
|
|
GGML_API size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist);
|
|
GGML_API size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist);
|
|
GGML_API size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist);
|
|
GGML_API size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist);
|
|
GGML_API size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist);
|
|
|
|
GGML_API size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist);
|
|
|
|
//
|
|
// system info
|
|
//
|
|
|
|
GGML_API int ggml_cpu_has_avx (void);
|
|
GGML_API int ggml_cpu_has_avx2 (void);
|
|
GGML_API int ggml_cpu_has_avx512 (void);
|
|
GGML_API int ggml_cpu_has_avx512_vbmi(void);
|
|
GGML_API int ggml_cpu_has_avx512_vnni(void);
|
|
GGML_API int ggml_cpu_has_fma (void);
|
|
GGML_API int ggml_cpu_has_neon (void);
|
|
GGML_API int ggml_cpu_has_arm_fma (void);
|
|
GGML_API int ggml_cpu_has_f16c (void);
|
|
GGML_API int ggml_cpu_has_fp16_va (void);
|
|
GGML_API int ggml_cpu_has_wasm_simd (void);
|
|
GGML_API int ggml_cpu_has_blas (void);
|
|
GGML_API int ggml_cpu_has_cublas (void);
|
|
GGML_API int ggml_cpu_has_clblast (void);
|
|
GGML_API int ggml_cpu_has_gpublas (void);
|
|
GGML_API int ggml_cpu_has_sse3 (void);
|
|
GGML_API int ggml_cpu_has_vsx (void);
|
|
|
|
//
|
|
// Internal types and functions exposed for tests and benchmarks
|
|
//
|
|
|
|
#ifdef __cplusplus
|
|
// restrict not standard in C++
|
|
#define GGML_RESTRICT
|
|
#else
|
|
#define GGML_RESTRICT restrict
|
|
#endif
|
|
typedef void (*dequantize_row_q_t)(const void * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
|
|
typedef void (*quantize_row_q_t) (const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int k);
|
|
typedef void (*vec_dot_q_t) (const int n, float * GGML_RESTRICT s, const void * GGML_RESTRICT x, const void * GGML_RESTRICT y);
|
|
|
|
typedef struct {
|
|
dequantize_row_q_t dequantize_row_q;
|
|
quantize_row_q_t quantize_row_q;
|
|
quantize_row_q_t quantize_row_q_reference;
|
|
quantize_row_q_t quantize_row_q_dot;
|
|
vec_dot_q_t vec_dot_q;
|
|
enum ggml_type vec_dot_type;
|
|
} quantize_fns_t;
|
|
|
|
quantize_fns_t ggml_internal_get_quantize_fn(size_t i);
|
|
|
|
#ifdef __cplusplus
|
|
}
|
|
#endif
|