mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-10 10:41:47 +00:00
2a63caaa69
* ggml: CUDA unary op EXP Signed-off-by: Molly Sophia <mollysophia379@gmail.com> * ggml: rwkv_wkv op CUDA impl Signed-off-by: Molly Sophia <mollysophia379@gmail.com> --------- Signed-off-by: Molly Sophia <mollysophia379@gmail.com>
90 lines
3.0 KiB
Plaintext
90 lines
3.0 KiB
Plaintext
#include "common.cuh"
|
|
#include "rwkv-wkv.cuh"
|
|
|
|
static __global__ void rwkv_wkv_f32(const int B, const int T, const int C, const int H, const float * k, const float * v, const float * r, const float * tf, const float * td, const float * s, float * dst) {
|
|
const int tid = threadIdx.x;
|
|
const int bid = blockIdx.x;
|
|
|
|
const int head_size = CUDA_WKV_BLOCK_SIZE;
|
|
const int batch_i = bid / H;
|
|
const int head_i = bid % H;
|
|
const int state_size = C * head_size;
|
|
const int n_seq_tokens = T / B;
|
|
|
|
float state[head_size];
|
|
__shared__ float _k[head_size], _r[head_size], _tf[head_size], _td[head_size];
|
|
|
|
#pragma unroll
|
|
for (int i = 0; i < head_size; i++) {
|
|
state[i] = s[batch_i * state_size + head_i * head_size * head_size + i * head_size + tid];
|
|
}
|
|
|
|
__syncthreads();
|
|
_tf[tid] = tf[head_i * head_size + tid];
|
|
__syncthreads();
|
|
|
|
for (int t = batch_i * n_seq_tokens * C + head_i * head_size + tid; t < (batch_i + 1) * n_seq_tokens * C + head_i * head_size + tid; t += C) {
|
|
__syncthreads();
|
|
_k[tid] = k[t];
|
|
_r[tid] = r[t];
|
|
_td[tid] = td[t];
|
|
__syncthreads();
|
|
|
|
const float _v = v[t];
|
|
float y = 0;
|
|
for (int j = 0; j < head_size; j += 4) {
|
|
const float4& k = (float4&)(_k[j]);
|
|
const float4& r = (float4&)(_r[j]);
|
|
const float4& tf = (float4&)(_tf[j]);
|
|
const float4& td = (float4&)(_td[j]);
|
|
float4& s = (float4&)(state[j]);
|
|
float4 kv;
|
|
|
|
kv.x = k.x * _v;
|
|
kv.y = k.y * _v;
|
|
kv.z = k.z * _v;
|
|
kv.w = k.w * _v;
|
|
|
|
y += r.x * (tf.x * kv.x + s.x);
|
|
y += r.y * (tf.y * kv.y + s.y);
|
|
y += r.z * (tf.z * kv.z + s.z);
|
|
y += r.w * (tf.w * kv.w + s.w);
|
|
|
|
s.x = s.x * td.x + kv.x;
|
|
s.y = s.y * td.y + kv.y;
|
|
s.z = s.z * td.z + kv.z;
|
|
s.w = s.w * td.w + kv.w;
|
|
}
|
|
dst[t] = y;
|
|
}
|
|
|
|
#pragma unroll
|
|
for (int i = 0; i < head_size; i++) {
|
|
dst[T * C + batch_i * state_size + head_i * head_size * head_size + i * head_size + tid] = state[i];
|
|
}
|
|
}
|
|
|
|
void ggml_cuda_op_rwkv_wkv(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
|
const float * k_d = (const float *)dst->src[0]->data;
|
|
const float * v_d = (const float *)dst->src[1]->data;
|
|
const float * r_d = (const float *)dst->src[2]->data;
|
|
const float * tf_d = (const float *)dst->src[3]->data;
|
|
const float * td_d = (const float *)dst->src[4]->data;
|
|
const float * s_d = (const float *)dst->src[5]->data;
|
|
|
|
const int64_t B = dst->src[5]->ne[1];
|
|
const int64_t T = dst->src[0]->ne[3];
|
|
const int64_t C = dst->ne[0];
|
|
const int64_t H = dst->src[0]->ne[2];
|
|
|
|
float * dst_d = (float *)dst->data;
|
|
|
|
cudaStream_t stream = ctx.stream();
|
|
|
|
GGML_ASSERT(dst->src[5]->type == GGML_TYPE_F32);
|
|
GGML_ASSERT(C % H == 0);
|
|
GGML_ASSERT(C / H == CUDA_WKV_BLOCK_SIZE);
|
|
|
|
rwkv_wkv_f32<<<B * H, C / H, 0, stream>>>(B, T, C, H, k_d, v_d, r_d, tf_d, td_d, s_d, dst_d);
|
|
}
|