mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-11-11 21:39:52 +00:00
d232aca5a7
* llama : initial ggml-backend integration * add ggml-metal * cuda backend can be used though ggml-backend with LLAMA_GGML_BACKEND_CUDA_TEST access all tensor data with ggml_backend_tensor_get/set * add ggml_backend_buffer_clear zero-init KV cache buffer * add ggml_backend_buffer_is_hos, used to avoid copies if possible when accesing tensor data * disable gpu backends with ngl 0 * more accurate mlock * unmap offloaded part of the model * use posix_fadvise64(.., POSIX_FADV_SEQUENTIAL) to improve performance with mmap * update quantize and lora * update session copy/set to use ggml-backend ggml-ci * use posix_fadvise instead of posix_fadvise64 * ggml_backend_alloc_ctx_tensors_from_buft : remove old print * llama_mmap::align_offset : use pointers instead of references for out parameters * restore progress_callback behavior * move final progress_callback call to load_all_data * cuda : fix fprintf format string (minor) * do not offload scales * llama_mmap : avoid unmapping the same fragments again in the destructor * remove unnecessary unmap * metal : add default log function that prints to stderr, cleanup code ggml-ci --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
116 lines
4.2 KiB
C
116 lines
4.2 KiB
C
// An interface allowing to compute ggml_cgraph with Metal
|
|
//
|
|
// This is a fully functional interface that extends ggml with GPU support for Apple devices.
|
|
// A similar interface can be created for other GPU backends (e.g. Vulkan, CUDA, OpenCL, etc.)
|
|
//
|
|
// How it works?
|
|
//
|
|
// As long as your program can create and evaluate a ggml_cgraph on the CPU, you can use this
|
|
// interface to evaluate the same graph on the GPU. Instead of using ggml_graph_compute(), you
|
|
// use ggml_metal_graph_compute() (or ggml_vulkan_graph_compute(), etc.)
|
|
//
|
|
// You only need to make sure that all memory buffers that you used during the graph creation
|
|
// are mapped to the device memory with the ggml_metal_add_buffer() function. This mapping is
|
|
// used during the graph evaluation to determine the arguments of the compute kernels.
|
|
//
|
|
// Synchronization between device and host memory (for example for input and output tensors)
|
|
// is done with the ggml_metal_set_tensor() and ggml_metal_get_tensor() functions.
|
|
//
|
|
|
|
#pragma once
|
|
|
|
#include "ggml.h"
|
|
#include "ggml-backend.h"
|
|
|
|
#include <stddef.h>
|
|
#include <stdbool.h>
|
|
|
|
// max memory buffers that can be mapped to the device
|
|
#define GGML_METAL_MAX_BUFFERS 64
|
|
#define GGML_METAL_MAX_COMMAND_BUFFERS 32
|
|
|
|
struct ggml_tensor;
|
|
struct ggml_cgraph;
|
|
|
|
#ifdef __cplusplus
|
|
extern "C" {
|
|
#endif
|
|
|
|
//
|
|
// internal API
|
|
// temporary exposed to user-code
|
|
//
|
|
|
|
struct ggml_metal_context;
|
|
|
|
void ggml_metal_log_set_callback(ggml_log_callback log_callback, void * user_data);
|
|
|
|
// number of command buffers to use
|
|
struct ggml_metal_context * ggml_metal_init(int n_cb);
|
|
void ggml_metal_free(struct ggml_metal_context * ctx);
|
|
|
|
void * ggml_metal_host_malloc(size_t n);
|
|
void ggml_metal_host_free (void * data);
|
|
|
|
// set the number of command buffers to use
|
|
void ggml_metal_set_n_cb(struct ggml_metal_context * ctx, int n_cb);
|
|
|
|
// creates a mapping between a host memory buffer and a device memory buffer
|
|
// - make sure to map all buffers used in the graph before calling ggml_metal_graph_compute
|
|
// - the mapping is used during computation to determine the arguments of the compute kernels
|
|
// - you don't need to keep the host memory buffer allocated as it is never accessed by Metal
|
|
// - max_size specifies the maximum size of a tensor and is used to create shared views such
|
|
// that it is guaranteed that the tensor will fit in at least one of the views
|
|
//
|
|
bool ggml_metal_add_buffer(
|
|
struct ggml_metal_context * ctx,
|
|
const char * name,
|
|
void * data,
|
|
size_t size,
|
|
size_t max_size);
|
|
|
|
// set data from host memory into the device
|
|
void ggml_metal_set_tensor(struct ggml_metal_context * ctx, struct ggml_tensor * t);
|
|
|
|
// get data from the device into host memory
|
|
void ggml_metal_get_tensor(struct ggml_metal_context * ctx, struct ggml_tensor * t);
|
|
|
|
// try to find operations that can be run concurrently in the graph
|
|
// you should run it again if the topology of your graph changes
|
|
void ggml_metal_graph_find_concurrency(struct ggml_metal_context * ctx, struct ggml_cgraph * gf, bool check_mem);
|
|
|
|
// if the graph has been optimized for concurrently dispatch, return length of the concur_list if optimized
|
|
int ggml_metal_if_optimized(struct ggml_metal_context * ctx);
|
|
|
|
// output the concur_list for ggml_alloc
|
|
int * ggml_metal_get_concur_list(struct ggml_metal_context * ctx);
|
|
|
|
// same as ggml_graph_compute but uses Metal
|
|
// creates gf->n_threads command buffers in parallel
|
|
void ggml_metal_graph_compute(struct ggml_metal_context * ctx, struct ggml_cgraph * gf);
|
|
|
|
//
|
|
// backend API
|
|
// user-code should use only these functions
|
|
//
|
|
|
|
GGML_API ggml_backend_t ggml_backend_metal_init(void);
|
|
|
|
GGML_API bool ggml_backend_is_metal(ggml_backend_t backend);
|
|
|
|
GGML_API ggml_backend_buffer_t ggml_backend_metal_buffer_from_ptr(void * data, size_t size, size_t max_size);
|
|
|
|
GGML_API void ggml_backend_metal_set_n_cb(ggml_backend_t backend, int n_cb);
|
|
|
|
GGML_API ggml_backend_buffer_type_t ggml_backend_metal_buffer_type(void);
|
|
|
|
// helper to check if the device supports a specific family
|
|
// ideally, the user code should be doing these checks
|
|
// ref: https://developer.apple.com/metal/Metal-Feature-Set-Tables.pdf
|
|
GGML_API bool ggml_backend_metal_supports_family(ggml_backend_t backend, int family);
|
|
|
|
#ifdef __cplusplus
|
|
}
|
|
#endif
|
|
|