llama.cpp/tests/test-backend-ops.cpp

4026 lines
144 KiB
C++

// This file defines tests for various GGML ops and backends.
// For the forward pass it asserts that the results of multiple backends computing the same GGML ops are consistent.
// For the backward pass it asserts that the gradients from backpropagation are consistent
// with the gradients obtained via the method of finite differences ("grad" mode, this is optional).
// It is also possible to check the performance ("perf" mode).
//
// this file has three sections: Section 1 does general setup, section 2 defines the GGML ops to be tested,
// and section 3 defines which tests to run.
// Quick start for adding a new GGML op: Go to section 2 and create a struct that inherits from test_case,
// then go to section 3 and add an instantiation of your struct.
// ##############################
// ## Section 1: General Setup ##
// ##############################
#include <ggml.h>
#include <ggml-alloc.h>
#include <ggml-backend.h>
#include <algorithm>
#include <array>
#include <cfloat>
#include <cstdint>
#include <cstring>
#include <cinttypes>
#include <memory>
#include <random>
#include <stdio.h>
#include <stdlib.h>
#include <string>
#include <thread>
#include <future>
#include <vector>
static void init_tensor_uniform(ggml_tensor * tensor, float min = -1.0f, float max = 1.0f) {
size_t nels = ggml_nelements(tensor);
std::vector<float> data(nels);
{
// parallel initialization
static const size_t n_threads = std::thread::hardware_concurrency();
// static RNG initialization (revisit if n_threads stops being constant)
static std::vector<std::default_random_engine> generators = []() {
std::random_device rd;
std::vector<std::default_random_engine> vec;
vec.reserve(n_threads);
//for (size_t i = 0; i < n_threads; i++) { vec.emplace_back(1234 + i); } // fixed seed
for (size_t i = 0; i < n_threads; i++) { vec.emplace_back(rd()); }
return vec;
}();
auto init_thread = [&](size_t ith, size_t start, size_t end) {
std::uniform_real_distribution<float> distribution(min, max);
auto & gen = generators[ith];
for (size_t i = start; i < end; i++) {
data[i] = distribution(gen);
}
};
std::vector<std::future<void>> tasks;
tasks.reserve(n_threads);
for (size_t i = 0; i < n_threads; i++) {
size_t start = i*nels/n_threads;
size_t end = (i+1)*nels/n_threads;
tasks.push_back(std::async(std::launch::async, init_thread, i, start, end));
}
for (auto & t : tasks) {
t.get();
}
}
if (tensor->type == GGML_TYPE_F32 || tensor->type == GGML_TYPE_I32) {
ggml_backend_tensor_set(tensor, data.data(), 0, nels * sizeof(float));
} else if (ggml_is_quantized(tensor->type) || tensor->type == GGML_TYPE_F16 || tensor->type == GGML_TYPE_BF16) {
GGML_ASSERT(nels % ggml_blck_size(tensor->type) == 0);
// dummy importance matrix
std::vector<float> imatrix(tensor->ne[0], 1.0f);
const float * im = imatrix.data();
if (!ggml_quantize_requires_imatrix(tensor->type)) {
// when the imatrix is optional, we want to test both quantization with and without imatrix
// use one of the random numbers to decide
if (data[0] > 0.5f*(min + max)) {
im = nullptr;
}
}
std::vector<uint8_t> dataq(ggml_row_size(tensor->type, nels));
{
// parallel quantization by block
size_t blck_size = ggml_blck_size(tensor->type);
size_t n_blocks = nels / blck_size;
auto quantize_thread = [&](size_t start, size_t end) {
ggml_quantize_chunk(tensor->type, data.data(), dataq.data(),
start * blck_size, end - start, blck_size, im);
};
const size_t min_blocks_per_thread = 1;
const size_t n_threads = std::min<size_t>(std::thread::hardware_concurrency()/2,
std::max<size_t>(1, n_blocks / min_blocks_per_thread));
std::vector<std::future<void>> tasks;
tasks.reserve(n_threads);
for (size_t i = 0; i < n_threads; i++) {
size_t start = i*n_blocks/n_threads;
size_t end = (i+1)*n_blocks/n_threads;
tasks.push_back(std::async(std::launch::async, quantize_thread, start, end));
}
for (auto & t : tasks) {
t.get();
}
}
ggml_backend_tensor_set(tensor, dataq.data(), 0, dataq.size());
} else if (tensor->type == GGML_TYPE_I8 || tensor->type == GGML_TYPE_I16 || tensor->type == GGML_TYPE_I32) {
// This is going to create some weird integers though.
ggml_backend_tensor_set(tensor, data.data(), 0, ggml_nbytes(tensor));
} else if (tensor->type == GGML_TYPE_I64) {
// Integers with a size of 8 bytes can be set by mirroring the float data, the specific values are again not really meaningful.
const size_t nbytes_half = ggml_nbytes(tensor)/2;
ggml_backend_tensor_set(tensor, data.data(), 0*nbytes_half, nbytes_half);
ggml_backend_tensor_set(tensor, data.data(), 1*nbytes_half, nbytes_half);
} else {
GGML_ABORT("fatal error");
}
}
static std::vector<float> tensor_to_float(const ggml_tensor * t) {
std::vector<float> tv;
tv.reserve(ggml_nelements(t));
std::vector<uint8_t> buf(ggml_nbytes(t));
ggml_backend_tensor_get(t, buf.data(), 0, ggml_nbytes(t));
const auto * tt = ggml_get_type_traits(t->type);
size_t bs = ggml_blck_size(t->type);
std::vector<float> vq(ggml_blck_size(t->type));
bool quantized = ggml_is_quantized(t->type);
// access elements by index to avoid gaps in views
for (int64_t i3 = 0; i3 < t->ne[3]; i3++) {
for (int64_t i2 = 0; i2 < t->ne[2]; i2++) {
for (int64_t i1 = 0; i1 < t->ne[1]; i1++) {
for (int64_t i0 = 0; i0 < t->ne[0]; i0 += bs) {
size_t i = i3*t->nb[3] + i2*t->nb[2] + i1*t->nb[1] + i0/bs*t->nb[0];
if (t->type == GGML_TYPE_F16) {
tv.push_back(ggml_fp16_to_fp32(*(ggml_fp16_t*)&buf[i]));
} else if (t->type == GGML_TYPE_BF16) {
tv.push_back(ggml_bf16_to_fp32(*(ggml_bf16_t*)&buf[i]));
} else if (t->type == GGML_TYPE_F32) {
tv.push_back(*(float *) &buf[i]);
} else if (t->type == GGML_TYPE_I64) {
tv.push_back((float)*(int64_t *) &buf[i]);
} else if (t->type == GGML_TYPE_I32) {
tv.push_back((float)*(int32_t *) &buf[i]);
} else if (t->type == GGML_TYPE_I16) {
tv.push_back((float)*(int16_t *) &buf[i]);
} else if (t->type == GGML_TYPE_I8) {
tv.push_back((float)*(int8_t *) &buf[i]);
} else if (quantized) {
tt->to_float(&buf[i], vq.data(), bs);
tv.insert(tv.end(), vq.begin(), vq.end());
} else {
GGML_ABORT("fatal error");
}
}
}
}
}
return tv;
}
// normalized mean squared error = mse(a, b) / mse(a, 0)
static double nmse(const float * a, const float * b, size_t n) {
double mse_a_b = 0.0;
double mse_a_0 = 0.0;
for (size_t i = 0; i < n; i++) {
float a_i = a[i];
float b_i = b[i];
mse_a_b += (a_i - b_i) * (a_i - b_i);
mse_a_0 += a_i * a_i;
}
return mse_a_b / mse_a_0;
}
// maximum absolute asymmetry between a and b
// asymmetry: (a - b) / (a + b)
// This is more stable than relative error if one of the values fluctuates towards zero.
// n: number of values to compare.
// expected_vals: optional vector of expected values for a. If expected_vals is not empty, filter out all comparisons where
// a does not match any of the expected values. Needed for noncontinuous gradients where the numerical calculation can fail.
static double mean_abs_asymm(const float * a, const float * b, const size_t n, const std::vector<float> & expected_vals) {
double sum = 0.0f;
size_t nvalid = 0;
for (size_t i = 0; i < n; i++) {
if (!expected_vals.empty()) {
bool matches_any = false;
for (const float & ev : expected_vals) {
if (fabsf(a[i] - ev) < 1e-3f) {
matches_any = true;
break;
}
}
if (!matches_any) {
continue;
}
}
const float asymm = (a[i] - b[i]) / (a[i] + b[i]);
sum += fabsf(asymm);
nvalid++;
}
return sum/nvalid;
}
// utils for printing the variables of the test cases
template<typename T>
static std::string var_to_str(const T & x) {
return std::to_string(x);
}
template<typename T, size_t N>
static std::string var_to_str(const T (&x)[N]) {
std::string s = "[";
for (size_t i = 0; i < N; i++) {
if (i > 0) {
s += ",";
}
s += var_to_str(x[i]);
}
s += "]";
return s;
}
template<typename T, size_t N>
static std::string var_to_str(const std::array<T, N> & x) {
std::string s = "[";
for (size_t i = 0; i < N; i++) {
if (i > 0) {
s += ",";
}
s += var_to_str(x[i]);
}
s += "]";
return s;
}
static std::string var_to_str(ggml_type type) {
return ggml_type_name(type);
}
static std::string var_to_str(ggml_op_pool pool) {
switch (pool) {
case GGML_OP_POOL_AVG: return "avg";
case GGML_OP_POOL_MAX: return "max";
default: return std::to_string(pool);
}
}
#define VAR_TO_STR(x) (#x "=" + var_to_str(x))
#define VARS_TO_STR1(a) VAR_TO_STR(a)
#define VARS_TO_STR2(a, b) VAR_TO_STR(a) + "," + VAR_TO_STR(b)
#define VARS_TO_STR3(a, b, c) VAR_TO_STR(a) + "," + VARS_TO_STR2(b, c)
#define VARS_TO_STR4(a, b, c, d) VAR_TO_STR(a) + "," + VARS_TO_STR3(b, c, d)
#define VARS_TO_STR5(a, b, c, d, e) VAR_TO_STR(a) + "," + VARS_TO_STR4(b, c, d, e)
#define VARS_TO_STR6(a, b, c, d, e, f) VAR_TO_STR(a) + "," + VARS_TO_STR5(b, c, d, e, f)
#define VARS_TO_STR7(a, b, c, d, e, f, g) VAR_TO_STR(a) + "," + VARS_TO_STR6(b, c, d, e, f, g)
#define VARS_TO_STR8(a, b, c, d, e, f, g, h) VAR_TO_STR(a) + "," + VARS_TO_STR7(b, c, d, e, f, g, h)
#define VARS_TO_STR9(a, b, c, d, e, f, g, h, i) VAR_TO_STR(a) + "," + VARS_TO_STR8(b, c, d, e, f, g, h, i)
#define VARS_TO_STR10(a, b, c, d, e, f, g, h, i, j) VAR_TO_STR(a) + "," + VARS_TO_STR9(b, c, d, e, f, g, h, i, j)
#define VARS_TO_STR11(a, b, c, d, e, f, g, h, i, j, k) VAR_TO_STR(a) + "," + VARS_TO_STR10(b, c, d, e, f, g, h, i, j, k)
#define VARS_TO_STR12(a, b, c, d, e, f, g, h, i, j, k, l) VAR_TO_STR(a) + "," + VARS_TO_STR11(b, c, d, e, f, g, h, i, j, k, l)
#ifdef GGML_USE_SYCL
static bool inline _isinf(float f) {
return (*(uint32_t *)&f & 0x7fffffff) == 0x7f800000;
}
#else
static bool inline _isinf(float f) { return std::isinf(f); }
#endif
// accept FLT_MAX as infinity
static bool isinf_or_max(float f) {
return _isinf(f) || f == FLT_MAX || f == -FLT_MAX;
}
static bool ggml_is_view_op(enum ggml_op op) {
return op == GGML_OP_VIEW || op == GGML_OP_RESHAPE || op == GGML_OP_PERMUTE || op == GGML_OP_TRANSPOSE;
}
enum test_mode {
MODE_TEST,
MODE_PERF,
MODE_GRAD,
};
struct test_case {
virtual ~test_case() {}
virtual std::string op_desc(ggml_tensor * t) {
return ggml_op_desc(t);
}
virtual std::string vars() {
return "";
}
virtual ggml_tensor * build_graph(ggml_context * ctx) = 0;
virtual double max_nmse_err() {
return 1e-7;
}
virtual double max_maa_err() {
return 1e-4;
}
virtual float grad_eps() {
return 1e-1f;
}
// If false, estimate gradient with 2 points, neglects 3rd order derivative and higher.
// If true, estimate gradient with 4 points, neglects 5th order derivative and higher.
virtual bool grad_precise() {
return false;
}
// Skip gradient checks if total number of gradients to be checked is larger than this (to speed up the tests).
virtual int64_t grad_nmax() {
return 10000;
}
// No effect if empty.
// If not empty, skip all gradient checks where the numerical result does not match any of the values.
// Needed for dealing with noncontinuous gradients (e.g. ReLU) where estimation using finite differences is unreliable.
virtual std::vector<float> grad_expect() {
return {};
}
virtual void initialize_tensors(ggml_context * ctx) {
for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != nullptr; t = ggml_get_next_tensor(ctx, t)) {
init_tensor_uniform(t);
}
}
virtual size_t op_size(ggml_tensor * t) {
size_t size = ggml_nbytes(t);
// add source tensors
for (int i = 0; i < GGML_MAX_SRC; i++) {
if (t->src[i] != NULL) {
size += ggml_nbytes(t->src[i]);
}
}
return size;
}
virtual uint64_t op_flops(ggml_tensor * t) {
GGML_UNUSED(t);
return 0;
}
ggml_cgraph * gf = nullptr;
ggml_cgraph * gb = nullptr;
static const int sentinel_size = 1024;
test_mode mode;
std::vector<ggml_tensor *> sentinels;
void add_sentinel(ggml_context * ctx) {
if (mode == MODE_PERF || mode == MODE_GRAD) {
return;
}
ggml_tensor * sentinel = ::ggml_new_tensor_1d(ctx, GGML_TYPE_F32, sentinel_size);
ggml_format_name(sentinel, "sent_%zu", sentinels.size());
sentinels.push_back(sentinel);
}
// hijack ggml_new_tensor to add sentinels after each tensor to check for overflows in the backend
ggml_tensor * ggml_new_tensor(ggml_context * ctx, ggml_type type, int n_dims, const int64_t * ne) {
ggml_tensor * t = ::ggml_new_tensor(ctx, type, n_dims, ne);
add_sentinel(ctx);
return t;
}
ggml_tensor * ggml_new_tensor_1d(ggml_context * ctx, ggml_type type, int64_t ne0) {
ggml_tensor * t = ::ggml_new_tensor_1d(ctx, type, ne0);
add_sentinel(ctx);
return t;
}
ggml_tensor * ggml_new_tensor_2d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1) {
ggml_tensor * t = ::ggml_new_tensor_2d(ctx, type, ne0, ne1);
add_sentinel(ctx);
return t;
}
ggml_tensor * ggml_new_tensor_3d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1, int64_t ne2) {
ggml_tensor * t = ::ggml_new_tensor_3d(ctx, type, ne0, ne1, ne2);
add_sentinel(ctx);
return t;
}
ggml_tensor * ggml_new_tensor_4d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3) {
ggml_tensor * t = ::ggml_new_tensor_4d(ctx, type, ne0, ne1, ne2, ne3);
add_sentinel(ctx);
return t;
}
bool eval(ggml_backend_t backend1, ggml_backend_t backend2, const char * op_name) {
mode = MODE_TEST;
ggml_init_params params = {
/* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead(),
/* .mem_base = */ NULL,
/* .no_alloc = */ true,
};
ggml_context * ctx = ggml_init(params);
GGML_ASSERT(ctx);
gf = ggml_new_graph(ctx);
// pre-graph sentinel
add_sentinel(ctx);
ggml_tensor * out = build_graph(ctx);
if (op_name != nullptr && op_desc(out) != op_name) {
//printf(" %s: skipping\n", op_desc(out).c_str());
ggml_free(ctx);
return true;
}
printf(" %s(%s): ", op_desc(out).c_str(), vars().c_str());
fflush(stdout);
// check if the backends support the ops
bool supported = true;
for (ggml_backend_t backend : {backend1, backend2}) {
for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
if (!ggml_backend_supports_op(backend, t)) {
printf("not supported [%s] ", ggml_backend_name(backend));
supported = false;
break;
}
}
}
if (!supported) {
printf("\n");
ggml_free(ctx);
return true;
}
// post-graph sentinel
add_sentinel(ctx);
// allocate
ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors(ctx, backend1);
if (buf == NULL) {
printf("failed to allocate tensors [%s] ", ggml_backend_name(backend1));
ggml_free(ctx);
return false;
}
// build graph
ggml_build_forward_expand(gf, out);
// add sentinels as graph nodes so that they are checked in the callback
for (ggml_tensor * sentinel : sentinels) {
ggml_graph_add_node(gf, sentinel);
}
// randomize tensors
initialize_tensors(ctx);
// compare
struct callback_userdata {
bool ok;
double max_err;
ggml_backend_t backend1;
ggml_backend_t backend2;
};
callback_userdata ud {
true,
max_nmse_err(),
backend1,
backend2
};
auto callback = [](int index, ggml_tensor * t1, ggml_tensor * t2, void * user_data) -> bool {
callback_userdata * ud = (callback_userdata *) user_data;
const char * bn1 = ggml_backend_name(ud->backend1);
const char * bn2 = ggml_backend_name(ud->backend2);
if (t1->op == GGML_OP_NONE) {
// sentinels must be unchanged
std::vector<uint8_t> t1_data(ggml_nbytes(t1));
std::vector<uint8_t> t2_data(ggml_nbytes(t2));
ggml_backend_tensor_get(t1, t1_data.data(), 0, ggml_nbytes(t1));
ggml_backend_tensor_get(t2, t2_data.data(), 0, ggml_nbytes(t2));
if (memcmp(t1_data.data(), t2_data.data(), ggml_nbytes(t1)) != 0) {
printf("sentinel mismatch: %s ", t1->name);
ud->ok = false;
return true;
}
}
std::vector<float> f1 = tensor_to_float(t1);
std::vector<float> f2 = tensor_to_float(t2);
for (size_t i = 0; i < f1.size(); i++) {
// check for nans
if (std::isnan(f1[i]) || std::isnan(f2[i])) {
printf("[%s] NaN at index %zu (%s=%f %s=%f) ", ggml_op_desc(t1), i, bn1, f1[i], bn2, f2[i]);
ud->ok = false;
return true;
}
// check for infs: both must be inf of the same sign, or both must be finite
if (isinf_or_max(f1[i]) || isinf_or_max(f2[i])) {
if (isinf_or_max(f1[i]) && isinf_or_max(f2[i])) {
if (std::signbit(f1[i]) != std::signbit(f2[i])) {
printf("[%s] inf sign mismatch: %s=%f %s=%f ", ggml_op_desc(t1), bn1, f1[i], bn2, f2[i]);
ud->ok = false;
return true;
}
} else {
printf("[%s] inf mismatch: %s=%f %s=%f ", ggml_op_desc(t1), bn1, f1[i], bn2, f2[i]);
ud->ok = false;
return true;
}
}
}
double err = nmse(f1.data(), f2.data(), f1.size());
if (err > ud->max_err) {
printf("[%s] NMSE = %.9f > %.9f ", ggml_op_desc(t1), err, ud->max_err);
//for (int i = 0; i < (int) f1.size(); i++) {
// printf("%5d %9.6f %9.6f, diff = %9.6f\n", i, f1[i], f2[i], f1[i] - f2[i]);
//}
//printf("\n");
//exit(1);
ud->ok = false;
}
return true;
GGML_UNUSED(index);
};
const bool cmp_ok = ggml_backend_compare_graph_backend(backend1, backend2, gf, callback, &ud);
if (!cmp_ok) {
printf("compare failed ");
}
ggml_backend_buffer_free(buf);
ggml_free(ctx);
if (ud.ok && cmp_ok) {
printf("\033[1;32mOK\033[0m\n");
return true;
}
printf("\033[1;31mFAIL\033[0m\n");
return false;
}
bool eval_perf(ggml_backend_t backend, const char * op_name) {
mode = MODE_PERF;
static const size_t graph_nodes = 8192;
ggml_init_params params = {
/* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead_custom(graph_nodes, false),
/* .mem_base = */ NULL,
/* .no_alloc = */ true,
};
ggml_context * ctx = ggml_init(params);
GGML_ASSERT(ctx);
ggml_tensor * out = build_graph(ctx);
if (op_name != nullptr && op_desc(out) != op_name) {
//printf(" %s: skipping\n", op_desc(out).c_str());
ggml_free(ctx);
return true;
}
int len = printf(" %s(%s): ", op_desc(out).c_str(), vars().c_str());
fflush(stdout);
// check if backends support op
if (!ggml_backend_supports_op(backend, out)) {
printf("not supported\n");
ggml_free(ctx);
return true;
}
// align while also leaving some margin for variations in parameters
int align = 8;
int last = (len + align - 1) / align * align;
if (last - len < 5) {
last += align;
}
printf("%*s", last - len, "");
// allocate
ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors(ctx, backend);
if (buf == NULL) {
printf("failed to allocate tensors\n");
ggml_free(ctx);
return false;
}
// randomize tensors
initialize_tensors(ctx);
// build graph
ggml_cgraph * gf = ggml_new_graph_custom(ctx, graph_nodes, false);
ggml_build_forward_expand(gf, out);
// warmup run
ggml_backend_graph_compute(backend, gf);
// determine number of runs
int n_runs;
bool is_cpu = ggml_backend_dev_type(ggml_backend_get_device(backend)) == GGML_BACKEND_DEVICE_TYPE_CPU;
if (op_flops(out) > 0) {
// based on flops
const uint64_t GFLOP = 1000 * 1000 * 1000;
const uint64_t target_flops_cpu = 8ULL * GFLOP;
const uint64_t target_flops_gpu = 100ULL * GFLOP;
uint64_t target_flops = is_cpu ? target_flops_cpu : target_flops_gpu;
n_runs = std::min<int>(ggml_graph_size(gf) - ggml_graph_n_nodes(gf), target_flops / op_flops(out)) + 1;
} else {
// based on memory size
const size_t GB = 1ULL << 30;
const size_t target_size_cpu = 8 * GB;
const size_t target_size_gpu = 32 * GB;
size_t target_size = is_cpu ? target_size_cpu : target_size_gpu;
n_runs = std::min<int>(ggml_graph_size(gf) - ggml_graph_n_nodes(gf), target_size / op_size(out)) + 1;
}
// duplicate the op
for (int i = 1; i < n_runs; i++) {
ggml_graph_add_node(gf, out);
}
// calculate memory
size_t mem = n_runs * op_size(out);
auto tensor_op_size = [](ggml_tensor * t) {
size_t size = ggml_nbytes(t);
// add source tensors
for (int i = 0; i < GGML_MAX_SRC; i++) {
if (t->src[i] != NULL) {
size += ggml_nbytes(t->src[i]);
}
}
return size;
};
for (int i = 0; i < ggml_graph_n_nodes(gf); ++i) {
if (ggml_is_view_op(ggml_graph_node(gf, i)->op) || ggml_graph_node(gf, i) == out) {
continue;
}
mem += tensor_op_size(ggml_graph_node(gf, i));
}
// run
int64_t total_time_us = 0;
int64_t total_mem = 0;
int total_runs = 0;
do {
int64_t start_time = ggml_time_us();
ggml_backend_graph_compute(backend, gf);
int64_t end_time = ggml_time_us();
total_time_us += end_time - start_time;
total_mem += mem;
total_runs += n_runs;
} while (total_time_us < 1000*1000); // run for at least 1 second
printf(" %8d runs - %8.2f us/run - ",
total_runs,
(double)total_time_us / total_runs);
if (op_flops(out) > 0) {
double flops_per_sec = (op_flops(out) * total_runs) / (total_time_us / 1e6);
auto format_flops = [](double flops) -> std::string {
char buf[256];
if (flops >= 1e12) {
snprintf(buf, sizeof(buf), "%6.2f TFLOP", flops / 1e12);
} else if (flops >= 1e9) {
snprintf(buf, sizeof(buf), "%6.2f GFLOP", flops / 1e9);
} else if (flops >= 1e6) {
snprintf(buf, sizeof(buf), "%6.2f MFLOP", flops / 1e6);
} else {
snprintf(buf, sizeof(buf), "%6.2f KFLOP", flops / 1e3);
}
return buf;
};
printf("%s/run - \033[1;34m%sS\033[0m",
format_flops(op_flops(out)).c_str(),
format_flops(flops_per_sec).c_str());
} else {
printf("%8zu kB/run - \033[1;34m%7.2f GB/s\033[0m",
op_size(out) / 1024,
total_mem / (total_time_us / 1e6) / 1024.0 / 1024.0 / 1024.0);
}
printf("\n");
ggml_backend_buffer_free(buf);
ggml_free(ctx);
return true;
}
bool eval_grad(ggml_backend_t backend, const char * op_name) {
mode = MODE_GRAD;
const std::vector<float> expect = grad_expect();
ggml_init_params params = {
/* .mem_size = */ ggml_tensor_overhead()*128 + 2*ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, true),
/* .mem_base = */ NULL,
/* .no_alloc = */ true,
};
ggml_context * ctx = ggml_init(params);
GGML_ASSERT(ctx);
gf = ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, true);
gb = ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, true);
ggml_tensor * out = build_graph(ctx);
if ((op_name != nullptr && op_desc(out) != op_name) || out->op == GGML_OP_OPT_STEP_ADAMW) {
//printf(" %s: skipping\n", op_desc(out).c_str());
ggml_free(ctx);
return true;
}
printf(" %s(%s): ", op_desc(out).c_str(), vars().c_str());
fflush(stdout);
if (out->type != GGML_TYPE_F32) {
ggml_free(ctx);
printf("not supported [%s->type != FP32]\n", out->name);
return true;
}
// check if the backend supports the ops
bool supported = true;
bool any_params = false;
for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
if (!ggml_backend_supports_op(backend, t)) {
printf("not supported [%s] ", ggml_backend_name(backend));
supported = false;
break;
}
if ((t->flags & GGML_TENSOR_FLAG_PARAM)) {
any_params = true;
if (t->type != GGML_TYPE_F32) {
printf("not supported [%s->type != FP32] ", t->name);
supported = false;
break;
}
}
}
if (!any_params) {
printf("not supported [%s] \n", op_name);
supported = false;
}
if (!supported) {
printf("\n");
ggml_free(ctx);
return true;
}
int64_t ngrads = 0;
for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
if (t->flags & GGML_TENSOR_FLAG_PARAM) {
ngrads += ggml_nelements(t);
}
}
if (ngrads > grad_nmax()) {
printf("skipping large tensors for speed \n");
ggml_free(ctx);
return true;
}
if (!ggml_is_scalar(out)) {
out = ggml_sum(ctx, out);
ggml_set_name(out, "sum_of_out");
}
ggml_set_loss(out);
ggml_build_forward_expand(gf, out);
ggml_graph_cpy(gf, gb);
ggml_build_backward_expand(ctx, ctx, gb, false);
if (expect.size() != 1 || expect[0] != 0.0f) {
GGML_ASSERT(ggml_graph_n_nodes(gb) > ggml_graph_n_nodes(gf));
for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
GGML_ASSERT(!(t->flags & GGML_TENSOR_FLAG_PARAM) || ggml_graph_get_grad(gb, t)->op != GGML_OP_NONE);
}
}
for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
if (!ggml_backend_supports_op(backend, t)) {
printf("not supported [%s] ", ggml_backend_name(backend));
supported = false;
break;
}
if ((t->flags & GGML_TENSOR_FLAG_PARAM) && t->type != GGML_TYPE_F32) {
printf("not supported [%s->type != FP32] ", t->name);
supported = false;
break;
}
}
if (!supported) {
printf("\n");
ggml_free(ctx);
return true;
}
// allocate
ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors(ctx, backend);
if (buf == NULL) {
printf("failed to allocate tensors [%s] ", ggml_backend_name(backend));
ggml_free(ctx);
return false;
}
initialize_tensors(ctx); // Randomizes all tensors (including gradients).
ggml_graph_reset(gb); // Sets gradients to 1 if loss, 0 otherwise.
ggml_backend_graph_compute(backend, gf);
ggml_backend_graph_compute(backend, gb);
bool ok = true;
for (struct ggml_tensor * t = ggml_get_first_tensor(ctx); t != nullptr; t = ggml_get_next_tensor(ctx, t)) {
if (!(t->flags & GGML_TENSOR_FLAG_PARAM)) {
continue;
}
const char * bn = ggml_backend_name(backend);
const int64_t ne = ggml_nelements(t);
std::vector<float> ga;
struct ggml_tensor * grad = ggml_graph_get_grad(gb, t);
if (grad) {
ga = tensor_to_float(grad);
} else {
ga.resize(ne); // default value is 0.0f
}
for (int64_t i = 0; i < ne; ++i) { // gradient algebraic
// check for nans
if (!std::isfinite(ga[i])) {
printf("[%s] nonfinite gradient at index %" PRId64 " (%s=%f) ", ggml_op_desc(t), i, bn, ga[i]);
ok = false;
break;
}
}
if (!ok) {
break;
}
std::vector<float> gn(ne); // gradient numeric
GGML_ASSERT(ga.size() == gn.size());
std::vector<float> x0 = tensor_to_float(t); // original t data
GGML_ASSERT(ggml_is_scalar(out));
GGML_ASSERT(out->type == GGML_TYPE_F32);
const float eps = grad_eps();
for (int64_t i = 0; i < ne; ++i) {
const float xiu = x0[i] + 1.0f*eps; // x, index i, up
const float xiuh = x0[i] + 0.5f*eps; // x, index i, up half
const float xidh = x0[i] - 0.5f*eps; // x, index i, down half
const float xid = x0[i] - 1.0f*eps; // x, index i, down
float fu, fuh, fdh, fd; // output values for xiu, xiuh, xid, xidh
ggml_backend_tensor_set(t, &xiu, i*sizeof(float), sizeof(float));
ggml_backend_graph_compute(backend, gf);
ggml_backend_tensor_get(out, &fu, 0, ggml_nbytes(out));
ggml_backend_tensor_set(t, &xid, i*sizeof(float), sizeof(float));
ggml_backend_graph_compute(backend, gf);
ggml_backend_tensor_get(out, &fd, 0, ggml_nbytes(out));
if (grad_precise()) {
ggml_backend_tensor_set(t, &xiuh, i*sizeof(float), sizeof(float));
ggml_backend_graph_compute(backend, gf);
ggml_backend_tensor_get(out, &fuh, 0, ggml_nbytes(out));
ggml_backend_tensor_set(t, &xidh, i*sizeof(float), sizeof(float));
ggml_backend_graph_compute(backend, gf);
ggml_backend_tensor_get(out, &fdh, 0, ggml_nbytes(out));
gn[i] = (8.0*(double)fuh + (double)fd - (8.0*(double)fdh + (double)fu)) / (6.0*(double)eps);
} else {
gn[i] = (fu - fd) / (2.0f*eps);
}
ggml_backend_tensor_set(t, x0.data(), 0, ggml_nbytes(t));
}
const double err = mean_abs_asymm(gn.data(), ga.data(), gn.size(), expect);
if (err > max_maa_err()) {
printf("[%s] MAA = %.9f > %.9f ", ggml_op_desc(t), err, max_maa_err());
ok = false;
break;
}
if (!ok) {
break;
}
}
if (!ok) {
printf("compare failed ");
}
ggml_backend_buffer_free(buf);
ggml_free(ctx);
if (ok) {
printf("\033[1;32mOK\033[0m\n");
return true;
}
printf("\033[1;31mFAIL\033[0m\n");
return false;
}
};
// ###################################
// ## Section 2: GGML Op Defintions ##
// ###################################
// The following is an example showing the bare minimum for creating a test for a GGML op.
// GGML_OP_EXAMPLE
struct test_example : public test_case {
// Always define these 2 or variants thereof:
const ggml_type type; // The type of the input tensors.
const std::array<int64_t, 4> ne; // The shape of the input tensors.
// For some ops it's necessary to define multiple types or shapes for the inputs.
// Or they may need additional parameters.
// Put all parameters needed to fully define the test into one of the VARS_TO_STR macros.
// In most cases these are just the properties of the struct that you defined above.
// This is needed for info prints.
std::string vars() override {
return VARS_TO_STR2(type, ne);
}
// Define a constructor for the struct.
// In most cases it will be sufficient to have the same arguments as the struct has properties
// and just use initializer lists.
test_example(ggml_type type = GGML_TYPE_F32,
std::array<int64_t, 4> ne = {10, 5, 4, 3})
: type(type), ne(ne) {}
// Define how a simple GGML compute graph can be constructed for the new GGML op.
ggml_tensor * build_graph(ggml_context * ctx) override {
// Step 1: create input tensors that don't depend on any other tensors:
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
ggml_set_name(a, "a"); // Setting names is optional but it's useful for debugging.
ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
ggml_set_name(b, "b");
// Step 2: use the op that you want to test in the GGML compute graph.
ggml_tensor * out = ggml_add(ctx, a, b); // For this example we're just doing a simple addition.
ggml_set_name(out, "out");
// Step 3: return the output tensor.
return out;
}
// In order to also check the gradients for your op, add calls like ggml_set_param(ctx, a)
// immediately after you create the tensors.
// This is optional and only makes sense if a backward pass has actually been implemented for the new op.
};
// GGML_OP_UNARY
struct test_unary : public test_case {
const ggml_unary_op op;
const ggml_type type;
const std::array<int64_t, 4> ne_a;
int v; // view (1 : non-contiguous a)
std::string vars() override {
return VARS_TO_STR3(type, ne_a, v);
}
test_unary(ggml_unary_op op,
ggml_type type = GGML_TYPE_F32,
std::array<int64_t, 4> ne_a = {128, 2, 2, 2},
int v = 0)
: op(op), type(type), ne_a(ne_a), v(v) {}
ggml_tensor * build_graph(ggml_context * ctx) override {
const bool grad_supported = op == GGML_UNARY_OP_ABS || op == GGML_UNARY_OP_SGN || op == GGML_UNARY_OP_NEG ||
op == GGML_UNARY_OP_STEP || op == GGML_UNARY_OP_RELU || op == GGML_UNARY_OP_SILU;
ggml_tensor * a;
if (v & 1) {
auto ne = ne_a; ne[0] *= 3;
a = ggml_new_tensor(ctx, type, 4, ne.data());
if (grad_supported) {
ggml_set_param(ctx, a);
}
ggml_set_name(a, "a");
a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
ggml_set_name(a, "view_of_a");
} else {
a = ggml_new_tensor(ctx, type, 4, ne_a.data());
if (grad_supported) {
ggml_set_param(ctx, a);
}
ggml_set_name(a, "a");
}
ggml_tensor * out = ggml_unary(ctx, a, op);
ggml_set_name(out, "out");
return out;
}
void initialize_tensors(ggml_context * ctx) override {
for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
// test extended range of values to check for NaNs in GELU
init_tensor_uniform(t, -150.f, 150.f);
}
}
float grad_eps() override {
return 15.0f;
}
std::vector<float> grad_expect() override {
if (op == GGML_UNARY_OP_ABS) {
return {-1.0f, 1.0f};
}
if (op == GGML_UNARY_OP_SGN || op == GGML_UNARY_OP_STEP) {
return {0.0f};
}
if (op == GGML_UNARY_OP_RELU) {
return {0.0f, 1.0f};
}
return {};
}
};
// GGML_OP_GET_ROWS
struct test_get_rows : public test_case {
const ggml_type type;
const int n; // cols
const int m; // rows
const int r; // rows to get
const int b; // batch size
const bool v; // view (non-contiguous src1)
std::string vars() override {
return VARS_TO_STR6(type, n, m, r, b, v);
}
test_get_rows(ggml_type type = GGML_TYPE_F32, int n = 10, int m = 5, int r = 3, int b = 1, bool v = false)
: type(type), n(n), m(m), r(r), b(b), v(v) {}
ggml_tensor * build_graph(ggml_context * ctx) override {
ggml_tensor * in = ggml_new_tensor_3d(ctx, type, n, m, b);
ggml_set_name(in, "in");
ggml_tensor * rows = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, r, b);
ggml_set_name(rows, "rows");
if (v) {
rows = ggml_view_2d(ctx, rows, r/2, b, rows->nb[1], 0);
ggml_set_name(rows, "view_of_rows");
}
const bool grad_supported = ggml_is_matrix(in) && ggml_is_vector(rows);
if (grad_supported) {
ggml_set_param(ctx, in);
// rows is a constant input -> no gradients
}
ggml_tensor * out = ggml_get_rows(ctx, in, rows);
ggml_set_name(out, "out");
return out;
}
void initialize_tensors(ggml_context * ctx) override {
for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
if (t->type == GGML_TYPE_I32) {
if (ggml_is_view_op(t->op)) { continue; }
// rows
std::vector<int> data(r*b);
for (int i = 0; i < r*b; i++) {
data[i] = rand() % m;
}
ggml_backend_tensor_set(t, data.data(), 0, r * b * sizeof(int));
} else {
init_tensor_uniform(t);
}
}
}
};
// GGML_OP_ARGMAX
struct test_argmax : public test_case {
const ggml_type type;
const std::array<int64_t, 4> ne;
std::string vars() override {
return VARS_TO_STR2(type, ne);
}
test_argmax(ggml_type type = GGML_TYPE_F32,
std::array<int64_t, 4> ne = {10, 100, 1, 1})
: type(type), ne(ne) {}
ggml_tensor * build_graph(ggml_context * ctx) override {
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
ggml_set_name(a, "a");
ggml_tensor * out = ggml_argmax(ctx, a);
ggml_set_name(out, "out");
return out;
}
void initialize_tensors(ggml_context * ctx) override {
std::random_device rd;
std::default_random_engine rng(rd());
for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
if (t->type == GGML_TYPE_F32) {
// initialize with unique values to avoid ties
for (int64_t r = 0; r < ggml_nrows(t); r++) {
std::vector<float> data(t->ne[0]);
for (int i = 0; i < t->ne[0]; i++) {
data[i] = i;
}
std::shuffle(data.begin(), data.end(), rng);
ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(float));
}
} else {
init_tensor_uniform(t);
}
}
}
double max_nmse_err() override {
return 0.0;
}
};
// GGML_OP_COUNT_EQUAL
struct test_count_equal : public test_case {
const ggml_type type;
const std::array<int64_t, 4> ne;
std::string vars() override {
return VARS_TO_STR2(type, ne);
}
test_count_equal(ggml_type type = GGML_TYPE_F32,
std::array<int64_t, 4> ne = {4, 500, 1, 1})
: type(type), ne(ne) {}
ggml_tensor * build_graph(ggml_context * ctx) override {
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
ggml_set_name(a, "a");
ggml_tensor * a_argmax = ggml_argmax(ctx, a);
ggml_set_name(a_argmax, "a_argmax");
ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
ggml_set_name(b, "b");
ggml_tensor * b_argmax = ggml_argmax(ctx, a);
ggml_set_name(b_argmax, "b_argmax");
ggml_tensor * out = ggml_count_equal(ctx, a_argmax, b_argmax);
ggml_set_name(out, "out");
return out;
}
double max_nmse_err() override {
return 0.0;
}
};
// GGML_OP_REPEAT
struct test_repeat : public test_case {
const ggml_type type;
const std::array<int64_t, 4> ne;
const std::array<int, 4> nr;
std::string vars() override {
return VARS_TO_STR3(type, ne, nr);
}
size_t op_size(ggml_tensor * t) override {
return ggml_nbytes(t) * 2;
}
test_repeat(ggml_type type = GGML_TYPE_F32,
std::array<int64_t, 4> ne = {10, 5, 4, 3},
std::array<int, 4> nr = {2, 2, 2, 2})
: type(type), ne(ne), nr(nr) {}
ggml_tensor * build_graph(ggml_context * ctx) override {
ggml_tensor * target = ggml_new_tensor_4d(ctx, type, ne[0]*nr[0], ne[1]*nr[1], ne[2]*nr[2], ne[3]*nr[3]);
ggml_set_name(target, "target");
ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
ggml_set_param(ctx, src);
ggml_set_name(src, "src");
ggml_tensor * out = ggml_repeat(ctx, src, target);
ggml_set_name(out, "out");
return out;
}
};
// GGML_OP_DUP
struct test_dup : public test_case {
const ggml_type type;
const std::array<int64_t, 4> ne;
const std::array<int64_t, 4> permute;
bool _use_permute;
std::string vars() override {
std::string v = VARS_TO_STR2(type, ne);
if (_use_permute) v += "," + VAR_TO_STR(permute);
return v;
}
test_dup(ggml_type type = GGML_TYPE_F32,
std::array<int64_t, 4> ne = {10, 10, 20, 1},
std::array<int64_t, 4> permute = {0, 0, 0, 0})
: type(type), ne(ne), permute(permute),
_use_permute(permute[0] + permute[1] + permute[2] + permute[3] > 0) {}
ggml_tensor * build_graph(ggml_context * ctx) override {
ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
ggml_set_param(ctx, src);
ggml_set_name(src, "src");
if (_use_permute) {
src = ggml_permute(ctx, src, permute[0], permute[1], permute[2], permute[3]);
ggml_set_name(src, "src_permuted");
}
ggml_tensor * out = ggml_dup(ctx, src);
ggml_set_name(out, "out");
return out;
}
};
// GGML_OP_SET
struct test_set : public test_case {
const ggml_type type_src;
const ggml_type type_dst;
const std::array<int64_t, 4> ne;
const int dim;
std::string vars() override {
return VARS_TO_STR4(type_src, type_dst, ne, dim);
}
size_t op_size(ggml_tensor * t) override {
return ggml_nbytes(t) + ggml_nbytes(t->src[0]);
}
test_set(ggml_type type_src = GGML_TYPE_F32, ggml_type type_dst = GGML_TYPE_F32,
std::array<int64_t, 4> ne = {6, 5, 4, 3}, int dim = 1)
: type_src(type_src), type_dst(type_dst), ne(ne), dim(dim) {}
ggml_tensor * build_graph(ggml_context * ctx) override {
ggml_tensor * src = ggml_new_tensor(ctx, type_src, 4, ne.data());
ggml_set_param(ctx, src);
ggml_set_name(src, "src");
auto ne_dst = ne;
for (int i = 0; i < dim; ++i) {
ne_dst[i] *= 2;
}
ggml_tensor* dst = ggml_new_tensor(ctx, type_dst, 4, ne_dst.data());
ggml_set_param(ctx, dst);
ggml_set_name(dst, "dst");
size_t offset = 0;
for (int i = 0; i < dim; ++i) {
offset += ((ne_dst[i] - ne[i])/2)*dst->nb[i];
}
ggml_tensor * out = ggml_set(ctx, dst, src,
// The backward pass requires setting a contiguous region:
src->nb[1], src->nb[2], src->nb[3], offset);
ggml_set_name(out, "out");
return out;
}
};
// GGML_OP_CPY
struct test_cpy : public test_case {
const ggml_type type_src;
const ggml_type type_dst;
const std::array<int64_t, 4> ne;
const std::array<int64_t, 4> permute;
bool _src_use_permute;
std::string vars() override {
return VARS_TO_STR4(type_src, type_dst, ne, permute);
}
double max_nmse_err() override {
return 1e-6;
}
size_t op_size(ggml_tensor * t) override {
return ggml_nbytes(t) + ggml_nbytes(t->src[0]);
}
test_cpy(ggml_type type_src = GGML_TYPE_F32, ggml_type type_dst = GGML_TYPE_F32,
std::array<int64_t, 4> ne = {10, 10, 10, 1},
std::array<int64_t, 4> permute = {0, 0, 0, 0})
: type_src(type_src), type_dst(type_dst), ne(ne), permute(permute),
_src_use_permute(permute[0] + permute[1] + permute[2] + permute[3] > 0) {}
ggml_tensor * build_graph(ggml_context * ctx) override {
ggml_tensor * src = ggml_new_tensor(ctx, type_src, 4, ne.data());
ggml_set_param(ctx, src);
ggml_set_name(src, "src");
if (_src_use_permute) {
src = ggml_permute(ctx, src, permute[0], permute[1], permute[2], permute[3]);
ggml_set_name(src, "src_permuted");
}
ggml_tensor* dst = ggml_new_tensor(ctx, type_dst, 4, src->ne);
ggml_set_name(dst, "dst");
ggml_tensor * out = ggml_cpy(ctx, src, dst);
ggml_set_name(out, "out");
return out;
}
};
// GGML_OP_CONT
struct test_cont : public test_case {
const ggml_type type;
const std::array<int64_t, 4> ne;
std::string vars() override {
return VARS_TO_STR2(type, ne);
}
test_cont(ggml_type type = GGML_TYPE_F32,
std::array<int64_t, 4> ne = {10, 10, 10, 1})
: type(type), ne(ne) {}
ggml_tensor * build_graph(ggml_context * ctx) override {
ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
ggml_set_param(ctx, src);
ggml_set_name(src, "src");
src = ggml_transpose(ctx, src);
ggml_set_name(src, "src_transposed");
ggml_tensor * out = ggml_cont(ctx, src);
ggml_set_name(out, "out");
return out;
}
};
// GGML_OP_ADD
// GGML_OP_MUL
// GGML_OP_DIV
struct test_bin_bcast : public test_case {
using op_t = ggml_tensor * (*) (ggml_context *, ggml_tensor *, ggml_tensor *);
op_t op;
const ggml_type type;
const std::array<int64_t, 4> ne;
const std::array<int, 4> nr;
std::string vars() override {
return VARS_TO_STR3(type, ne, nr);
}
size_t op_size(ggml_tensor * t) override {
return ggml_nbytes(t) * 3;
}
test_bin_bcast(op_t op, ggml_type type = GGML_TYPE_F32,
std::array<int64_t, 4> ne = {10, 10, 1, 1},
std::array<int, 4> nr = {1, 2, 1, 1})
: op(op), type(type), ne(ne), nr(nr) {}
ggml_tensor * build_graph(ggml_context * ctx) override {
ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0]*nr[0], ne[1]*nr[1], ne[2]*nr[2], ne[3]*nr[3]);
ggml_set_name(a, "a");
ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
ggml_set_name(b, "b");
// The backward pass supports broadcasting only for GGML_ADD:
const bool grad_supported = op == ggml_add || ggml_are_same_shape(a, b);
if (grad_supported) {
ggml_set_param(ctx, a);
ggml_set_param(ctx, b);
}
ggml_tensor * out = op(ctx, a, b);
ggml_set_name(out, "out");
return out;
}
void initialize_tensors(ggml_context * ctx) override {
for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
if (op == ggml_mul || op == ggml_div) {
// MUL and DIV have numerical issues around zero:
init_tensor_uniform(t, 0.9f, 1.1f);
} else {
init_tensor_uniform(t);
}
}
}
float grad_eps() override {
return 0.1f * (op == ggml_mul ? ne[0]*ne[1]*ne[2]*ne[3] : 1);
}
bool grad_precise() override {
return op == ggml_div;
}
double max_maa_err() override {
return op == ggml_add ? 1e-4 : 1e-3;
}
};
// GGML_OP_ADD1
struct test_add1 : public test_case {
const ggml_type type;
const std::array<int64_t, 4> ne;
std::string vars() override {
return VARS_TO_STR2(type, ne);
}
test_add1(ggml_type type = GGML_TYPE_F32,
std::array<int64_t, 4> ne = {10, 5, 4, 3})
: type(type), ne(ne) {}
ggml_tensor * build_graph(ggml_context * ctx) override {
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
ggml_set_param(ctx, a);
ggml_set_name(a, "a");
ggml_tensor * b = ggml_new_tensor_1d(ctx, type, 1);
// ggml_set_param(ctx, b); // TODO: implement
ggml_set_name(b, "b");
ggml_tensor * out = ggml_add1(ctx, a, b);
ggml_set_name(out, "out");
return out;
}
float grad_eps() override {
return 0.1f * ne[0]*ne[1]*ne[2]*ne[3];
}
};
// GGML_OP_SCALE
struct test_scale : public test_case {
const ggml_type type;
const std::array<int64_t, 4> ne;
float scale;
std::string vars() override {
return VARS_TO_STR3(type, ne, scale);
}
test_scale(ggml_type type = GGML_TYPE_F32,
std::array<int64_t, 4> ne = {10, 10, 10, 10},
float scale = 2.0f)
: type(type), ne(ne), scale(scale) {}
ggml_tensor * build_graph(ggml_context * ctx) override {
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
ggml_set_param(ctx, a);
ggml_set_name(a, "a");
ggml_tensor * out = ggml_scale(ctx, a, scale);
ggml_set_name(out, "out");
return out;
}
};
// GGML_OP_NORM
struct test_norm : public test_case {
const ggml_type type;
const std::array<int64_t, 4> ne;
float eps;
std::string vars() override {
return VARS_TO_STR3(type, ne, eps);
}
test_norm(ggml_type type = GGML_TYPE_F32,
std::array<int64_t, 4> ne = {64, 5, 4, 3},
float eps = 1e-6f)
: type(type), ne(ne), eps(eps) {}
ggml_tensor * build_graph(ggml_context * ctx) override {
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
ggml_set_name(a, "a");
ggml_tensor * out = ggml_norm(ctx, a, eps);
ggml_set_name(out, "out");
return out;
}
};
// GGML_OP_RMS_NORM
struct test_rms_norm : public test_case {
const ggml_type type;
const std::array<int64_t, 4> ne;
float eps;
std::string vars() override {
return VARS_TO_STR3(type, ne, eps);
}
test_rms_norm(ggml_type type = GGML_TYPE_F32,
std::array<int64_t, 4> ne = {64, 5, 4, 3},
float eps = 1e-6f)
: type(type), ne(ne), eps(eps) {}
ggml_tensor * build_graph(ggml_context * ctx) override {
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
ggml_set_param(ctx, a);
ggml_set_name(a, "a");
ggml_tensor * out = ggml_rms_norm(ctx, a, eps);
ggml_set_name(out, "out");
return out;
}
bool grad_precise() override {
return true;
}
};
// GGML_OP_SSM_CONV
struct test_ssm_conv : public test_case {
const ggml_type type;
const std::array<int64_t, 4> ne_a;
const std::array<int64_t, 4> ne_b;
std::string vars() override {
return VARS_TO_STR3(type, ne_a, ne_b);
}
test_ssm_conv(ggml_type type = GGML_TYPE_F32,
std::array<int64_t, 4> ne_a = {10, 10, 10, 1},
std::array<int64_t, 4> ne_b = {3, 3, 1, 1})
: type(type), ne_a(ne_a), ne_b(ne_b) {}
ggml_tensor * build_graph(ggml_context * ctx) override {
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne_b.data());
ggml_tensor * out = ggml_ssm_conv(ctx, a, b);
return out;
}
};
// GGML_OP_SSM_SCAN
struct test_ssm_scan : public test_case {
const ggml_type type;
const int64_t d_state;
const int64_t d_inner;
const int64_t n_seq_tokens;
const int64_t n_seqs;
std::string vars() override {
return VARS_TO_STR5(type, d_state, d_inner, n_seq_tokens, n_seqs);
}
test_ssm_scan(ggml_type type = GGML_TYPE_F32,
int64_t d_state = 32, int64_t d_inner = 32, int64_t n_seq_tokens = 32, int64_t n_seqs = 32)
: type(type), d_state(d_state), d_inner(d_inner), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {}
ggml_tensor * build_graph(ggml_context * ctx) override {
ggml_tensor * s = ggml_new_tensor(ctx, type, 4, std::vector<int64_t>{ d_state, d_inner, n_seqs, 1 }.data());
ggml_tensor * x = ggml_new_tensor(ctx, type, 4, std::vector<int64_t>{ d_inner, n_seq_tokens, n_seqs, 1 }.data());
ggml_tensor * dt = ggml_new_tensor(ctx, type, 4, std::vector<int64_t>{ d_inner, n_seq_tokens, n_seqs, 1 }.data());
ggml_tensor * A = ggml_new_tensor(ctx, type, 4, std::vector<int64_t>{ d_state, d_inner, 1 , 1 }.data());
ggml_tensor * B = ggml_new_tensor(ctx, type, 4, std::vector<int64_t>{ d_state, n_seq_tokens, n_seqs, 1 }.data());
ggml_tensor * C = ggml_new_tensor(ctx, type, 4, std::vector<int64_t>{ d_state, n_seq_tokens, n_seqs, 1 }.data());
ggml_tensor * out = ggml_ssm_scan(ctx, s, x, dt, A, B, C);
return out;
}
};
// GGML_OP_RWKV_WKV6
struct test_rwkv_wkv6 : public test_case {
const ggml_type type;
const int64_t head_count;
const int64_t head_size;
const int64_t n_seq_tokens;
const int64_t n_seqs;
std::string vars() override {
return VARS_TO_STR5(type, head_count, head_size, n_seq_tokens, n_seqs);
}
test_rwkv_wkv6(ggml_type type = GGML_TYPE_F32,
int64_t head_count = 32, int64_t head_size = 64, int64_t n_seq_tokens = 32, int64_t n_seqs = 32)
: type(type), head_count(head_count), head_size(head_size), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {}
ggml_tensor * build_graph(ggml_context * ctx) override {
const int64_t n_tokens = n_seq_tokens * n_seqs;
ggml_tensor * r = ggml_new_tensor(ctx, type, 4, std::vector<int64_t>{ 1, head_size, head_count, n_tokens }.data());
ggml_tensor * k = ggml_new_tensor(ctx, type, 4, std::vector<int64_t>{ head_size, 1, head_count, n_tokens }.data());
ggml_tensor * v = ggml_new_tensor(ctx, type, 4, std::vector<int64_t>{ 1, head_size, head_count, n_tokens }.data());
ggml_tensor * tf = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size, head_count }.data());
ggml_tensor * td = ggml_new_tensor(ctx, type, 4, std::vector<int64_t>{ 1, head_size, head_count, n_tokens }.data());
ggml_tensor * s = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size * head_size * head_count, n_seqs }.data());
ggml_tensor * out = ggml_rwkv_wkv6(ctx, k, v, r, tf, td, s);
return out;
}
};
// GGML_OP_MUL_MAT
struct test_mul_mat : public test_case {
const ggml_type type_a;
const ggml_type type_b;
const int64_t m;
const int64_t n;
const int64_t k;
const std::array<int64_t, 2> bs; // dims 3 and 4
const std::array<int64_t, 2> nr; // repeat in dims 3 and 4
const std::array<int64_t, 4> per; // permutation of dimensions
std::string vars() override {
return VARS_TO_STR8(type_a, type_b, m, n, k, bs, nr, per);
}
double max_nmse_err() override {
return 5e-4;
}
uint64_t op_flops(ggml_tensor * t) override {
GGML_UNUSED(t);
return 2 * m * n * k * bs[0] * nr[0] * bs[1] * nr[1];
}
test_mul_mat(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
int64_t m = 32, int64_t n = 32, int64_t k = 32,
std::array<int64_t, 2> bs = {10, 10},
std::array<int64_t, 2> nr = {2, 2},
std::array<int64_t, 4> per = {0, 1, 2, 3})
: type_a(type_a), type_b(type_b), m(m), n(n), k(k), bs(bs), nr(nr), per(per) {}
ggml_tensor * build_graph(ggml_context * ctx) override {
// C^T = A * B^T: (k, m) * (k, n) => (m, n)
ggml_tensor * a;
ggml_tensor * b;
const int npermuted = (per[0] != 0) + (per[1] != 1) + (per[2] != 2) + (per[3] != 3);
if (npermuted > 0) {
GGML_ASSERT(npermuted == 2);
GGML_ASSERT(!ggml_is_quantized(type_a) || per[0] == 0);
GGML_ASSERT(!ggml_is_quantized(type_b) || per[0] == 0);
// Create tensors with the permuted dimensions, then permute them back to the dimensions given by m,n,k.
const int64_t ne_a[4] = {k, m, bs[0], bs[1]};
const int64_t ne_b[4] = {k, n, bs[0]*nr[0], bs[1]*nr[1]};
a = ggml_new_tensor_4d(ctx, type_a, ne_a[per[0]], ne_a[per[1]], ne_a[per[2]], ne_a[per[3]]);
b = ggml_new_tensor_4d(ctx, type_b, ne_b[per[0]], ne_b[per[1]], ne_b[per[2]], ne_b[per[3]]);
ggml_set_param(ctx, a);
ggml_set_param(ctx, b);
ggml_set_name(a, "a");
ggml_set_name(b, "b");
a = ggml_permute(ctx, a, per[0], per[1], per[2], per[3]);
b = ggml_permute(ctx, b, per[0], per[1], per[2], per[3]);
ggml_set_name(a, "a_permuted");
ggml_set_name(b, "b_permuted");
} else {
a = ggml_new_tensor_4d(ctx, type_a, k, m, bs[0], bs[1]);
b = ggml_new_tensor_4d(ctx, type_b, k, n, bs[0]*nr[0], bs[1]*nr[1]);
ggml_set_param(ctx, a);
ggml_set_param(ctx, b);
ggml_set_name(a, "a");
ggml_set_name(b, "b");
}
ggml_tensor * out = ggml_mul_mat(ctx, a, b);
ggml_set_name(out, "out");
return out;
}
};
// GGML_OP_MUL_MAT_ID
struct test_mul_mat_id : public test_case {
const ggml_type type_a;
const ggml_type type_b;
const int n_mats;
const int n_used;
const bool b; // brodcast b matrix
const int64_t m;
const int64_t n;
const int64_t k;
std::string vars() override {
return VARS_TO_STR8(type_a, type_b, n_mats, n_used, b, m, n, k);
}
double max_nmse_err() override {
return 5e-4;
}
uint64_t op_flops(ggml_tensor * t) override {
GGML_UNUSED(t);
return 2 * m * k * n * n_used;
}
test_mul_mat_id(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
int n_mats = 8, int n_used = 2, bool b = false,
int64_t m = 32, int64_t n = 32, int64_t k = 32)
: type_a(type_a), type_b(type_b), n_mats(n_mats), n_used(n_used), b(b),
m(m), n(n), k(k) {
GGML_ASSERT(n_used <= n_mats);
}
ggml_tensor * build_graph(ggml_context * ctx) override {
// C^T = A * B^T: (k, m) * (k, n) => (m, n)
ggml_tensor * as = ggml_new_tensor_3d(ctx, type_a, k, m, n_mats);
ggml_set_name(as, "as");
ggml_tensor * ids = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, n_mats, n);
ggml_set_name(ids, "ids");
if (n_used != n_mats) {
ids = ggml_view_2d(ctx, ids, n_used, n, ids->nb[1], 0);
ggml_set_name(ids, "view_of_ids");
}
ggml_tensor * b = ggml_new_tensor_3d(ctx, type_b, k, this->b ? 1 : n_used, n);
ggml_set_name(b, "b");
ggml_tensor * out = ggml_mul_mat_id(ctx, as, b, ids);
ggml_set_name(out, "out");
return out;
}
void initialize_tensors(ggml_context * ctx) override {
std::random_device rd;
std::default_random_engine rng(rd());
for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
if (t->type == GGML_TYPE_I32) {
if (ggml_is_view_op(t->op)) { continue; }
// ids
for (int64_t r = 0; r < ggml_nrows(t); r++) {
std::vector<int32_t> data(t->ne[0]);
for (int i = 0; i < t->ne[0]; i++) {
data[i] = i % n_mats;
}
std::shuffle(data.begin(), data.end(), rng);
ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(int32_t));
}
} else {
init_tensor_uniform(t);
}
}
}
};
// GGML_OP_OUT_PROD
struct test_out_prod : public test_case {
const ggml_type type_a;
const ggml_type type_b;
const int64_t m;
const int64_t n;
const int64_t k;
const std::array<int64_t, 2> bs; // dims 3 and 4
const bool trans_b;
std::string vars() override {
return VARS_TO_STR7(type_a, type_b, m, n, k, bs, trans_b);
}
double max_nmse_err() override {
return 5e-4;
}
test_out_prod(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
int64_t m = 32, int64_t n = 32, int64_t k = 32,
std::array<int64_t, 2> bs = {10, 10},
bool trans_b = false)
: type_a(type_a), type_b(type_b), m(m), n(n), k(k), bs(bs), trans_b(trans_b) {}
ggml_tensor * build_graph(ggml_context * ctx) override {
ggml_tensor * a = ggml_new_tensor_4d(ctx, type_a, m, k, bs[0], bs[1]);
ggml_set_name(a, "a");
ggml_tensor * b;
if (trans_b) {
b = ggml_new_tensor_4d(ctx, type_b, k, n, bs[0], bs[1]);
b = ggml_transpose(ctx, b);
} else {
b = ggml_new_tensor_4d(ctx, type_b, n, k, bs[0], bs[1]);
}
ggml_set_name(b, "b");
ggml_tensor * out = ggml_out_prod(ctx, a, b);
ggml_set_name(out, "out");
return out;
}
};
// GGML_OP_SQR
struct test_sqr : public test_case {
const ggml_type type;
const std::array<int64_t, 4> ne;
std::string vars() override {
return VARS_TO_STR2(type, ne);
}
test_sqr(ggml_type type = GGML_TYPE_F32,
std::array<int64_t, 4> ne = {10, 5, 4, 3})
: type(type), ne(ne) {}
ggml_tensor * build_graph(ggml_context * ctx) override {
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
ggml_set_param(ctx, a);
ggml_set_name(a, "a");
ggml_tensor * out = ggml_sqr(ctx, a);
ggml_set_name(out, "out");
return out;
}
float grad_eps() override {
return 0.1f * 0.25f*ne[0]*ne[1]*ne[2]*ne[3]; // 10% of expected value of sum.
}
};
// GGML_OP_SQRT
struct test_sqrt : public test_case {
const ggml_type type;
const std::array<int64_t, 4> ne;
std::string vars() override {
return VARS_TO_STR2(type, ne);
}
test_sqrt(ggml_type type = GGML_TYPE_F32,
std::array<int64_t, 4> ne = {10, 3, 3, 2})
: type(type), ne(ne) {}
ggml_tensor * build_graph(ggml_context * ctx) override {
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
ggml_set_param(ctx, a);
ggml_set_name(a, "a");
ggml_tensor * out = ggml_sqrt(ctx, a);
ggml_set_name(out, "out");
return out;
}
void initialize_tensors(ggml_context * ctx) override {
// fill with positive values
for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
init_tensor_uniform(t, 50.0f, 100.0f);
}
}
float grad_eps() override {
return 20.0f;
}
bool grad_precise() override {
return true;
}
};
// GGML_OP_LOG
struct test_log : public test_case {
const ggml_type type;
const std::array<int64_t, 4> ne;
std::string vars() override {
return VARS_TO_STR2(type, ne);
}
test_log(ggml_type type = GGML_TYPE_F32,
std::array<int64_t, 4> ne = {10, 5, 4, 3})
: type(type), ne(ne) {}
ggml_tensor * build_graph(ggml_context * ctx) override {
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
ggml_set_param(ctx, a);
ggml_set_name(a, "a");
ggml_tensor * out = ggml_log(ctx, a);
ggml_set_name(out, "out");
return out;
}
void initialize_tensors(ggml_context * ctx) override {
for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
// log(1) == 0, cluster values there to keep the sum low for better precision in the backward pass:
init_tensor_uniform(t, 0.9f, 1.1f);
}
}
bool grad_precise() override {
return true;
}
};
// GGML_OP_SIN
struct test_sin : public test_case {
const ggml_type type;
const std::array<int64_t, 4> ne;
std::string vars() override {
return VARS_TO_STR2(type, ne);
}
test_sin(ggml_type type = GGML_TYPE_F32,
std::array<int64_t, 4> ne = {10, 2, 2, 2})
: type(type), ne(ne) {}
ggml_tensor * build_graph(ggml_context * ctx) override {
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
ggml_set_param(ctx, a);
ggml_set_name(a, "a");
ggml_tensor * out = ggml_sin(ctx, a);
ggml_set_name(out, "out");
return out;
}
void initialize_tensors(ggml_context * ctx) override {
for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
init_tensor_uniform(t, -6.5f, 6.5f); // Covers interval [-2*pi, 2*pi].
}
}
double max_maa_err() override {
return 1e-3;
}
float grad_eps() override {
return 0.2f;
}
bool grad_precise() override {
return true;
}
};
// GGML_OP_COS
struct test_cos : public test_case {
const ggml_type type;
const std::array<int64_t, 4> ne;
std::string vars() override {
return VARS_TO_STR2(type, ne);
}
test_cos(ggml_type type = GGML_TYPE_F32,
std::array<int64_t, 4> ne = {10, 2, 2, 2})
: type(type), ne(ne) {}
ggml_tensor * build_graph(ggml_context * ctx) override {
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
ggml_set_param(ctx, a);
ggml_set_name(a, "a");
ggml_tensor * out = ggml_cos(ctx, a);
ggml_set_name(out, "out");
return out;
}
void initialize_tensors(ggml_context * ctx) override {
for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
init_tensor_uniform(t, -6.5f, 6.5f); // Covers interval [-2*pi, 2*pi].
}
}
double max_maa_err() override {
return 1e-3;
}
float grad_eps() override {
return 0.2f;
}
bool grad_precise() override {
return true;
}
};
// GGML_OP_CLAMP
struct test_clamp : public test_case {
const ggml_type type;
const std::array<int64_t, 4> ne;
float min;
float max;
std::string vars() override {
return VARS_TO_STR4(type, ne, min, max);
}
test_clamp(ggml_type type = GGML_TYPE_F32,
std::array<int64_t, 4> ne = {10, 5, 4, 3},
float min = -0.5f, float max = 0.5f)
: type(type), ne(ne), min(min), max(max) {}
ggml_tensor * build_graph(ggml_context * ctx) override {
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
ggml_set_name(a, "a");
ggml_tensor * out = ggml_clamp(ctx, a, min, max);
ggml_set_name(out, "out");
return out;
}
float grad_eps() override {
return 1e-2f;
}
std::vector<float> grad_expect() override {
return {0.0f, 1.0f};
}
};
// GGML_OP_DIAG_MASK_INF
struct test_diag_mask_inf : public test_case {
const ggml_type type;
const std::array<int64_t, 4> ne;
const int n_past;
std::string vars() override {
return VARS_TO_STR3(type, ne, n_past);
}
test_diag_mask_inf(ggml_type type = GGML_TYPE_F32,
std::array<int64_t, 4> ne = {10, 10, 3, 2},
int n_past = 5)
: type(type), ne(ne), n_past(n_past) {}
ggml_tensor * build_graph(ggml_context * ctx) override {
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
ggml_set_param(ctx, a);
ggml_set_name(a, "a");
ggml_tensor * out = ggml_diag_mask_inf(ctx, a, n_past);
ggml_set_name(out, "out");
return out;
}
};
// GGML_OP_SOFT_MAX
struct test_soft_max : public test_case {
const ggml_type type;
const std::array<int64_t, 4> ne;
const bool mask;
const float scale;
const float max_bias;
std::string vars() override {
return VARS_TO_STR5(type, ne, mask, scale, max_bias);
}
// the 1024 test with bias occasionally fails:
// SOFT_MAX(type=f32,ne=[1024,16,1,1],mask=1,scale=1.000000,max_bias=8.000000): [SOFT_MAX] NMSE = 0.000000103 > 0.000000100 FAIL
virtual double max_nmse_err() override {
return 1e-6;
}
test_soft_max(ggml_type type = GGML_TYPE_F32,
std::array<int64_t, 4> ne = {10, 5, 4, 3},
bool mask = false,
float scale = 1.0f,
float max_bias = 0.0f)
: type(type), ne(ne), mask(mask), scale(scale), max_bias(max_bias) {}
ggml_tensor * build_graph(ggml_context * ctx) override {
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
ggml_set_param(ctx, a);
ggml_set_name(a, "a");
ggml_tensor * mask = nullptr;
if (this->mask) {
mask = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, ne[0], ne[1]);
ggml_set_name(mask, "mask");
}
ggml_tensor * out = ggml_soft_max_ext(ctx, a, mask, scale, max_bias);
ggml_set_name(out, "out");
return out;
}
bool grad_precise() override {
return true;
}
};
// GGML_OP_ROPE
struct test_rope : public test_case {
const ggml_type type;
const std::array<int64_t, 4> ne_a;
int n_dims;
int mode;
int n_ctx; // used to generate positions
float fs; // freq_scale
float ef; // ext_factor
float af; // attn_factor
bool ff;
int v; // view (1 : non-contiguous a)
std::string vars() override {
return VARS_TO_STR10(type, ne_a, n_dims, mode, n_ctx, fs, ef, af, ff, v);
}
test_rope(ggml_type type = GGML_TYPE_F32,
std::array<int64_t, 4> ne_a = {10, 5, 3, 1},
int n_dims = 10, int mode = 0, int n_ctx = 512, float fs = 1.0f, float ef = 0.0f, float af = 0.0f, bool ff = false, int v = 0)
: type(type), ne_a(ne_a), n_dims(n_dims), mode(mode), n_ctx(n_ctx), fs(fs), ef(ef), af(af), ff(ff), v(v) {}
ggml_tensor * build_graph(ggml_context * ctx) override {
ggml_tensor * a;
if (v & 1) {
auto ne = ne_a; ne[0] *= 2; ne[1] *= 4; ne[2] *= 3;
a = ggml_new_tensor(ctx, type, 4, ne.data());
ggml_set_param(ctx, a);
ggml_set_name(a, "a");
a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
ggml_set_name(a, "view_of_a");
} else {
a = ggml_new_tensor(ctx, type, 4, ne_a.data());
ggml_set_param(ctx, a);
ggml_set_name(a, "a");
}
ggml_tensor * pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, ne_a[2]);
ggml_set_name(pos, "pos");
ggml_tensor * freq = nullptr;
if (ff) {
freq = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_dims/2);
ggml_set_name(freq, "freq");
}
ggml_tensor * out = ggml_rope_ext(ctx, a, pos, freq, n_dims, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
ggml_set_name(out, "out");
return out;
}
void initialize_tensors(ggml_context * ctx) override {
for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
if (t->type == GGML_TYPE_I32) {
// pos
std::vector<int> data(ne_a[2]);
for (int i = 0; i < ne_a[2]; i++) {
data[i] = rand() % n_ctx;
}
ggml_backend_tensor_set(t, data.data(), 0, ne_a[2] * sizeof(int));
} else {
if (t->ne[0] == n_dims/2) {
// frequency factors in the range [0.9f, 1.1f]
init_tensor_uniform(t, 0.9f, 1.1f);
} else {
init_tensor_uniform(t);
}
}
}
}
double max_maa_err() override {
return 1e-3;
}
bool grad_precise() override {
return true;
}
};
// GGML_OP_POOL2D
struct test_pool2d : public test_case {
enum ggml_op_pool pool_type;
const ggml_type type_input;
const std::array<int64_t, 4> ne_input;
// kernel size
const int k0;
const int k1;
// stride
const int s0;
const int s1;
// padding
const int p0;
const int p1;
std::string vars() override {
return VARS_TO_STR9(pool_type, type_input, ne_input, k0, k1, s0, s1, p0, p1);
}
test_pool2d(ggml_op_pool pool_type = GGML_OP_POOL_AVG,
ggml_type type_input = GGML_TYPE_F32,
std::array<int64_t, 4> ne_input = {10, 10, 3, 1}, // [input_width, input_height, input_channels, 1]
int k0 = 3, int k1 = 3,
int s0 = 1, int s1 = 1,
int p0 = 1, int p1 = 1)
: pool_type(pool_type), type_input(type_input), ne_input(ne_input), k0(k0), k1(k1), s0(s0), s1(s1), p0(p0), p1(p1) {}
ggml_tensor * build_graph(ggml_context * ctx) override {
ggml_tensor * input = ggml_new_tensor(ctx, type_input, 4, ne_input.data());
ggml_set_param(ctx, input);
ggml_set_name(input, "input");
ggml_tensor * out = ggml_pool_2d(ctx, input, pool_type, k0, k1, s0, s1, p0, p1);
ggml_set_name(out, "out");
return out;
}
};
// GGML_OP_CONV_TRANSPOSE_1D
struct test_conv_transpose_1d : public test_case {
const std::array<int64_t, 4> ne_input;
const std::array<int64_t, 4> ne_kernel;
const int s0; // stride
const int p0; // padding
const int d0; // dilation
std::string vars() override {
return VARS_TO_STR5(ne_input, ne_kernel, s0, p0, d0);
}
test_conv_transpose_1d(std::array<int64_t, 4> ne_input = {197, 32, 1, 1}, // [input_width, input_height, input_channels, 1]
std::array<int64_t, 4> ne_kernel = {16, 32, 32, 1}, // [kernel_width, kernel_height, input_channels, 1]
int s0 = 1, int p0 = 0, int d0 = 1)
: ne_input(ne_input), ne_kernel(ne_kernel), s0(s0), p0(p0), d0(d0) {}
ggml_tensor * build_graph(ggml_context * ctx) override {
ggml_tensor * input = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_input.data());
ggml_set_name(input, "input");
ggml_tensor * kernel = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_kernel.data());
ggml_set_name(kernel, "kernel");
ggml_tensor * out = ggml_conv_transpose_1d(ctx, kernel, input, s0, p0, d0);
ggml_set_name(out, "out");
return out;
}
};
// GGML_OP_IM2COL
struct test_im2col : public test_case {
const ggml_type type_input;
const ggml_type type_kernel;
const ggml_type dst_type;
const std::array<int64_t, 4> ne_input;
const std::array<int64_t, 4> ne_kernel;
// stride
const int s0;
const int s1;
// padding
const int p0;
const int p1;
// dilation
const int d0;
const int d1;
// mode
const bool is_2D;
std::string vars() override {
return VARS_TO_STR12(type_input, type_kernel, dst_type, ne_input, ne_kernel, s0, s1, p0, p1, d0, d1, is_2D);
}
test_im2col(ggml_type type_input = GGML_TYPE_F32, ggml_type type_kernel = GGML_TYPE_F16, ggml_type dst_type = GGML_TYPE_F32,
std::array<int64_t, 4> ne_input = {10, 10, 3, 1}, // [input_width, input_height, input_channels, 1]
std::array<int64_t, 4> ne_kernel = {3, 3, 3, 1}, // [kernel_width, kernel_height, input_channels, 1]
int s0 = 1, int s1 = 1,
int p0 = 1, int p1 = 1,
int d0 = 1, int d1 = 1,
bool is_2D = true)
: type_input(type_input), type_kernel(type_kernel), dst_type(dst_type), ne_input(ne_input), ne_kernel(ne_kernel), s0(s0), s1(s1), p0(p0), p1(p1), d0(d0), d1(d1), is_2D(is_2D) {}
ggml_tensor * build_graph(ggml_context * ctx) override {
ggml_tensor * input = ggml_new_tensor(ctx, type_input, 4, ne_input.data());
ggml_set_param(ctx, input);
ggml_set_name(input, "input");
ggml_tensor * kernel = ggml_new_tensor(ctx, type_kernel, 4, ne_kernel.data());
ggml_set_name(kernel, "kernel");
ggml_tensor * out = ggml_im2col(ctx, kernel, input, s0, s1, p0, p1, d0, d1, is_2D, dst_type);
ggml_set_name(out, "out");
return out;
}
};
// GGML_OP_CONCAT
struct test_concat : public test_case {
const ggml_type type;
const std::array<int64_t, 4> ne_a;
const int64_t ne_b_d;
const int dim;
const int v; // view (1 << 0: non-cont a, 1 << 1: non-cont b)
std::string vars() override {
return VARS_TO_STR5(type, ne_a, ne_b_d, dim, v);
}
test_concat(ggml_type type = GGML_TYPE_F32,
std::array<int64_t, 4> ne_a = {10, 5, 5, 5},
int64_t ne_b_d = 5,
int dim = 2, int v = 0)
: type(type), ne_a(ne_a), ne_b_d(ne_b_d), dim(dim), v(v) {}
ggml_tensor * build_graph(ggml_context * ctx) override {
auto ne_b = ne_a;
ne_b[dim] = ne_b_d;
ggml_tensor * a;
if (v & 1) {
auto ne = ne_a; ne[0] *= 2; ne[1] *= 4; ne[2] *= 3;
a = ggml_new_tensor(ctx, type, 4, ne.data());
ggml_set_name(a, "a");
a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
ggml_set_name(a, "view_of_a");
} else {
a = ggml_new_tensor(ctx, type, 4, ne_a.data());
ggml_set_name(a, "a");
}
ggml_tensor * b;
if (v & 2) {
auto ne = ne_b; ne[0] *= 3; ne[1] *= 2; ne[2] *= 4;
b = ggml_new_tensor(ctx, type, 4, ne.data());
ggml_set_name(b, "b");
b = ggml_view_4d(ctx, b, ne_b[0], ne_b[1], ne_b[2], ne_b[3], b->nb[1], b->nb[2], b->nb[3], 0);
ggml_set_name(b, "view_of_b");
} else {
b = ggml_new_tensor(ctx, type, 4, ne_b.data());
ggml_set_name(b, "b");
}
ggml_tensor * out = ggml_concat(ctx, a, b, dim);
ggml_set_name(out, "out");
return out;
}
};
// GGML_OP_ARGSORT
struct test_argsort : public test_case {
const ggml_type type;
const std::array<int64_t, 4> ne;
ggml_sort_order order;
std::string vars() override {
return VARS_TO_STR3(type, ne, order);
}
test_argsort(ggml_type type = GGML_TYPE_F32,
std::array<int64_t, 4> ne = {16, 10, 10, 10},
ggml_sort_order order = GGML_SORT_ORDER_ASC)
: type(type), ne(ne), order(order) {}
ggml_tensor * build_graph(ggml_context * ctx) override {
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
ggml_set_name(a, "a");
ggml_tensor * out = ggml_argsort(ctx, a, order);
ggml_set_name(out, "out");
return out;
}
void initialize_tensors(ggml_context * ctx) override {
std::random_device rd;
std::default_random_engine rng(rd());
for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
if (t->type == GGML_TYPE_I32) {
// indices
std::vector<int> data(ggml_nelements(t));
for (int i = 0; i < ggml_nelements(t); i++) {
data[i] = rand();
}
std::shuffle(data.begin(), data.end(), rng);
ggml_backend_tensor_set(t, data.data(), 0, ne[0]*ne[1]*ne[2]*ne[3] * sizeof(int));
} else if (t->type == GGML_TYPE_F32) {
// initialize with unique values to avoid ties
for (int64_t r = 0; r < ggml_nrows(t); r++) {
std::vector<float> data(t->ne[0]);
for (int i = 0; i < t->ne[0]; i++) {
data[i] = i;
}
std::shuffle(data.begin(), data.end(), rng);
ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(float));
}
} else {
GGML_ABORT("fatal error");
}
}
}
};
// GGML_OP_SUM
struct test_sum : public test_case {
const ggml_type type;
const std::array<int64_t, 4> ne;
std::string vars() override {
return VARS_TO_STR2(type, ne);
}
test_sum(ggml_type type = GGML_TYPE_F32,
std::array<int64_t, 4> ne = {10, 5, 4, 3})
: type(type), ne(ne) {}
ggml_tensor * build_graph(ggml_context * ctx) override {
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
ggml_set_param(ctx, a);
ggml_set_name(a, "a");
ggml_tensor * out = ggml_sum(ctx, a);
ggml_set_name(out, "out");
return out;
}
float grad_eps() override {
return 0.1f * sqrtf(ne[0]*ne[1]*ne[2]*ne[3]);
}
};
// GGML_OP_SUM_ROWS
struct test_sum_rows : public test_case {
const ggml_type type;
const std::array<int64_t, 4> ne;
std::string vars() override {
return VARS_TO_STR2(type, ne);
}
test_sum_rows(ggml_type type = GGML_TYPE_F32,
std::array<int64_t, 4> ne = {10, 5, 4, 3})
: type(type), ne(ne) {}
ggml_tensor * build_graph(ggml_context * ctx) override {
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
ggml_set_param(ctx, a);
ggml_set_name(a, "a");
ggml_tensor * out = ggml_sum_rows(ctx, a);
ggml_set_name(out, "out");
return out;
}
};
// GGML_OP_MEAN
struct test_mean : public test_case {
const ggml_type type;
const std::array<int64_t, 4> ne;
std::string vars() override {
return VARS_TO_STR2(type, ne);
}
test_mean(ggml_type type = GGML_TYPE_F32,
std::array<int64_t, 4> ne = {10, 5, 4, 3})
: type(type), ne(ne) {}
ggml_tensor * build_graph(ggml_context * ctx) override {
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
ggml_set_param(ctx, a);
ggml_set_name(a, "a");
ggml_tensor * out = ggml_mean(ctx, a);
ggml_set_name(out, "out");
return out;
}
float grad_eps() override {
return 0.1f * ne[0]*ne[1]*ne[2]*ne[3];
}
};
// GGML_OP_UPSCALE
struct test_upscale : public test_case {
const ggml_type type;
const std::array<int64_t, 4> ne;
const int32_t scale_factor;
const bool transpose;
std::string vars() override {
return VARS_TO_STR4(type, ne, scale_factor, transpose);
}
test_upscale(ggml_type type = GGML_TYPE_F32,
std::array<int64_t, 4> ne = {512, 512, 3, 1},
int32_t scale_factor = 2, bool transpose = false)
: type(type), ne(ne), scale_factor(scale_factor), transpose(transpose) {}
ggml_tensor * build_graph(ggml_context * ctx) override {
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
ggml_set_name(a, "a");
if (transpose) {
a = ggml_transpose(ctx, a);
ggml_set_name(a, "a_transposed");
}
ggml_tensor * out = ggml_upscale(ctx, a, scale_factor);
ggml_set_name(out, "out");
return out;
}
};
// GGML_OP_UPSCALE (ext)
struct test_upscale_ext : public test_case {
const ggml_type type;
const std::array<int64_t, 4> ne;
const std::array<int64_t, 4> ne_tgt;
std::string vars() override {
return VARS_TO_STR3(type, ne, ne_tgt);
}
test_upscale_ext(ggml_type type = GGML_TYPE_F32,
std::array<int64_t, 4> ne = {2, 5, 7, 11},
std::array<int64_t, 4> ne_tgt = {5, 7, 11, 13})
: type(type), ne(ne), ne_tgt(ne_tgt) {}
ggml_tensor * build_graph(ggml_context * ctx) override {
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
ggml_set_name(a, "a");
ggml_tensor * out = ggml_upscale_ext(ctx, a, ne_tgt[0], ne_tgt[1],ne_tgt[2], ne_tgt[3]);
ggml_set_name(out, "out");
return out;
}
};
// GGML_OP_GROUP_NORM
struct test_group_norm : public test_case {
const ggml_type type;
const std::array<int64_t, 4> ne;
const int32_t num_groups;
const float eps;
std::string vars() override {
return VARS_TO_STR3(type, ne, num_groups);
}
test_group_norm(ggml_type type = GGML_TYPE_F32,
std::array<int64_t, 4> ne = {64, 64, 320, 1},
int32_t num_groups = 32,
float eps = 1e-6f)
: type(type), ne(ne), num_groups(num_groups), eps(eps) {}
ggml_tensor * build_graph(ggml_context * ctx) override {
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
ggml_set_name(a, "a");
ggml_tensor * out = ggml_group_norm(ctx, a, num_groups, eps);
ggml_set_name(out, "out");
return out;
}
};
// GGML_OP_ACC
struct test_acc : public test_case {
const ggml_type type;
const std::array<int64_t, 4> ne_a;
const std::array<int64_t, 4> ne_b;
std::string vars() override {
return VARS_TO_STR3(type, ne_a, ne_b);
}
test_acc(ggml_type type = GGML_TYPE_F32,
std::array<int64_t, 4> ne_a = {256, 17, 1, 1},
std::array<int64_t, 4> ne_b = {256, 16, 1, 1})
: type(type), ne_a(ne_a), ne_b(ne_b) {}
ggml_tensor * build_graph(ggml_context * ctx) override {
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
ggml_set_param(ctx, a);
ggml_set_name(a, "a");
ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne_b.data());
ggml_set_param(ctx, b);
ggml_set_name(b, "b");
ggml_tensor * out = ggml_acc(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], b->nb[1]);
ggml_set_name(out, "out");
return out;
}
};
// GGML_OP_PAD
struct test_pad : public test_case {
const ggml_type type;
const std::array<int64_t, 4> ne_a;
const int pad_0;
const int pad_1;
std::string vars() override {
return VARS_TO_STR4(type, ne_a, pad_0, pad_1);
}
test_pad(ggml_type type = GGML_TYPE_F32,
std::array<int64_t, 4> ne_a = {512, 512, 1, 1},
int pad_0 = 1, int pad_1 = 1)
: type(type), ne_a(ne_a), pad_0(pad_0), pad_1(pad_1) {}
ggml_tensor * build_graph(ggml_context * ctx) override {
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
ggml_set_name(a, "a");
ggml_tensor * out = ggml_pad(ctx, a, pad_0, pad_1, 0, 0);
ggml_set_name(out, "out");
return out;
}
};
// GGML_OP_ARANGE
struct test_arange : public test_case {
const ggml_type type;
const float start;
const float stop;
const float step;
std::string vars() override {
return VARS_TO_STR4(type, start, stop, step);
}
test_arange(ggml_type type = GGML_TYPE_F32,
float start = 0.f, float stop = 10.f, float step = 1.f)
: type(type), start(start), stop(stop), step(step) {}
ggml_tensor * build_graph(ggml_context * ctx) override {
ggml_tensor * out = ggml_arange(ctx, start, stop, step);
ggml_set_name(out, "out");
return out;
}
};
// GGML_OP_TIMESTEP_EMBEDDING
struct test_timestep_embedding : public test_case {
const ggml_type type;
const std::array<int64_t, 4> ne_a;
const int dim;
const int max_period;
std::string vars() override {
return VARS_TO_STR4(type, ne_a, dim, max_period);
}
test_timestep_embedding(ggml_type type = GGML_TYPE_F32,
std::array<int64_t, 4> ne_a = {2, 1, 1, 1},
int dim = 320, int max_period=10000)
: type(type), ne_a(ne_a), dim(dim), max_period(max_period) {}
ggml_tensor * build_graph(ggml_context * ctx) override {
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
ggml_set_name(a, "a");
ggml_tensor * out = ggml_timestep_embedding(ctx, a, dim, max_period);
ggml_set_name(out, "out");
return out;
}
};
// GGML_OP_LEAKY_RELU
struct test_leaky_relu : public test_case {
const ggml_type type;
const std::array<int64_t, 4> ne_a;
const float negative_slope;
std::string vars() override {
return VARS_TO_STR3(type, ne_a, negative_slope);
}
test_leaky_relu(ggml_type type = GGML_TYPE_F32,
std::array<int64_t, 4> ne_a = {10, 5, 4, 3},
float negative_slope = 0.1f)
: type(type), ne_a(ne_a), negative_slope(negative_slope) {}
ggml_tensor * build_graph(ggml_context * ctx) override {
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
ggml_set_name(a, "a");
ggml_tensor * out = ggml_leaky_relu(ctx, a, negative_slope, true);
ggml_set_name(out, "out");
return out;
}
};
// GGML_OP_FLASH_ATTN_EXT
struct test_flash_attn_ext : public test_case {
const int64_t hs; // head size
const int64_t nh; // num heads
const int64_t kv; // kv size
const int64_t nb; // batch size
const bool mask; // use mask
const float max_bias; // ALiBi
const float logit_softcap; // Gemma 2
const ggml_type type_KV;
std::string vars() override {
return VARS_TO_STR8(hs, nh, kv, nb, mask, max_bias, logit_softcap, type_KV);
}
double max_nmse_err() override {
return 5e-4;
}
uint64_t op_flops(ggml_tensor * t) override {
GGML_UNUSED(t);
// Just counting matmul costs:
// Q*K^T is nb x hs x kv, P*V is nb x kv x hs, per head
return 2 * 2 * nh * nb * hs * kv;
}
test_flash_attn_ext(int64_t hs = 128, int64_t nh = 32, int64_t kv = 96, int64_t nb = 8,
bool mask = true, float max_bias = 0.0f, float logit_softcap = 0.0f, ggml_type type_KV = GGML_TYPE_F16)
: hs(hs), nh(nh), kv(kv), nb(nb), mask(mask), max_bias(max_bias), logit_softcap(logit_softcap), type_KV(type_KV) {}
ggml_tensor * build_graph(ggml_context * ctx) override {
const int64_t hs_padded = GGML_PAD(hs, ggml_blck_size(type_KV));
ggml_tensor * q = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, hs_padded, nb, nh, 1);
ggml_set_name(q, "q");
ggml_tensor * k = ggml_new_tensor_4d(ctx, type_KV, hs_padded, kv, nh, 1);
ggml_set_name(k, "k");
ggml_tensor * v = ggml_new_tensor_4d(ctx, type_KV, hs_padded, kv, nh, 1);
ggml_set_name(v, "v");
ggml_tensor * m = nullptr;
if (mask) {
m = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, kv, GGML_PAD(nb, GGML_KQ_MASK_PAD), 1, 1);
ggml_set_name(m, "m");
}
ggml_tensor * out = ggml_flash_attn_ext(ctx, q, k, v, m, 1.0f/sqrtf(hs), max_bias, logit_softcap);
ggml_set_name(out, "out");
return out;
}
bool grad_precise() override {
return true;
}
};
// GGML_OP_CROSS_ENTROPY_LOSS
struct test_cross_entropy_loss : public test_case {
const ggml_type type;
const std::array<int64_t, 4> ne;
std::string vars() override {
return VARS_TO_STR2(type, ne);
}
test_cross_entropy_loss(ggml_type type = GGML_TYPE_F32,
std::array<int64_t, 4> ne = {10, 5, 4, 3})
: type(type), ne(ne) {}
ggml_tensor * build_graph(ggml_context * ctx) override {
ggml_tensor * logits = ggml_new_tensor(ctx, type, 4, ne.data());
ggml_set_param(ctx, logits);
ggml_set_name(logits, "logits");
ggml_tensor * labels = ggml_new_tensor(ctx, type, 4, ne.data());
// The labels are assumed to be constant -> no gradients.
ggml_set_name(labels, "labels");
// Ensure labels add up to 1:
labels = ggml_soft_max(ctx, labels);
ggml_set_name(labels, "labels_normalized");
ggml_tensor * out = ggml_cross_entropy_loss(ctx, logits, labels);
ggml_set_name(out, "out");
return out;
}
void initialize_tensors(ggml_context * ctx) override {
// For larger abs. diffs between logits softmax is more linear, therefore more precise num. gradients.
for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
init_tensor_uniform(t, -100.0f, 100.0f);
}
}
float grad_eps() override {
return 1.0f;
}
bool grad_precise() override {
return true;
}
};
// GGML_OP_OPT_STEP_ADAMW
struct test_opt_step_adamw : public test_case {
const ggml_type type;
const std::array<int64_t, 4> ne;
std::string vars() override {
return VARS_TO_STR2(type, ne);
}
test_opt_step_adamw(ggml_type type = GGML_TYPE_F32,
std::array<int64_t, 4> ne = {10, 5, 4, 3})
: type(type), ne(ne) {}
ggml_tensor * build_graph(ggml_context * ctx) override {
ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
ggml_set_param(ctx, a); // Despite tensor a having gradients the output tensor will not.
ggml_set_name(a, "a");
ggml_tensor * grad = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
ggml_set_name(grad, "grad");
ggml_tensor * grad_m = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
ggml_set_name(grad_m, "grad_m");
ggml_tensor * grad_v = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
ggml_set_name(grad_v, "grad_v");
ggml_tensor * adamw_params = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 7);
ggml_set_name(adamw_params, "adamw_params");
ggml_tensor * out = ggml_opt_step_adamw(ctx, a, grad, grad_m, grad_v, adamw_params);
ggml_set_name(out, "out");
return out;
}
void initialize_tensors(ggml_context * ctx) override {
for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
init_tensor_uniform(t, 0.0f, 1.0f); // grad_v and adamw_params need non-negative values.
}
}
bool grad_precise() override {
return true;
}
};
enum llm_norm_type {
LLM_NORM,
LLM_NORM_RMS,
};
struct llama_hparams {
uint32_t n_vocab;
uint32_t n_embd;
uint32_t n_head;
uint32_t n_head_kv;
static constexpr uint32_t n_layer = 1;
uint32_t n_rot;
uint32_t n_embd_head; // dimension of values (d_v)
uint32_t n_ff;
float f_norm_eps;
float f_norm_rms_eps;
// cparams
static constexpr uint32_t n_ctx = 512; // user-specified context size
static constexpr uint32_t n_ctx_orig = n_ctx;
// batch
int32_t n_tokens;
// llm_build_context
static constexpr int32_t n_kv = 32; // size of KV cache to consider (n_kv <= n_ctx
static constexpr int32_t kv_head = 1; // index of where we store new KV data in the cache
uint32_t n_embd_gqa() const { // dimension of key embeddings across all k-v heads
return n_embd_head * n_head_kv;
}
};
// LLM base class
struct test_llm : public test_case {
llama_hparams hp;
protected:
test_llm(llama_hparams hp)
: hp(std::move(hp)) {
}
public:
struct ggml_tensor * llm_build_norm(
struct ggml_context * ctx,
struct ggml_tensor * cur,
struct ggml_tensor * mw,
struct ggml_tensor * mb,
llm_norm_type type) {
switch (type) {
case LLM_NORM: cur = ggml_norm (ctx, cur, hp.f_norm_eps); break;
case LLM_NORM_RMS: cur = ggml_rms_norm(ctx, cur, hp.f_norm_rms_eps); break;
}
cur = ggml_mul(ctx, cur, mw);
if (mb) {
cur = ggml_add(ctx, cur, mb);
}
return cur;
}
void llm_build_kv_store(
struct ggml_context * ctx,
struct ggml_tensor * k_l,
struct ggml_tensor * v_l,
struct ggml_tensor * k_cur,
struct ggml_tensor * v_cur) {
// compute the transposed [n_tokens, n_embd] V matrix
struct ggml_tensor * v_cur_t = ggml_transpose(ctx, ggml_reshape_2d(ctx, v_cur, hp.n_embd_gqa(), hp.n_tokens));
struct ggml_tensor * k_cache_view = ggml_view_1d(ctx, k_l, hp.n_tokens*hp.n_embd_gqa(),
(ggml_row_size(k_l->type, hp.n_embd_gqa()))*hp.kv_head);
struct ggml_tensor * v_cache_view = ggml_view_2d(ctx, v_l, hp.n_tokens, hp.n_embd_gqa(),
( hp.n_ctx)*ggml_element_size(v_l),
(hp.kv_head)*ggml_element_size(v_l));
// important: storing RoPE-ed version of K in the KV cache!
ggml_cpy(ctx, k_cur, k_cache_view);
ggml_cpy(ctx, v_cur_t, v_cache_view);
}
struct ggml_tensor * llm_build_kqv(
struct ggml_context * ctx,
struct ggml_tensor * k_l,
struct ggml_tensor * v_l,
struct ggml_tensor * q_cur,
struct ggml_tensor * kq_mask,
float kq_scale) {
struct ggml_tensor * q = ggml_permute(ctx, q_cur, 0, 2, 1, 3);
struct ggml_tensor * k =
ggml_view_3d(ctx, k_l,
hp.n_embd_head, hp.n_kv, hp.n_head_kv,
ggml_row_size(k_l->type, hp.n_embd_gqa()),
ggml_row_size(k_l->type, hp.n_embd_head),
0);
struct ggml_tensor * kq = ggml_mul_mat(ctx, k, q);
kq = ggml_soft_max_ext(ctx, kq, kq_mask, kq_scale, 0.0f);
// split cached v into n_head heads
struct ggml_tensor * v =
ggml_view_3d(ctx, v_l,
hp.n_kv, hp.n_embd_head, hp.n_head_kv,
ggml_element_size(v_l)*hp.n_ctx,
ggml_element_size(v_l)*hp.n_ctx*hp.n_embd_head,
0);
struct ggml_tensor * kqv = ggml_mul_mat(ctx, v, kq);
struct ggml_tensor * kqv_merged = ggml_permute(ctx, kqv, 0, 2, 1, 3);
struct ggml_tensor * cur = ggml_cont_2d(ctx, kqv_merged, hp.n_embd_head*hp.n_head, hp.n_tokens);
struct ggml_tensor * wo = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd);
cur = ggml_mul_mat(ctx, wo, cur);
return cur;
}
void initialize_tensors(ggml_context * ctx) override {
for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
if (t->type == GGML_TYPE_I32) {
// pos
std::vector<int> data(hp.n_tokens);
for (int i = 0; i < hp.n_tokens; i++) {
data[i] = rand() % hp.n_ctx;
}
ggml_backend_tensor_set(t, data.data(), 0, hp.n_tokens * sizeof(int));
} else {
init_tensor_uniform(t);
}
}
}
};
// Llama
struct test_llama : public test_llm {
static constexpr float freq_base = 10000.0f;
static constexpr float freq_scale = 1.0f;
static constexpr float ext_factor = 0.0f;
static constexpr float attn_factor = 1.0f;
static constexpr float beta_fast = 32.0f;
static constexpr float beta_slow = 1.0f;
std::string op_desc(ggml_tensor * t) override {
GGML_UNUSED(t);
return "LLAMA";
}
std::string vars() override {
auto n_tokens = hp.n_tokens;
return VARS_TO_STR1(n_tokens);
}
double max_nmse_err() override {
return 2e-3;
}
test_llama(int n_tokens = 1)
: test_llm({
/*n_vocab =*/ 32000,
/*n_embd =*/ 3200,
/*n_head =*/ 32,
/*n_head_kv =*/ 32,
/*n_rot =*/ 100,
/*n_embd_head =*/ 100,
/*n_ff =*/ 8640,
/*f_norm_eps =*/ 0.f,
/*f_norm_rms_eps =*/ 1e-5f,
/*n_tokens =*/ n_tokens,
}) {
}
ggml_tensor * build_graph(ggml_context * ctx) override {
struct ggml_tensor * cur;
struct ggml_tensor * inpL;
inpL = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, hp.n_embd, hp.n_tokens);
// inp_pos - contains the positions
struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, hp.n_tokens);
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx, GGML_TYPE_F16, hp.n_kv, hp.n_tokens, 1);
ggml_tensor * k_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
ggml_tensor * v_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
for (uint32_t il = 0; il < hp.n_layer; ++il) {
struct ggml_tensor * inpSA = inpL;
// norm
ggml_tensor * attn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
cur = llm_build_norm(ctx, inpL, attn_norm, nullptr, LLM_NORM_RMS);
// self-attention
{
ggml_tensor * wq = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd);
ggml_tensor * wk = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd_gqa());
ggml_tensor * wv = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd_gqa());
// compute Q and K and RoPE them
struct ggml_tensor * Qcur = ggml_mul_mat(ctx, wq, cur);
struct ggml_tensor * Kcur = ggml_mul_mat(ctx, wk, cur);
struct ggml_tensor * Vcur = ggml_mul_mat(ctx, wv, cur);
Qcur = ggml_rope_ext(
ctx, ggml_reshape_3d(ctx, Qcur, hp.n_embd_head, hp.n_head, hp.n_tokens), inp_pos, nullptr,
hp.n_rot, 0, hp.n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
Kcur = ggml_rope_ext(
ctx, ggml_reshape_3d(ctx, Kcur, hp.n_embd_head, hp.n_head_kv, hp.n_tokens), inp_pos, nullptr,
hp.n_rot, 0, hp.n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
llm_build_kv_store(ctx, k_l, v_l, Kcur, Vcur);
cur = llm_build_kqv(ctx, k_l, v_l, Qcur, KQ_mask, 1.0f/sqrtf(float(hp.n_embd_head)));
}
struct ggml_tensor * ffn_inp = ggml_add(ctx, cur, inpSA);
// feed-forward network
ggml_tensor * ffn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
cur = llm_build_norm(ctx, ffn_inp, ffn_norm, nullptr, LLM_NORM_RMS);
ggml_tensor * ffn_gate = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff);
ggml_tensor * ffn_down = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_ff, hp.n_embd);
ggml_tensor * ffn_up = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff);
struct ggml_tensor * tmp = ggml_mul_mat(ctx, ffn_up, cur);
cur = ggml_mul_mat(ctx, ffn_gate, cur);
cur = ggml_silu(ctx, cur);
cur = ggml_mul(ctx, cur, tmp);
cur = ggml_mul_mat(ctx, ffn_down, cur);
cur = ggml_add(ctx, cur, ffn_inp);
// input for next layer
inpL = cur;
}
cur = inpL;
ggml_tensor * output_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
cur = llm_build_norm(ctx, cur, output_norm, nullptr, LLM_NORM_RMS);
// lm_head
ggml_tensor * output = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_vocab);
cur = ggml_mul_mat(ctx, output, cur);
return cur;
}
};
// Falcon
struct test_falcon : public test_llm {
static constexpr float freq_base = 10000.0f;
static constexpr float freq_scale = 1.0f;
static constexpr float ext_factor = 0.0f;
static constexpr float attn_factor = 1.0f;
static constexpr float beta_fast = 32.0f;
static constexpr float beta_slow = 1.0f;
std::string op_desc(ggml_tensor * t) override {
GGML_UNUSED(t);
return "FALCON";
}
std::string vars() override {
auto n_tokens = hp.n_tokens;
return VARS_TO_STR1(n_tokens);
}
double max_nmse_err() override {
return 2e-3;
}
test_falcon(int n_tokens = 1)
: test_llm({
/*n_vocab =*/ 32000,
/*n_embd =*/ 3200,
/*n_head =*/ 50,
/*n_head_kv =*/ 1,
/*n_rot =*/ 64,
/*n_embd_head =*/ 64,
/*n_ff =*/ 8640,
/*f_norm_eps =*/ 1e-5f,
/*f_norm_rms_eps =*/ 0.f,
/*n_tokens =*/ n_tokens,
}) {
}
ggml_tensor * build_graph(ggml_context * ctx) override {
struct ggml_tensor * cur;
struct ggml_tensor * inpL;
inpL = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, hp.n_embd, hp.n_tokens);
// inp_pos - contains the positions
struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, hp.n_tokens);
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx, GGML_TYPE_F16, hp.n_kv, hp.n_tokens, 1);
ggml_tensor * k_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
ggml_tensor * v_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
for (uint32_t il = 0; il < hp.n_layer; ++il) {
// norm
ggml_tensor * attn_norm_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
ggml_tensor * attn_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
ggml_tensor * attn_norm = llm_build_norm(ctx, inpL, attn_norm_w, attn_norm_b, LLM_NORM);
// self-attention
{
cur = attn_norm;
ggml_tensor * wqkv = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd + 2*hp.n_embd_gqa());
cur = ggml_mul_mat(ctx, wqkv, cur);
struct ggml_tensor * Qcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd, hp.n_tokens, cur->nb[1], 0*sizeof(float)*(hp.n_embd)));
struct ggml_tensor * Kcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd_gqa(), hp.n_tokens, cur->nb[1], 1*sizeof(float)*(hp.n_embd)));
struct ggml_tensor * Vcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd_gqa(), hp.n_tokens, cur->nb[1], 1*sizeof(float)*(hp.n_embd + hp.n_embd_gqa())));
Qcur = ggml_reshape_3d(ctx, Qcur, hp.n_embd_head, hp.n_head, hp.n_tokens);
Kcur = ggml_reshape_3d(ctx, Kcur, hp.n_embd_head, hp.n_head_kv, hp.n_tokens);
// using mode = 2 for neox mode
Qcur = ggml_rope_ext(
ctx, Qcur, inp_pos, nullptr, hp.n_rot, 2, hp.n_ctx_orig,
freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
);
Kcur = ggml_rope_ext(
ctx, Kcur, inp_pos, nullptr, hp.n_rot, 2, hp.n_ctx_orig,
freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
);
llm_build_kv_store(ctx, k_l, v_l, Kcur, Vcur);
cur = llm_build_kqv(ctx, k_l, v_l, Qcur, KQ_mask, 1.0f/sqrtf(float(hp.n_embd_head)));
}
struct ggml_tensor * ffn_inp = cur;
// feed forward
{
ggml_tensor * ffn_up = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff);
ggml_tensor * ffn_down = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_ff, hp.n_embd);
cur = attn_norm;
cur = ggml_mul_mat(ctx, ffn_up, cur);
cur = ggml_gelu(ctx, cur);
cur = ggml_mul_mat(ctx, ffn_down, cur);
}
cur = ggml_add(ctx, cur, ffn_inp);
cur = ggml_add(ctx, cur, inpL);
// input for next layer
inpL = cur;
}
cur = inpL;
ggml_tensor * output_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
ggml_tensor * output_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
cur = llm_build_norm(ctx, cur, output_norm, output_norm_b, LLM_NORM);
// lm_head
ggml_tensor * output = ggml_new_tensor_2d(ctx, GGML_TYPE_Q8_0, hp.n_embd, hp.n_vocab);
cur = ggml_mul_mat(ctx, output, cur);
return cur;
}
};
// ###########################################
// ## Section 3: GGML Op Test Instantiation ##
// ###########################################
static const ggml_type all_types[] = {
GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_BF16,
GGML_TYPE_Q4_0, GGML_TYPE_Q4_1,
GGML_TYPE_Q5_0, GGML_TYPE_Q5_1,
GGML_TYPE_Q8_0,
GGML_TYPE_Q2_K, GGML_TYPE_Q3_K,
GGML_TYPE_Q4_K, GGML_TYPE_Q5_K,
GGML_TYPE_Q6_K,
// GGML_TYPE_TQ1_0, GGML_TYPE_TQ2_0, // TODO: implement for all backends
GGML_TYPE_IQ2_XXS, GGML_TYPE_IQ2_XS, GGML_TYPE_IQ2_S,
GGML_TYPE_IQ3_XXS, GGML_TYPE_IQ1_S, GGML_TYPE_IQ1_M,
GGML_TYPE_IQ4_NL, GGML_TYPE_IQ3_S, GGML_TYPE_IQ4_XS,
};
static const ggml_type base_types[] = {
GGML_TYPE_F32, GGML_TYPE_F16,
GGML_TYPE_Q4_0,
GGML_TYPE_Q4_K,
GGML_TYPE_IQ2_XXS
};
static const ggml_type other_types[] = {
GGML_TYPE_Q4_1,
GGML_TYPE_Q5_0, GGML_TYPE_Q5_1,
GGML_TYPE_Q8_0,
GGML_TYPE_Q2_K, GGML_TYPE_Q3_K,
GGML_TYPE_Q5_K,
GGML_TYPE_Q6_K,
// GGML_TYPE_TQ1_0, GGML_TYPE_TQ2_0, // TODO: implement for all backends
GGML_TYPE_IQ2_XS, GGML_TYPE_IQ2_S,
GGML_TYPE_IQ3_XXS, GGML_TYPE_IQ1_S, GGML_TYPE_IQ1_M,
GGML_TYPE_IQ4_NL, GGML_TYPE_IQ3_S, GGML_TYPE_IQ4_XS,
GGML_TYPE_BF16,
};
// Test cases for evaluation: should try to cover edge cases while using small input sizes to keep the runtime low
static std::vector<std::unique_ptr<test_case>> make_test_cases_eval() {
std::vector<std::unique_ptr<test_case>> test_cases;
std::default_random_engine rng(0);
// unary ops
for (int v : {0, 1}) {
for (int op = 0; op < GGML_UNARY_OP_COUNT; op++) {
test_cases.emplace_back(new test_unary((ggml_unary_op) op, GGML_TYPE_F32, { 128, 2, 2, 2 }, v));
test_cases.emplace_back(new test_unary((ggml_unary_op) op, GGML_TYPE_F32, { 5, 7, 11, 13 }, v));
}
}
test_cases.emplace_back(new test_get_rows(GGML_TYPE_F32, 1, 8, 2, 1, false));
for (ggml_type type : all_types) {
for (int b : {1, 7}) {
for (bool v : {false, true}) {
test_cases.emplace_back(new test_get_rows(type, 256, 5, 4, b, v));
}
}
}
for (int b : {1, 7}) {
for (bool v : {false, true}) {
test_cases.emplace_back(new test_get_rows(GGML_TYPE_I32, 256, 5, 4, b, v));
}
}
for (ggml_type type_input : {GGML_TYPE_F32}) {
for (ggml_op_pool pool_type : {GGML_OP_POOL_AVG, GGML_OP_POOL_MAX}) {
for (int k0 : {1, 3}) {
for (int k1 : {1, 3}) {
for (int s0 : {1, 2}) {
for (int s1 : {1, 2}) {
for (int p0 : {0, 1}) {
for (int p1 : {0, 1}) {
test_cases.emplace_back(new test_pool2d(pool_type, type_input, {10, 10, 3, 1}, k0, k1, s0, s1, p0, p1));
}
}
}
}
}
}
}
}
// im2col 1D
test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {3000, 128, 1, 1}, {3, 128, 1280, 1}, 1, 0, 1, 0, 1, 0, false));
test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32, {3000, 128, 1, 1}, {3, 128, 1280, 1}, 1, 0, 1, 0, 1, 0, false));
test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {3000, 128, 1, 1}, {3, 128, 1280, 1}, 1, 0, 1, 0, 1, 0, false));
for (int s0 : {1, 3}) {
for (int p0 : {0, 3}) {
for (int d0 : {1, 3}) {
test_cases.emplace_back(new test_im2col(
GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {20, 2, 2, 1}, {3, 2, 2, 1},
s0, 0, p0, 0, d0, 0, false));
}
}
}
// im2col 2D
test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32));
test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32));
test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16));
for (int s0 : {1, 3}) {
for (int s1 : {1, 3}) {
for (int p0 : {0, 3}) {
for (int p1 : {0, 3}) {
for (int d0 : {1, 3}) {
for (int d1 : {1, 3}) {
test_cases.emplace_back(new test_im2col(
GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {20, 20, 2, 2}, {3, 3, 2, 2},
s0, s1, p0, p1, d0, d1, true));
}
}
}
}
}
}
// extra tests for im2col 2D
test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 32}, {3, 3, 1, 32}, 1, 1, 1, 1, 1, 1, true));
test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 32}, {3, 3, 2, 32}, 1, 1, 1, 1, 1, 1, true));
test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 1024}, {3, 3, 1, 1024}, 1, 1, 1, 1, 1, 1, true));
test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 1024}, {3, 3, 2, 1024}, 1, 1, 1, 1, 1, 1, true));
test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 2048}, {3, 3, 1, 2048}, 1, 1, 1, 1, 1, 1, true));
test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 2048}, {3, 3, 2, 2048}, 1, 1, 1, 1, 1, 1, true));
test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 2560}, {3, 3, 1, 2560}, 1, 1, 1, 1, 1, 1, true));
test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 2560}, {3, 3, 2, 2560}, 1, 1, 1, 1, 1, 1, true));
// sycl backend will limit task global_range < MAX_INT
// test cases for 2D im2col with large input W and H (occurs in stable-diffusion)
// however these cases need to alloc more memory which may fail in some devices (Intel Arc770, etc.)
// these cases are verified (pass) in Intel(R) Data Center GPU Max 1100 (sycl backend) and NV A30 (cuda backend)
// test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {1024, 1024, 256, 1}, {3, 3, 256, 1}, 1, 1, 1, 1, 1, 1, true));
// test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32, {1024, 1024, 256, 1}, {3, 3, 256, 1}, 1, 1, 1, 1, 1, 1, true));
test_cases.emplace_back(new test_conv_transpose_1d());
test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {2,3,2,1}, 3, 0, 1));
test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {2,3,2,1}, 2, 0, 1));
test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {2,3,2,1}, 1, 0, 1));
test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {3,2,2,1}, 2, 0, 1));
test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {3,2,2,1}, 1, 0, 1));
test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {3,1,2,1}, 1, 0, 1));
test_cases.emplace_back(new test_conv_transpose_1d({2,1,1,1}, {3,1,1,1}, 1, 0, 1));
test_cases.emplace_back(new test_argmax());
test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {32, 1, 1, 1}));
test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {100, 10, 1, 1}));
test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {1024, 10, 1, 1}));
test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {2000, 10, 1, 1}));
test_cases.emplace_back(new test_count_equal());
for (int ne3 : {1, 3}) { // CUDA backward pass only supports ne3 == 1
test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 1, 1, 1}));
test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {2, 1, 1, 1}));
test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 2, 1, 1}));
test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 1, 2, 1}));
test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 1, 1, 2}));
test_cases.emplace_back(new test_repeat(GGML_TYPE_I32, {10, 5, 4, ne3}, {2, 1, 1, 1}));
test_cases.emplace_back(new test_repeat(GGML_TYPE_I16, {10, 5, 4, ne3}, {1, 1, 1, 2}));
}
test_cases.emplace_back(new test_dup(GGML_TYPE_F32));
test_cases.emplace_back(new test_dup(GGML_TYPE_F16));
test_cases.emplace_back(new test_dup(GGML_TYPE_I32));
test_cases.emplace_back(new test_dup(GGML_TYPE_I16));
test_cases.emplace_back(new test_dup(GGML_TYPE_F32, {10, 10, 5, 1}, {0, 2, 1, 3}));
test_cases.emplace_back(new test_dup(GGML_TYPE_F16, {10, 10, 5, 1}, {0, 2, 1, 3})); // dup by rows
test_cases.emplace_back(new test_dup(GGML_TYPE_F32, {10, 10, 5, 1}, {1, 0, 2, 3}));
test_cases.emplace_back(new test_dup(GGML_TYPE_F16, {10, 10, 5, 1}, {1, 0, 2, 3})); // dup dst not-contiguous
test_cases.emplace_back(new test_dup(GGML_TYPE_I16, {10, 8, 3, 1}, {0, 2, 1, 3}));
test_cases.emplace_back(new test_dup(GGML_TYPE_I16, {10, 8, 3, 1}, {1, 2, 0, 3}));
for (int dim = 1; dim < GGML_MAX_DIMS; ++dim) {
test_cases.emplace_back(new test_set(GGML_TYPE_F32, GGML_TYPE_F32, {6, 5, 4, 3}, dim));
}
for (ggml_type type_src : {GGML_TYPE_F16, GGML_TYPE_F32}) {
for (ggml_type type_dst : all_types) {
test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 4, 4, 4}));
test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 2, 3, 4}, {0, 2, 1, 3})); // cpy by rows
}
}
for (ggml_type type_src : {GGML_TYPE_F16, GGML_TYPE_F32}) {
for (ggml_type type_dst : {GGML_TYPE_F16, GGML_TYPE_F32}) {
test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 2, 3, 4}, {1, 0, 2, 3})); // cpy not-contiguous
}
}
test_cases.emplace_back(new test_cont());
test_cases.emplace_back(new test_cont(GGML_TYPE_F32, {2, 1, 1 ,1}));
test_cases.emplace_back(new test_cont(GGML_TYPE_F32, {2, 1, 3 ,5}));
test_cases.emplace_back(new test_cont(GGML_TYPE_F32, {2, 3, 5 ,7}));
test_cases.emplace_back(new test_cont(GGML_TYPE_F16, {2, 1, 1 ,1}));
test_cases.emplace_back(new test_cont(GGML_TYPE_F16, {2, 1, 3 ,5}));
test_cases.emplace_back(new test_cont(GGML_TYPE_F16, {2, 3, 5 ,7}));
test_cases.emplace_back(new test_cont(GGML_TYPE_BF16, {2, 1, 1 ,1}));
test_cases.emplace_back(new test_cont(GGML_TYPE_BF16, {2, 1, 3 ,5}));
test_cases.emplace_back(new test_cont(GGML_TYPE_BF16, {2, 3, 5 ,7}));
auto add_test_bin_bcast = [&](ggml_type type, std::array<int64_t, 4> ne, std::array<int, 4> nr) {
for (auto op : {ggml_add, ggml_mul, ggml_div}) {
test_cases.emplace_back(new test_bin_bcast(op, type, ne, nr));
}
};
add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 8, 1}, {1, 1, 1, 1});
add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 1, 1}, {32, 1, 1, 1});
add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 320, 320}, {1, 1, 1, 1});
add_test_bin_bcast(GGML_TYPE_F32, {10, 5, 1, 1}, {1, 1, 1, 1});
add_test_bin_bcast(GGML_TYPE_F32, {10, 5, 4, 1}, {1, 1, 1, 1});
add_test_bin_bcast(GGML_TYPE_F32, {10, 5, 4, 3}, {1, 1, 1, 1});
add_test_bin_bcast(GGML_TYPE_F32, {10, 5, 4, 3}, {2, 1, 1, 1});
add_test_bin_bcast(GGML_TYPE_F32, {10, 5, 4, 3}, {1, 2, 1, 1});
add_test_bin_bcast(GGML_TYPE_F32, {10, 5, 4, 3}, {1, 1, 2, 1});
add_test_bin_bcast(GGML_TYPE_F32, {10, 5, 4, 3}, {1, 1, 1, 2});
add_test_bin_bcast(GGML_TYPE_F32, {10, 5, 4, 3}, {1, 1, 2, 2});
add_test_bin_bcast(GGML_TYPE_F32, {10, 5, 4, 3}, {1, 2, 2, 2});
add_test_bin_bcast(GGML_TYPE_F32, {10, 5, 4, 3}, {2, 2, 2, 2});
// stable diffusion
add_test_bin_bcast(GGML_TYPE_F32, {1280, 1, 1, 1}, {1, 1, 1, 1});
add_test_bin_bcast(GGML_TYPE_F32, {1280, 1, 1, 1}, {1, 16, 16, 1});
add_test_bin_bcast(GGML_TYPE_F32, {1280, 16, 16, 1}, {1, 1, 1, 1});
add_test_bin_bcast(GGML_TYPE_F32, {1280, 1, 1, 1}, {1, 256, 1, 1});
add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 1280, 1}, {16, 16, 1, 1});
add_test_bin_bcast(GGML_TYPE_F32, {16, 16, 1280, 1}, {1, 1, 1, 1});
add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 1920, 1}, {16, 16, 1, 1});
add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 2560, 1}, {16, 16, 1, 1});
add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 1280, 1}, {32, 32, 1, 1});
add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 1920, 1}, {32, 32, 1, 1});
add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 640, 1}, {32, 32, 1, 1});
add_test_bin_bcast(GGML_TYPE_F32, {5120, 1, 1, 1}, {1, 256, 1, 1});
add_test_bin_bcast(GGML_TYPE_F32, {640, 1, 1, 1}, {1, 1, 1, 1});
//add_test_bin_bcast(GGML_TYPE_F32, {3, 3, 2560, 1280}, {1, 1, 1, 1});
//add_test_bin_bcast(GGML_TYPE_F32, {3, 3, 2560, 1280}, {2, 1, 1, 1});
test_cases.emplace_back(new test_add1());
test_cases.emplace_back(new test_scale());
for (float eps : {1e-6f, 1e-5f, 1e-3f, 1e-1f}) {
test_cases.emplace_back(new test_norm(GGML_TYPE_F32, {64, 5, 4, 3}, eps));
test_cases.emplace_back(new test_rms_norm(GGML_TYPE_F32, {64, 5, 4, 3}, eps));
}
test_cases.emplace_back(new test_ssm_conv(GGML_TYPE_F32, {4, 1536, 1, 1}, {4, 1536, 1, 1}));
test_cases.emplace_back(new test_ssm_conv(GGML_TYPE_F32, {8, 1536, 1, 1}, {4, 1536, 1, 1}));
test_cases.emplace_back(new test_ssm_conv(GGML_TYPE_F32, {4, 1536, 4, 1}, {4, 1536, 1, 1}));
test_cases.emplace_back(new test_ssm_scan(GGML_TYPE_F32, 16, 1024, 32, 4));
test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 1, 1));
test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 32, 1));
test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 32, 4));
test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 128, 4));
#if 1
for (ggml_type type_a : base_types) {
for (ggml_type type_b : {GGML_TYPE_F32, GGML_TYPE_F16}) {
// test cases without permutation
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, { 1, 1}, {1, 1}));
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {10, 1}, {1, 1}));
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {10, 1}, {2, 1}));
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {10, 10}, {1, 1}));
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {10, 10}, {2, 1}));
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {10, 10}, {1, 2}));
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {10, 10}, {2, 2}));
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, { 1, 1}, {1, 1}));
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {10, 1}, {1, 1}));
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {10, 1}, {2, 1}));
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {10, 10}, {1, 1}));
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {10, 10}, {2, 1}));
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {10, 10}, {1, 2}));
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {10, 10}, {2, 2}));
// test cases with permutation
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {2, 3}, {1, 1}, {0, 2, 1, 3}));
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {2, 3}, {1, 1}, {0, 1, 3, 2}));
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {2, 3}, {1, 1}, {0, 3, 2, 1}));
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, 256, {2, 3}, {1, 1}, {0, 2, 1, 3}));
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, 256, {2, 3}, {1, 1}, {0, 1, 3, 2}));
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, 256, {2, 3}, {1, 1}, {0, 3, 2, 1}));
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {2, 3}, {1, 1}, {0, 2, 1, 3}));
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {2, 3}, {1, 1}, {0, 1, 3, 2}));
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {2, 3}, {1, 1}, {0, 3, 2, 1}));
}
}
for (ggml_type type_a : other_types) {
for (ggml_type type_b : {GGML_TYPE_F32}) {
if (ggml_blck_size(type_a) != 256) {
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, ggml_blck_size(type_a), {1, 1}, {1, 1}));
}
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {1, 1}, {1, 1}));
}
}
#else
// m = a rows
// n = b rows
// k = cols
std::uniform_int_distribution<> dist_m(1, 128);
std::uniform_int_distribution<> dist_n(16, 128);
std::uniform_int_distribution<> dist_k(1, 16);
for (int i = 0; i < 1000; i++) {
for (ggml_type type_a : all_types) {
for (ggml_type type_b : {GGML_TYPE_F32}) {
int m = dist_m(rng);
int n = dist_n(rng);
int k = dist_k(rng) * ggml_blck_size(type_a);
test_cases.emplace_back(new test_mul_mat(type_a, type_b, m, n, k, { 1, 1}, {1, 1}));
}
}
}
#endif
test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 2, 128, { 8, 1}, {1, 1}));
test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 83, 2, 128, { 8, 1}, {4, 1}));
test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 2, 64, { 8, 1}, {4, 1}));
test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 83, 2, 64, { 8, 1}, {4, 1}));
test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 45, 128, { 8, 1}, {4, 1}));
test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 128, 45, 64, { 8, 1}, {4, 1}));
// sycl backend will limit task global_range < MAX_INT
// test case for f16-type-convert-to-fp32 kernel with large k under fp32 compute dtype (occurs in stable-diffusion)
// however this case needs to alloc more memory which may fail in some devices (Intel Arc770, etc.)
// this case is verified (pass) in Intel(R) Data Center GPU Max 1100 (sycl backend) and NV A30 (cuda backend)
// test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F16, 512, 262144, 9216, {1, 1}, {1, 1}));
for (ggml_type type_a : base_types) {
for (ggml_type type_b : {GGML_TYPE_F32 /*, GGML_TYPE_F16 */}) {
for (int n_mats : {4, 8}) {
for (int n_used : {1, 2, 4}) {
for (bool b : {false, true}) {
for (int n : {1, 32}) {
int m = 512;
int k = 256;
test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, n_mats, n_used, b, m, n, k));
}
}
}
}
}
}
for (ggml_type type_a : other_types) {
for (ggml_type type_b : {GGML_TYPE_F32 /*, GGML_TYPE_F16 */}) {
for (int n_mats : {4}) {
for (int n_used : {2}) {
for (bool b : {false}) {
for (int n : {1, 32}) {
int m = 512;
int k = 256;
test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, n_mats, n_used, b, m, n, k));
}
}
}
}
}
}
for (ggml_type type_a : base_types) {
for (ggml_type type_b : {GGML_TYPE_F32, GGML_TYPE_F16}) {
test_cases.emplace_back(new test_out_prod(type_a, type_b, 256, 1, 16, { 1, 1}));
test_cases.emplace_back(new test_out_prod(type_a, type_b, 256, 1, 16, {10, 1}));
test_cases.emplace_back(new test_out_prod(type_a, type_b, 256, 1, 16, {10, 1}));
test_cases.emplace_back(new test_out_prod(type_a, type_b, 256, 1, 16, {10, 10}));
test_cases.emplace_back(new test_out_prod(type_a, type_b, 256, 1, 16, {10, 10}));
test_cases.emplace_back(new test_out_prod(type_a, type_b, 256, 1, 16, {10, 10}));
test_cases.emplace_back(new test_out_prod(type_a, type_b, 256, 1, 16, {10, 10}));
test_cases.emplace_back(new test_out_prod(type_a, type_b, 256, 16, 16, { 1, 1}));
test_cases.emplace_back(new test_out_prod(type_a, type_b, 256, 16, 16, { 1, 1}, true));
test_cases.emplace_back(new test_out_prod(type_a, type_b, 256, 16, 16, {10, 1}));
test_cases.emplace_back(new test_out_prod(type_a, type_b, 256, 16, 16, {10, 1}));
test_cases.emplace_back(new test_out_prod(type_a, type_b, 256, 16, 16, {10, 10}));
test_cases.emplace_back(new test_out_prod(type_a, type_b, 256, 16, 16, {10, 10}));
test_cases.emplace_back(new test_out_prod(type_a, type_b, 256, 16, 16, {10, 10}));
test_cases.emplace_back(new test_out_prod(type_a, type_b, 256, 16, 16, {10, 10}));
}
}
test_cases.emplace_back(new test_sqr());
test_cases.emplace_back(new test_sqrt());
test_cases.emplace_back(new test_log());
test_cases.emplace_back(new test_sin());
test_cases.emplace_back(new test_cos());
test_cases.emplace_back(new test_clamp());
test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 1, 1}, 5));
test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 3, 1}, 5));
test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 3, 2}, 5));
#if 0
std::uniform_int_distribution<> dist_ne1(1, 50);
int exponent = 1;
while (exponent < (1 << 17)) {
std::uniform_int_distribution<> dist_ne0(exponent, 2*exponent);
for (int n = 0; n < 10; ++n) {
int64_t ne0 = dist_ne0(rng);
int64_t ne1 = dist_ne1(rng);
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, GGML_TYPE_F32, {ne0, ne1, 1, 1}, n/2 == 0, 0.1f, ne0 < 1000 ? 4.0f : 0.0f));
}
exponent <<= 1;
}
#endif
for (bool mask : {false, true}) {
for (float max_bias : {0.0f, 8.0f}) {
if (!mask && max_bias > 0.0f) continue;
for (float scale : {1.0f, 0.1f}) {
for (int64_t ne0 : {16, 1024}) {
for (int64_t ne1 : {16, 1024}) {
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0, ne1, 1, 1}, mask, scale, max_bias));
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, mask, scale, max_bias));
}
}
}
}
}
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, true, 0.1f, 0.0f));
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, false, 0.1f, 0.0f));
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, 0.1f, 0.0f));
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, 0.1f, 8.0f));
{
bool all = true;
for (float v : { 0, 1 }) {
for (float fs : { 1.0f, 1.4245f }) {
for (float ef : { 0.0f, 0.7465f }) {
for (float af : { 1.0f, 1.4245f }) {
for (ggml_type type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
for (bool ff : {false, true}) { // freq_factors
test_cases.emplace_back(new test_rope(type, {128, 32, 2, 1}, 128, 0, 512, fs, ef, af, ff, v)); // llama 7B
if (all) {
test_cases.emplace_back(new test_rope(type, {128, 40, 2, 1}, 128, 0, 512, fs, ef, af, ff, v)); // llama 13B
test_cases.emplace_back(new test_rope(type, {128, 52, 2, 1}, 128, 0, 512, fs, ef, af, ff, v)); // llama 30B
test_cases.emplace_back(new test_rope(type, {128, 64, 2, 1}, 128, 0, 512, fs, ef, af, ff, v)); // llama 65B
}
if (all) {
test_cases.emplace_back(new test_rope(type, { 64, 1, 2, 1}, 64, 2, 512, fs, ef, af, ff, v)); // neox (falcon 7B)
test_cases.emplace_back(new test_rope(type, { 64, 71, 2, 1}, 64, 2, 512, fs, ef, af, ff, v)); // neox (falcon 7B)
test_cases.emplace_back(new test_rope(type, { 64, 8, 2, 1}, 64, 2, 512, fs, ef, af, ff, v)); // neox (falcon 40B)
test_cases.emplace_back(new test_rope(type, { 80, 32, 2, 1}, 20, 2, 512, fs, ef, af, ff, v)); // neox (stablelm)
test_cases.emplace_back(new test_rope(type, { 80, 32, 2, 1}, 32, 2, 512, fs, ef, af, ff, v)); // neox (phi-2)
}
test_cases.emplace_back(new test_rope(type, { 64, 128, 2, 1}, 64, 2, 512, fs, ef, af, ff, v)); // neox (falcon 40B)
}
}
all = false;
}
}
}
}
}
for (int v : { 0, 1, 2, 3 }) {
for (int dim : { 0, 1, 2, 3, }) {
test_cases.emplace_back(new test_concat(GGML_TYPE_F32, {11, 12, 13, 14}, 7, dim, v));
test_cases.emplace_back(new test_concat(GGML_TYPE_I32, {11, 12, 13, 14}, 7, dim, v));
}
}
for (ggml_sort_order order : {GGML_SORT_ORDER_ASC, GGML_SORT_ORDER_DESC}) {
test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {8, 1, 1, 1}, order));
test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {16, 10, 10, 10}, order));
test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {60, 10, 10, 10}, order)); // qwen
}
test_cases.emplace_back(new test_sum());
test_cases.emplace_back(new test_sum_rows());
test_cases.emplace_back(new test_mean());
test_cases.emplace_back(new test_upscale());
test_cases.emplace_back(new test_upscale(GGML_TYPE_F32, { 512, 512, 3, 1 }, 2, true));
test_cases.emplace_back(new test_upscale_ext());
test_cases.emplace_back(new test_group_norm());
test_cases.emplace_back(new test_acc());
test_cases.emplace_back(new test_pad());
test_cases.emplace_back(new test_arange());
test_cases.emplace_back(new test_timestep_embedding());
test_cases.emplace_back(new test_leaky_relu());
for (int hs : { 64, 80, 128, 256, }) {
for (bool mask : { true, false } ) {
for (float max_bias : { 0.0f, 8.0f }) {
if (!mask && max_bias > 0.0f) continue;
for (float logit_softcap : {0.0f, 10.0f}) {
if (hs != 128 && logit_softcap != 0.0f) continue;
for (int nh : { 32, }) {
for (int kv : { 512, 1024, }) {
for (int nb : { 1, 3, 32, 35, }) {
for (ggml_type type_KV : {GGML_TYPE_F16, GGML_TYPE_BF16, GGML_TYPE_Q8_0, GGML_TYPE_Q4_0}) {
test_cases.emplace_back(new test_flash_attn_ext(hs, nh, kv, nb, mask, max_bias, logit_softcap, type_KV));
}
}
}
}
}
}
}
}
test_cases.emplace_back(new test_cross_entropy_loss());
test_cases.emplace_back(new test_opt_step_adamw(GGML_TYPE_F32, {10, 5, 4, 3}));
// these tests are disabled to save execution time, but they can be handy for debugging
#if 0
test_cases.emplace_back(new test_llama(1));
test_cases.emplace_back(new test_llama(2));
test_cases.emplace_back(new test_falcon(1));
test_cases.emplace_back(new test_falcon(2));
#endif
return test_cases;
}
// Test cases for performance evaluation: should be representative of real-world use cases
static std::vector<std::unique_ptr<test_case>> make_test_cases_perf() {
std::vector<std::unique_ptr<test_case>> test_cases;
test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {4096, 1, 1, 1}, {1, 1, 1, 1}));
test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {4096, 1, 1, 1}, {1, 512, 1, 1}));
test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F16, {512, 3072, 1, 1}));
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {4096, 4096, 5, 1}, false, 1.0f, 0.0f));
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {77, 4096, 5, 1}, false, 1.0f, 0.0f));
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {1024, 1024, 10, 1}, false, 1.0f, 0.0f));
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {77, 1024, 10, 1}, false, 1.0f, 0.0f));
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {256, 256, 20, 1}, false, 1.0f, 0.0f));
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {64, 64, 20, 1}, false, 1.0f, 0.0f));
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {77, 64, 20, 1}, false, 1.0f, 0.0f));
test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {32, 10, 1, 1}));
test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {1024, 10, 1, 1}));
test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {32000, 512, 1, 1}));
for (int bs : {1, 512}) {
for (ggml_type type_a : all_types) {
for (ggml_type type_b : {GGML_TYPE_F32}) {
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 4096, bs, 14336, {1, 1}, {1, 1}));
}
}
}
return test_cases;
}
static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op_name) {
if (mode == MODE_TEST) {
auto test_cases = make_test_cases_eval();
ggml_backend_t backend_cpu = ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_CPU, NULL);
if (backend_cpu == NULL) {
printf(" Failed to initialize CPU backend\n");
return false;
}
size_t n_ok = 0;
for (auto & test : test_cases) {
if (test->eval(backend, backend_cpu, op_name)) {
n_ok++;
}
}
printf(" %zu/%zu tests passed\n", n_ok, test_cases.size());
ggml_backend_free(backend_cpu);
return n_ok == test_cases.size();
}
if (mode == MODE_GRAD) {
auto test_cases = make_test_cases_eval();
size_t n_ok = 0;
for (auto & test : test_cases) {
if (test->eval_grad(backend, op_name)) {
n_ok++;
}
}
printf(" %zu/%zu tests passed\n", n_ok, test_cases.size());
return n_ok == test_cases.size();
}
if (mode == MODE_PERF) {
auto test_cases = make_test_cases_perf();
for (auto & test : test_cases) {
test->eval_perf(backend, op_name);
}
return true;
}
GGML_ABORT("fatal error");
}
static void usage(char ** argv) {
printf("Usage: %s [mode] [-o op] [-b backend]\n", argv[0]);
printf(" valid modes:\n");
printf(" - test (default, compare with CPU backend for correctness)\n");
printf(" - grad (compare gradients from backpropagation with method of finite differences)\n");
printf(" - perf (performance evaluation)\n");
printf(" op names for -o are as given by ggml_op_desc() (e.g. ADD, MUL_MAT, etc)\n");
}
int main(int argc, char ** argv) {
test_mode mode = MODE_TEST;
const char * op_name_filter = NULL;
const char * backend_filter = NULL;
for (int i = 1; i < argc; i++) {
if (strcmp(argv[i], "test") == 0) {
mode = MODE_TEST;
} else if (strcmp(argv[i], "perf") == 0) {
mode = MODE_PERF;
} else if (strcmp(argv[i], "grad") == 0) {
mode = MODE_GRAD;
} else if (strcmp(argv[i], "-o") == 0) {
if (i + 1 < argc) {
op_name_filter = argv[++i];
} else {
usage(argv);
return 1;
}
} else if (strcmp(argv[i], "-b") == 0) {
if (i + 1 < argc) {
backend_filter = argv[++i];
} else {
usage(argv);
return 1;
}
} else {
usage(argv);
return 1;
}
}
// load and enumerate backends
ggml_backend_load_all();
printf("Testing %zu devices\n\n", ggml_backend_dev_count());
size_t n_ok = 0;
for (size_t i = 0; i < ggml_backend_dev_count(); i++) {
ggml_backend_dev_t dev = ggml_backend_dev_get(i);
printf("Backend %zu/%zu: %s\n", i + 1, ggml_backend_dev_count(), ggml_backend_dev_name(dev));
if (backend_filter != NULL && strcmp(backend_filter, ggml_backend_dev_name(dev)) != 0) {
printf(" Skipping\n");
n_ok++;
continue;
}
if (backend_filter == NULL && ggml_backend_dev_type(dev) == GGML_BACKEND_DEVICE_TYPE_CPU && mode != MODE_GRAD) {
printf(" Skipping CPU backend\n");
n_ok++;
continue;
}
ggml_backend_t backend = ggml_backend_dev_init(dev, NULL);
GGML_ASSERT(backend != NULL);
ggml_backend_reg_t reg = ggml_backend_dev_backend_reg(dev);
auto ggml_backend_set_n_threads_fn = (ggml_backend_set_n_threads_t) ggml_backend_reg_get_proc_address(reg, "ggml_backend_set_n_threads");
if (ggml_backend_set_n_threads_fn) {
// TODO: better value for n_threads
ggml_backend_set_n_threads_fn(backend, std::thread::hardware_concurrency());
}
printf(" Device description: %s\n", ggml_backend_dev_description(dev));
size_t free, total; // NOLINT
ggml_backend_dev_memory(dev, &free, &total);
printf(" Device memory: %zu MB (%zu MB free)\n", total / 1024 / 1024, free / 1024 / 1024);
printf("\n");
bool ok = test_backend(backend, mode, op_name_filter);
printf(" Backend %s: ", ggml_backend_name(backend));
if (ok) {
printf("\033[1;32mOK\033[0m\n");
n_ok++;
} else {
printf("\033[1;31mFAIL\033[0m\n");
}
printf("\n");
ggml_backend_free(backend);
}
ggml_quantize_free();
printf("%zu/%zu backends passed\n", n_ok, ggml_backend_dev_count());
if (n_ok != ggml_backend_dev_count()) {
printf("\033[1;31mFAIL\033[0m\n");
return 1;
}
printf("\033[1;32mOK\033[0m\n");
return 0;
}