mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-12-26 11:24:35 +00:00
5931c1f233
* ggml : add support for dynamic loading of backends --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
206 lines
6.1 KiB
C++
206 lines
6.1 KiB
C++
#include "llama.h"
|
|
#include <cstdio>
|
|
#include <cstring>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
static void print_usage(int, char ** argv) {
|
|
printf("\nexample usage:\n");
|
|
printf("\n %s -m model.gguf [-n n_predict] [-ngl n_gpu_layers] [prompt]\n", argv[0]);
|
|
printf("\n");
|
|
}
|
|
|
|
int main(int argc, char ** argv) {
|
|
// path to the model gguf file
|
|
std::string model_path;
|
|
// prompt to generate text from
|
|
std::string prompt = "Hello my name is";
|
|
// number of layers to offload to the GPU
|
|
int ngl = 99;
|
|
// number of tokens to predict
|
|
int n_predict = 32;
|
|
|
|
// parse command line arguments
|
|
|
|
{
|
|
int i = 1;
|
|
for (; i < argc; i++) {
|
|
if (strcmp(argv[i], "-m") == 0) {
|
|
if (i + 1 < argc) {
|
|
model_path = argv[++i];
|
|
} else {
|
|
print_usage(argc, argv);
|
|
return 1;
|
|
}
|
|
} else if (strcmp(argv[i], "-n") == 0) {
|
|
if (i + 1 < argc) {
|
|
try {
|
|
n_predict = std::stoi(argv[++i]);
|
|
} catch (...) {
|
|
print_usage(argc, argv);
|
|
return 1;
|
|
}
|
|
} else {
|
|
print_usage(argc, argv);
|
|
return 1;
|
|
}
|
|
} else if (strcmp(argv[i], "-ngl") == 0) {
|
|
if (i + 1 < argc) {
|
|
try {
|
|
ngl = std::stoi(argv[++i]);
|
|
} catch (...) {
|
|
print_usage(argc, argv);
|
|
return 1;
|
|
}
|
|
} else {
|
|
print_usage(argc, argv);
|
|
return 1;
|
|
}
|
|
} else {
|
|
// prompt starts here
|
|
break;
|
|
}
|
|
}
|
|
if (model_path.empty()) {
|
|
print_usage(argc, argv);
|
|
return 1;
|
|
}
|
|
if (i < argc) {
|
|
prompt = argv[i++];
|
|
for (; i < argc; i++) {
|
|
prompt += " ";
|
|
prompt += argv[i];
|
|
}
|
|
}
|
|
}
|
|
|
|
// load dynamic backends
|
|
|
|
ggml_backend_load_all();
|
|
|
|
// initialize the model
|
|
|
|
llama_model_params model_params = llama_model_default_params();
|
|
model_params.n_gpu_layers = ngl;
|
|
|
|
llama_model * model = llama_load_model_from_file(model_path.c_str(), model_params);
|
|
|
|
if (model == NULL) {
|
|
fprintf(stderr , "%s: error: unable to load model\n" , __func__);
|
|
return 1;
|
|
}
|
|
|
|
// tokenize the prompt
|
|
|
|
// find the number of tokens in the prompt
|
|
const int n_prompt = -llama_tokenize(model, prompt.c_str(), prompt.size(), NULL, 0, true, true);
|
|
|
|
// allocate space for the tokens and tokenize the prompt
|
|
std::vector<llama_token> prompt_tokens(n_prompt);
|
|
if (llama_tokenize(model, prompt.c_str(), prompt.size(), prompt_tokens.data(), prompt_tokens.size(), true, true) < 0) {
|
|
fprintf(stderr, "%s: error: failed to tokenize the prompt\n", __func__);
|
|
return 1;
|
|
}
|
|
|
|
// initialize the context
|
|
|
|
llama_context_params ctx_params = llama_context_default_params();
|
|
// n_ctx is the context size
|
|
ctx_params.n_ctx = n_prompt + n_predict - 1;
|
|
// n_batch is the maximum number of tokens that can be processed in a single call to llama_decode
|
|
ctx_params.n_batch = n_prompt;
|
|
// enable performance counters
|
|
ctx_params.no_perf = false;
|
|
|
|
llama_context * ctx = llama_new_context_with_model(model, ctx_params);
|
|
|
|
if (ctx == NULL) {
|
|
fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__);
|
|
return 1;
|
|
}
|
|
|
|
// initialize the sampler
|
|
|
|
auto sparams = llama_sampler_chain_default_params();
|
|
sparams.no_perf = false;
|
|
llama_sampler * smpl = llama_sampler_chain_init(sparams);
|
|
|
|
llama_sampler_chain_add(smpl, llama_sampler_init_greedy());
|
|
|
|
// print the prompt token-by-token
|
|
|
|
for (auto id : prompt_tokens) {
|
|
char buf[128];
|
|
int n = llama_token_to_piece(model, id, buf, sizeof(buf), 0, true);
|
|
if (n < 0) {
|
|
fprintf(stderr, "%s: error: failed to convert token to piece\n", __func__);
|
|
return 1;
|
|
}
|
|
std::string s(buf, n);
|
|
printf("%s", s.c_str());
|
|
}
|
|
|
|
// prepare a batch for the prompt
|
|
|
|
llama_batch batch = llama_batch_get_one(prompt_tokens.data(), prompt_tokens.size());
|
|
|
|
// main loop
|
|
|
|
const auto t_main_start = ggml_time_us();
|
|
int n_decode = 0;
|
|
llama_token new_token_id;
|
|
|
|
for (int n_pos = 0; n_pos + batch.n_tokens < n_prompt + n_predict; ) {
|
|
// evaluate the current batch with the transformer model
|
|
if (llama_decode(ctx, batch)) {
|
|
fprintf(stderr, "%s : failed to eval, return code %d\n", __func__, 1);
|
|
return 1;
|
|
}
|
|
|
|
n_pos += batch.n_tokens;
|
|
|
|
// sample the next token
|
|
{
|
|
new_token_id = llama_sampler_sample(smpl, ctx, -1);
|
|
|
|
// is it an end of generation?
|
|
if (llama_token_is_eog(model, new_token_id)) {
|
|
break;
|
|
}
|
|
|
|
char buf[128];
|
|
int n = llama_token_to_piece(model, new_token_id, buf, sizeof(buf), 0, true);
|
|
if (n < 0) {
|
|
fprintf(stderr, "%s: error: failed to convert token to piece\n", __func__);
|
|
return 1;
|
|
}
|
|
std::string s(buf, n);
|
|
printf("%s", s.c_str());
|
|
fflush(stdout);
|
|
|
|
// prepare the next batch with the sampled token
|
|
batch = llama_batch_get_one(&new_token_id, 1);
|
|
|
|
n_decode += 1;
|
|
}
|
|
}
|
|
|
|
printf("\n");
|
|
|
|
const auto t_main_end = ggml_time_us();
|
|
|
|
fprintf(stderr, "%s: decoded %d tokens in %.2f s, speed: %.2f t/s\n",
|
|
__func__, n_decode, (t_main_end - t_main_start) / 1000000.0f, n_decode / ((t_main_end - t_main_start) / 1000000.0f));
|
|
|
|
fprintf(stderr, "\n");
|
|
llama_perf_sampler_print(smpl);
|
|
llama_perf_context_print(ctx);
|
|
fprintf(stderr, "\n");
|
|
|
|
llama_sampler_free(smpl);
|
|
llama_free(ctx);
|
|
llama_free_model(model);
|
|
|
|
return 0;
|
|
}
|