mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-12-25 10:54:36 +00:00
ecf6b7f23e
* [example] batched-bench "segmentation fault" When `llama-batched-bench` is invoked _without_ setting `-npl`, "number of parallel prompts", it segfaults. The segfault is caused by invoking `max_element()` on a zero-length vector, `n_pl` This commit addresses that by first checking to see if the number of parallel prompts is zero, and if so sets the maximum sequence size to 1; otherwise, sets it to the original, the result of `max_element()`. Fixes, when running `lldb build/bin/llama-batched-bench -- -m models/Meta-Llama-3-8B.gguf` ``` * thread #1, queue = 'com.apple.main-thread', stop reason = EXC_BAD_ACCESS (code=1, address=0x0) frame #0: 0x000000010000366c llama-batched-bench`main(argc=3, argv=0x000000016fdff268) at batched-bench.cpp:72:28 69 llama_context_params ctx_params = llama_context_params_from_gpt_params(params); 70 71 // ensure enough sequences are available -> 72 ctx_params.n_seq_max = *std::max_element(n_pl.begin(), n_pl.end()); ``` * Update examples/batched-bench/batched-bench.cpp Co-authored-by: compilade <git@compilade.net> --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> Co-authored-by: compilade <git@compilade.net>
216 lines
6.6 KiB
C++
216 lines
6.6 KiB
C++
#include "common.h"
|
|
#include "llama.h"
|
|
|
|
#include <algorithm>
|
|
#include <cmath>
|
|
#include <cstdio>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
// mutates the input string
|
|
static std::vector<int> parse_list(char * p) {
|
|
std::vector<int> ret;
|
|
|
|
char * q = p;
|
|
|
|
while (*p) {
|
|
if (*p == ',') {
|
|
*p = '\0';
|
|
ret.push_back(std::atoi(q));
|
|
q = p + 1;
|
|
}
|
|
|
|
++p;
|
|
}
|
|
|
|
ret.push_back(std::atoi(q));
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void print_usage(int argc, char ** argv, const gpt_params & params) {
|
|
gpt_params_print_usage(argc, argv, params);
|
|
|
|
LOG_TEE("\nexample usage:\n");
|
|
LOG_TEE("\n %s -m model.gguf -c 2048 -b 2048 -ub 512 -npp 128,256,512 -ntg 128,256 -npl 1,2,4,8,16,32 [-pps]\n", argv[0]);
|
|
LOG_TEE("\n");
|
|
}
|
|
|
|
int main(int argc, char ** argv) {
|
|
gpt_params params;
|
|
|
|
if (!gpt_params_parse(argc, argv, params)) {
|
|
print_usage(argc, argv, params);
|
|
return 1;
|
|
}
|
|
|
|
int is_pp_shared = params.is_pp_shared;
|
|
|
|
std::vector<int> n_pp = params.n_pp;
|
|
std::vector<int> n_tg = params.n_tg;
|
|
std::vector<int> n_pl = params.n_pl;
|
|
|
|
// init LLM
|
|
|
|
llama_backend_init();
|
|
llama_numa_init(params.numa);
|
|
|
|
// initialize the model
|
|
|
|
llama_model_params model_params = llama_model_params_from_gpt_params(params);
|
|
|
|
llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params);
|
|
|
|
if (model == NULL) {
|
|
fprintf(stderr , "%s: error: unable to load model\n" , __func__);
|
|
return 1;
|
|
}
|
|
|
|
llama_context_params ctx_params = llama_context_params_from_gpt_params(params);
|
|
|
|
// ensure enough sequences are available
|
|
ctx_params.n_seq_max = n_pl.empty() ? 1 : *std::max_element(n_pl.begin(), n_pl.end());
|
|
|
|
llama_context * ctx = llama_new_context_with_model(model, ctx_params);
|
|
|
|
if (ctx == NULL) {
|
|
fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__);
|
|
return 1;
|
|
}
|
|
|
|
const int32_t n_kv_max = llama_n_ctx(ctx);
|
|
|
|
llama_batch batch = llama_batch_init(n_kv_max, 0, 1);
|
|
|
|
// decode in batches of ctx_params.n_batch tokens
|
|
auto decode_helper = [](llama_context * ctx, llama_batch & batch, int32_t n_batch) {
|
|
for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += n_batch) {
|
|
const int32_t n_tokens = std::min(n_batch, (int32_t) (batch.n_tokens - i));
|
|
|
|
llama_batch batch_view = {
|
|
n_tokens,
|
|
batch.token + i,
|
|
nullptr,
|
|
batch.pos + i,
|
|
batch.n_seq_id + i,
|
|
batch.seq_id + i,
|
|
batch.logits + i,
|
|
0, 0, 0, // unused
|
|
};
|
|
|
|
const int ret = llama_decode(ctx, batch_view);
|
|
if (ret != 0) {
|
|
LOG_TEE("failed to decode the batch, n_batch = %d, ret = %d\n", n_batch, ret);
|
|
return false;
|
|
}
|
|
|
|
llama_synchronize(ctx);
|
|
}
|
|
|
|
return true;
|
|
};
|
|
|
|
// warm up
|
|
{
|
|
for (int i = 0; i < 16; ++i) {
|
|
llama_batch_add(batch, 0, i, { 0 }, false);
|
|
}
|
|
|
|
if (!decode_helper(ctx, batch, ctx_params.n_batch)) {
|
|
LOG_TEE("%s: llama_decode() failed\n", __func__);
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
LOG_TEE("\n");
|
|
LOG_TEE("%s: n_kv_max = %d, n_batch = %d, n_ubatch = %d, flash_attn = %d, is_pp_shared = %d, n_gpu_layers = %d, n_threads = %u, n_threads_batch = %u\n", __func__, n_kv_max, params.n_batch, params.n_ubatch, params.flash_attn, params.is_pp_shared, params.n_gpu_layers, ctx_params.n_threads, ctx_params.n_threads_batch);
|
|
LOG_TEE("\n");
|
|
|
|
LOG_TEE("|%6s | %6s | %4s | %6s | %8s | %8s | %8s | %8s | %8s | %8s |\n", "PP", "TG", "B", "N_KV", "T_PP s", "S_PP t/s", "T_TG s", "S_TG t/s", "T s", "S t/s");
|
|
LOG_TEE("|%6s-|-%6s-|-%4s-|-%6s-|-%8s-|-%8s-|-%8s-|-%8s-|-%8s-|-%8s-|\n", "------", "------", "----", "------", "--------", "--------", "--------", "--------", "--------", "--------");
|
|
|
|
for ( int i_pp = 0; i_pp < (int) n_pp.size(); ++i_pp) {
|
|
for ( int i_tg = 0; i_tg < (int) n_tg.size(); ++i_tg) {
|
|
for (int i_pl = 0; i_pl < (int) n_pl.size(); ++i_pl) {
|
|
const int pp = n_pp[i_pp];
|
|
const int tg = n_tg[i_tg];
|
|
const int pl = n_pl[i_pl];
|
|
|
|
const int n_ctx_req = is_pp_shared ? pp + pl*tg : pl*(pp + tg);
|
|
|
|
if (n_ctx_req > n_kv_max) {
|
|
continue;
|
|
}
|
|
|
|
llama_batch_clear(batch);
|
|
|
|
for (int i = 0; i < pp; ++i) {
|
|
for (int j = 0; j < (is_pp_shared ? 1 : pl); ++j) {
|
|
llama_batch_add(batch, 0, i, { j }, false);
|
|
}
|
|
}
|
|
batch.logits[batch.n_tokens - 1] = true;
|
|
|
|
const auto t_pp_start = ggml_time_us();
|
|
|
|
llama_kv_cache_clear(ctx);
|
|
|
|
if (!decode_helper(ctx, batch, ctx_params.n_batch)) {
|
|
LOG_TEE("%s: llama_decode() failed\n", __func__);
|
|
return 1;
|
|
}
|
|
|
|
if (is_pp_shared) {
|
|
for (int32_t i = 1; i < pl; ++i) {
|
|
llama_kv_cache_seq_cp(ctx, 0, i, -1, -1);
|
|
}
|
|
}
|
|
|
|
const auto t_pp_end = ggml_time_us();
|
|
|
|
const auto t_tg_start = ggml_time_us();
|
|
|
|
for (int i = 0; i < tg; ++i) {
|
|
llama_batch_clear(batch);
|
|
|
|
for (int j = 0; j < pl; ++j) {
|
|
llama_batch_add(batch, 0, pp + i, { j }, true);
|
|
}
|
|
|
|
if (!decode_helper(ctx, batch, ctx_params.n_batch)) {
|
|
LOG_TEE("%s: llama_decode() failed\n", __func__);
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
const auto t_tg_end = ggml_time_us();
|
|
|
|
const int32_t n_kv = n_ctx_req;
|
|
|
|
const float t_pp = (t_pp_end - t_pp_start) / 1000000.0f;
|
|
const float t_tg = (t_tg_end - t_tg_start) / 1000000.0f;
|
|
const float t = t_pp + t_tg;
|
|
|
|
const float speed_pp = is_pp_shared ? pp / t_pp : pl*pp / t_pp;
|
|
const float speed_tg = pl*tg / t_tg;
|
|
const float speed = n_kv / t;
|
|
|
|
LOG_TEE("|%6d | %6d | %4d | %6d | %8.3f | %8.2f | %8.3f | %8.2f | %8.3f | %8.2f |\n", pp, tg, pl, n_kv, t_pp, speed_pp, t_tg, speed_tg, t, speed);
|
|
}
|
|
}
|
|
}
|
|
|
|
llama_print_timings(ctx);
|
|
|
|
llama_batch_free(batch);
|
|
|
|
llama_free(ctx);
|
|
llama_free_model(model);
|
|
|
|
llama_backend_free();
|
|
|
|
fprintf(stderr, "\n\n");
|
|
|
|
return 0;
|
|
}
|