9b31a40c6d
* clip : suppress unused variable warnings This commit suppresses unused variable warnings for the variables e in the catch blocks. The motivation for this change is to suppress the warnings that are generated on Windows when using the MSVC compiler. The warnings are not displayed when using GCC because GCC will mark all catch parameters as used. Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com> * squash! clip : suppress unused variable warnings Remove e (/*e*/) instead instead of using GGML_UNUSED. --------- Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com> |
||
---|---|---|
.. | ||
android | ||
clip.cpp | ||
clip.h | ||
CMakeLists.txt | ||
convert-image-encoder-to-gguf.py | ||
llava-cli.cpp | ||
llava-surgery-v2.py | ||
llava-surgery.py | ||
llava.cpp | ||
llava.h | ||
MobileVLM-README.md | ||
README.md | ||
requirements.txt |
LLaVA
Currently this implementation supports llava-v1.5 variants, as well as llava-1.6 llava-v1.6 variants.
The pre-converted 7b and 13b models are available. For llava-1.6 a variety of prepared gguf models are available as well 7b-34b
After API is confirmed, more models will be supported / uploaded.
Usage
Build with cmake or run make llama-llava-cli
to build it.
After building, run: ./llama-llava-cli
to see the usage. For example:
./llama-llava-cli -m ../llava-v1.5-7b/ggml-model-f16.gguf --mmproj ../llava-v1.5-7b/mmproj-model-f16.gguf --image path/to/an/image.jpg
note: A lower temperature like 0.1 is recommended for better quality. add --temp 0.1
to the command to do so.
note: For GPU offloading ensure to use the -ngl
flag just like usual
LLaVA 1.5
- Clone a LLaVA and a CLIP model (available options). For example:
git clone https://huggingface.co/liuhaotian/llava-v1.5-7b
git clone https://huggingface.co/openai/clip-vit-large-patch14-336
- Install the required Python packages:
pip install -r examples/llava/requirements.txt
- Use
llava-surgery.py
to split the LLaVA model to LLaMA and multimodel projector constituents:
python ./examples/llava/llava-surgery.py -m ../llava-v1.5-7b
- Use
convert-image-encoder-to-gguf.py
to convert the LLaVA image encoder to GGUF:
python ./examples/llava/convert-image-encoder-to-gguf.py -m ../clip-vit-large-patch14-336 --llava-projector ../llava-v1.5-7b/llava.projector --output-dir ../llava-v1.5-7b
- Use
examples/convert-legacy-llama.py
to convert the LLaMA part of LLaVA to GGUF:
python ./examples/convert-legacy-llama.py ../llava-v1.5-7b --skip-unknown
Now both the LLaMA part and the image encoder are in the llava-v1.5-7b
directory.
LLaVA 1.6 gguf conversion
- First clone a LLaVA 1.6 model:
git clone https://huggingface.co/liuhaotian/llava-v1.6-vicuna-7b
- Install the required Python packages:
pip install -r examples/llava/requirements.txt
- Use
llava-surgery-v2.py
which also supports llava-1.5 variants pytorch as well as safetensor models:
python examples/llava/llava-surgery-v2.py -C -m ../llava-v1.6-vicuna-7b/
- you will find a llava.projector and a llava.clip file in your model directory
- Copy the llava.clip file into a subdirectory (like vit), rename it to pytorch_model.bin and add a fitting vit configuration to the directory:
mkdir vit
cp ../llava-v1.6-vicuna-7b/llava.clip vit/pytorch_model.bin
cp ../llava-v1.6-vicuna-7b/llava.projector vit/
curl -s -q https://huggingface.co/cmp-nct/llava-1.6-gguf/raw/main/config_vit.json -o vit/config.json
- Create the visual gguf model:
python ./examples/llava/convert-image-encoder-to-gguf.py -m vit --llava-projector vit/llava.projector --output-dir vit --clip-model-is-vision
- This is similar to llava-1.5, the difference is that we tell the encoder that we are working with the pure vision model part of CLIP
- Then convert the model to gguf format:
python ./examples/convert-legacy-llama.py ../llava-v1.6-vicuna-7b/ --skip-unknown
- And finally we can run the llava cli using the 1.6 model version:
./llama-llava-cli -m ../llava-v1.6-vicuna-7b/ggml-model-f16.gguf --mmproj vit/mmproj-model-f16.gguf --image some-image.jpg -c 4096
note llava-1.6 needs more context than llava-1.5, at least 3000 is needed (just run it at -c 4096) note llava-1.6 greatly benefits from batched prompt processing (defaults work)
llava-cli templating and llava-1.6 prompting
llava-1.5 models all use the same vicuna prompt, here you can just add your image question like -p "Provide a full description."
For llava-1.5 models which are not vicuna (mistral and Yi) you need to adapt system prompt as well as user prompt, for this purpose llava-cli has a basic templating system:
For Mistral and using llava-cli binary:
Add this: -p "<image>\nUSER:\nProvide a full description.\nASSISTANT:\n"
The mistral template for llava-1.6 seems to be no system print and a USER/ASSISTANT role
For the 34B this should work:
Add this: -e -p <|im_start|>system\nAnswer the questions.<|im_end|><|im_start|>user\n<image>\nProvide a full description.<|im_end|><|im_start|>assistant\n
How to know if you are running in llava-1.5 or llava-1.6 mode
When running llava-cli you will see a visual information right before the prompt is being processed:
Llava-1.5:
encode_image_with_clip: image embedding created: 576 tokens
Llava-1.6 (anything above 576):
encode_image_with_clip: image embedding created: 2880 tokens
Alternatively just pay notice to how many "tokens" have been used for your prompt, it will also show 1000+ tokens for llava-1.6
TODO
- Support non-CPU backend for the image encoding part.
- Support different sampling methods.
- Support more model variants.