mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-12-27 20:04:35 +00:00
791 lines
30 KiB
C
791 lines
30 KiB
C
#include "ggml-backend.h"
|
|
#include <assert.h>
|
|
#include <stdarg.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
|
|
#define UNUSED(x) (void)(x)
|
|
|
|
// allocator
|
|
|
|
static size_t aligned_offset(const void * buffer, size_t offset, size_t alignment) {
|
|
assert(alignment && !(alignment & (alignment - 1))); // power of 2
|
|
size_t align = (alignment - (((uintptr_t)buffer + offset) % alignment)) % alignment;
|
|
return offset + align;
|
|
}
|
|
|
|
static inline size_t ggml_backend_buffer_get_alloc_size(struct ggml_backend_buffer * alloc, struct ggml_tensor * tensor) {
|
|
return alloc->interface.get_alloc_size(alloc, tensor);
|
|
}
|
|
|
|
static inline void ggml_backend_buffer_init_tensor(struct ggml_backend_buffer * alloc, struct ggml_tensor * tensor) {
|
|
alloc->interface.init_tensor(alloc, tensor);
|
|
}
|
|
|
|
void ggml_backend_buffer_free(struct ggml_backend_buffer * alloc) {
|
|
alloc->interface.free_buffer(alloc);
|
|
free(alloc);
|
|
}
|
|
|
|
// backend buffer allocator - simple - cannot free tensors, good for weights and small contexts
|
|
|
|
struct ggml_allocator_simple_context {
|
|
void * data;
|
|
size_t size;
|
|
size_t offset;
|
|
size_t alignment;
|
|
};
|
|
|
|
static void ggml_allocator_simple_free_buffer(struct ggml_backend_buffer * alloc) {
|
|
struct ggml_allocator_simple_context * context = (struct ggml_allocator_simple_context *)alloc->context;
|
|
free(context);
|
|
}
|
|
|
|
#define MAX(a, b) ((a) > (b) ? (a) : (b))
|
|
|
|
static void ggml_allocator_simple_alloc_tensor(struct ggml_backend_buffer * alloc, struct ggml_tensor * tensor) {
|
|
struct ggml_allocator_simple_context * context = (struct ggml_allocator_simple_context *)alloc->context;
|
|
|
|
size_t size = ggml_backend_buffer_get_alloc_size(alloc, tensor);
|
|
|
|
if (!alloc->measure && context->offset + size > context->size) {
|
|
fprintf(stderr, "%s: not enough space in the buffer (needed %zu, available %zu)\n",
|
|
__func__, size, context->size - context->offset);
|
|
GGML_ASSERT(!"not enough space in the buffer");
|
|
return;
|
|
}
|
|
|
|
alloc->max_size = MAX(alloc->max_size, context->offset + size);
|
|
|
|
if (alloc->measure) {
|
|
tensor->data = NULL;
|
|
} else {
|
|
tensor->data = (char*)context->data + context->offset;
|
|
if (alloc->interface.init_tensor) {
|
|
ggml_backend_buffer_init_tensor(alloc, tensor);
|
|
}
|
|
}
|
|
|
|
context->offset = aligned_offset(context->data, context->offset + size, context->alignment);
|
|
}
|
|
|
|
static void ggml_allocator_simple_free_tensor(struct ggml_backend_buffer * alloc, struct ggml_tensor * tensor) {
|
|
GGML_ASSERT(!"ggml_simple_allocator cannot free individual tensors");
|
|
|
|
UNUSED(alloc);
|
|
UNUSED(tensor);
|
|
}
|
|
|
|
static void ggml_allocator_simple_reset(struct ggml_backend_buffer * alloc) {
|
|
struct ggml_allocator_simple_context * context = (struct ggml_allocator_simple_context *)alloc->context;
|
|
context->offset = aligned_offset(context->data, 0, context->alignment);
|
|
}
|
|
|
|
size_t ggml_allocator_simple_get_alloc_size(struct ggml_backend_buffer * alloc, struct ggml_tensor * tensor) {
|
|
return ggml_nbytes(tensor);
|
|
|
|
UNUSED(alloc);
|
|
}
|
|
|
|
static const struct ggml_backend_buffer_interface ggml_allocator_simple_interface = {
|
|
/* .free_buffer = */ ggml_allocator_simple_free_buffer,
|
|
/* .alloc_tensor = */ ggml_allocator_simple_alloc_tensor,
|
|
/* .free_tensor = */ ggml_allocator_simple_free_tensor,
|
|
/* .reset = */ ggml_allocator_simple_reset,
|
|
/* .get_alloc_size = */ ggml_allocator_simple_get_alloc_size,
|
|
/* .init_tensor = */ NULL,
|
|
/* .free_data = */ NULL,
|
|
};
|
|
|
|
static struct ggml_backend_buffer * ggml_allocator_simple_init(void * data, size_t size, size_t alignment) {
|
|
struct ggml_allocator_simple_context * ctx = malloc(sizeof(struct ggml_allocator_simple_context));
|
|
ctx->data = data;
|
|
ctx->size = size;
|
|
ctx->offset = aligned_offset(data, 0, alignment);
|
|
ctx->alignment = alignment;
|
|
|
|
struct ggml_backend_buffer * allocator = malloc(sizeof(struct ggml_backend_buffer));
|
|
*allocator = (struct ggml_backend_buffer){
|
|
/* .interface = */ ggml_allocator_simple_interface,
|
|
/* .context = */ ctx,
|
|
/* .backend = */ NULL,
|
|
/* .backend_data = */ NULL,
|
|
/* .measure = */ false,
|
|
/* .max_size = */ 0,
|
|
};
|
|
return allocator;
|
|
}
|
|
|
|
//
|
|
|
|
struct ggml_backend_buffer * ggml_allocator_default_init(void * data, size_t size, size_t alignment) {
|
|
return ggml_allocator_simple_init(data, size, alignment);
|
|
}
|
|
|
|
// buffer
|
|
|
|
struct ggml_buffer * ggml_buffer_alloc(struct ggml_backend * backend, size_t size, size_t max_tensors) {
|
|
struct ggml_buffer * buffer = malloc(sizeof(struct ggml_buffer));
|
|
buffer->mem_size = ggml_tensor_overhead() * max_tensors;
|
|
buffer->mem_buffer = malloc(buffer->mem_size);
|
|
size += 128 * max_tensors; // alignment overhead
|
|
buffer->backend_buffer = backend->interface.alloc_buffer(backend, size);
|
|
buffer->backend_buffer->backend = backend;
|
|
return buffer;
|
|
}
|
|
|
|
struct ggml_buffer * ggml_buffer_measure_alloc(struct ggml_backend * backend, size_t max_tensors) {
|
|
struct ggml_buffer * buffer = ggml_buffer_alloc(backend, 0, max_tensors);
|
|
buffer->backend_buffer->measure = true;
|
|
return buffer;
|
|
}
|
|
|
|
void ggml_buffer_free(struct ggml_buffer * buffer) {
|
|
ggml_backend_buffer_free(buffer->backend_buffer);
|
|
free(buffer->mem_buffer);
|
|
free(buffer);
|
|
}
|
|
|
|
// backend copy
|
|
|
|
static bool ggml_are_same_layout(const struct ggml_tensor * a, const struct ggml_tensor * b) {
|
|
if (a->type != b->type) {
|
|
return false;
|
|
}
|
|
for (int i = 0; i < GGML_MAX_DIMS; i++) {
|
|
if (a->ne[i] != b->ne[i]) {
|
|
return false;
|
|
}
|
|
if (a->nb[i] != b->nb[i]) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void ggml_backend_tensor_copy(struct ggml_tensor * src, struct ggml_tensor * dst) {
|
|
//printf("src: %s ne: [%d %d %d %d] nb: [%d %d %d %d]\n", src->name, (int)src->ne[0], (int)src->ne[1], (int)src->ne[2], (int)src->ne[3], (int)src->nb[0], (int)src->nb[1], (int)src->nb[2], (int)src->nb[3]);
|
|
//printf("dst: %s ne: [%d %d %d %d] nb: [%d %d %d %d]\n", dst->name, (int)dst->ne[0], (int)dst->ne[1], (int)dst->ne[2], (int)dst->ne[3], (int)dst->nb[0], (int)dst->nb[1], (int)dst->nb[2], (int)dst->nb[3]);
|
|
GGML_ASSERT(ggml_are_same_layout(src, dst) && "cannot copy tensors with different layouts");
|
|
|
|
// printf("cpy tensor %s from %s to %s (%lu bytes)\n", src->name, ggml_backend_name(src->backend), ggml_backend_name(dst->backend), ggml_nbytes(src));
|
|
|
|
if (src == dst) {
|
|
return;
|
|
}
|
|
|
|
if (dst->backend->interface.cpy_tensor_from != NULL) {
|
|
dst->backend->interface.cpy_tensor_from(dst->backend->context, src, dst);
|
|
} else if (src->backend->interface.cpy_tensor_to != NULL) {
|
|
src->backend->interface.cpy_tensor_to(src->backend->context, src, dst);
|
|
} else {
|
|
// not ideal, but shouldn't be hit when copying from/to CPU
|
|
// TODO: print a performance warning in debug builds
|
|
size_t nbytes = ggml_nbytes(src);
|
|
void * data = malloc(nbytes);
|
|
ggml_backend_tensor_get(src, data, 0, nbytes);
|
|
ggml_backend_tensor_set(dst, data, 0, nbytes);
|
|
free(data);
|
|
}
|
|
}
|
|
|
|
// backend CPU
|
|
|
|
struct ggml_backend_cpu_context {
|
|
int n_threads;
|
|
void * work_data;
|
|
size_t work_size;
|
|
};
|
|
|
|
static const char * ggml_backend_cpu_name(struct ggml_backend * backend) {
|
|
return "CPU";
|
|
|
|
UNUSED(backend);
|
|
}
|
|
|
|
static void ggml_backend_cpu_free(struct ggml_backend * backend) {
|
|
struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
|
|
free(cpu_ctx->work_data);
|
|
free(cpu_ctx);
|
|
free(backend);
|
|
}
|
|
|
|
static const size_t TENSOR_ALIGNMENT = 64; // should be enough for AVX 512
|
|
|
|
static void ggml_backend_cpu_free_buffer(struct ggml_backend_buffer * alloc) {
|
|
free(alloc->backend_data);
|
|
}
|
|
|
|
static struct ggml_backend_buffer * ggml_backend_cpu_alloc_buffer(struct ggml_backend * backend, size_t size) {
|
|
void * data = malloc(size);
|
|
|
|
struct ggml_backend_buffer * buffer = ggml_allocator_default_init(data, size, TENSOR_ALIGNMENT);
|
|
buffer->interface.free_data = ggml_backend_cpu_free_buffer;
|
|
buffer->backend_data = data;
|
|
|
|
return buffer;
|
|
|
|
UNUSED(backend);
|
|
}
|
|
|
|
static void ggml_backend_cpu_set_tensor_async(struct ggml_backend * backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
|
|
GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
|
|
GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
|
|
|
|
memcpy((char *)tensor->data + offset, data, size);
|
|
|
|
UNUSED(backend);
|
|
}
|
|
|
|
static void ggml_backend_cpu_get_tensor_async(struct ggml_backend * backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
|
|
GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds");
|
|
GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
|
|
|
|
memcpy(data, (const char *)tensor->data + offset, size);
|
|
|
|
UNUSED(backend);
|
|
}
|
|
|
|
static void ggml_backend_cpu_synchronize(struct ggml_backend * backend) {
|
|
UNUSED(backend);
|
|
}
|
|
|
|
static void ggml_backend_cpu_cpy_tensor_from(struct ggml_backend * backend, struct ggml_tensor * src, struct ggml_tensor * dst) {
|
|
ggml_backend_tensor_get(src, dst->data, 0, ggml_nbytes(src));
|
|
|
|
UNUSED(backend);
|
|
}
|
|
|
|
static void ggml_backend_cpu_cpy_tensor_to(struct ggml_backend * backend, struct ggml_tensor * src, struct ggml_tensor * dst) {
|
|
// for a backend such as CUDA that can queue async calls, it is ok to do this asynchronously, but it may not be the case for other backends
|
|
ggml_backend_tensor_set_async(dst, src->data, 0, ggml_nbytes(src));
|
|
|
|
UNUSED(backend);
|
|
}
|
|
|
|
struct ggml_backend_cpu_plan {
|
|
struct ggml_cplan cplan;
|
|
struct ggml_cgraph cgraph;
|
|
};
|
|
|
|
static ggml_graph_plan_t ggml_backend_cpu_graph_plan_create(struct ggml_backend * backend, struct ggml_cgraph * cgraph) {
|
|
struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
|
|
|
|
struct ggml_backend_cpu_plan * cpu_plan = malloc(sizeof(struct ggml_backend_cpu_plan));
|
|
|
|
cpu_plan->cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads);
|
|
cpu_plan->cgraph = *cgraph;
|
|
|
|
if (cpu_plan->cplan.work_size > 0) {
|
|
cpu_plan->cplan.work_data = malloc(cpu_plan->cplan.work_size);
|
|
}
|
|
|
|
return cpu_plan;
|
|
}
|
|
|
|
static void ggml_backend_cpu_graph_plan_free(struct ggml_backend * backend, ggml_graph_plan_t plan) {
|
|
struct ggml_backend_cpu_plan * cpu_plan = (struct ggml_backend_cpu_plan *)plan;
|
|
|
|
free(cpu_plan->cplan.work_data);
|
|
free(cpu_plan);
|
|
|
|
UNUSED(backend);
|
|
}
|
|
|
|
static void ggml_backend_cpu_graph_plan_compute(struct ggml_backend * backend, ggml_graph_plan_t plan) {
|
|
struct ggml_backend_cpu_plan * cpu_plan = (struct ggml_backend_cpu_plan *)plan;
|
|
|
|
ggml_graph_compute(&cpu_plan->cgraph, &cpu_plan->cplan);
|
|
|
|
UNUSED(backend);
|
|
}
|
|
|
|
static void ggml_backend_cpu_graph_compute(struct ggml_backend * backend, struct ggml_cgraph * cgraph) {
|
|
struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
|
|
|
|
struct ggml_cplan cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads);
|
|
|
|
if (cpu_ctx->work_size < cplan.work_size) {
|
|
// TODO: may be faster to free and use malloc to avoid the copy
|
|
cpu_ctx->work_data = realloc(cpu_ctx->work_data, cplan.work_size);
|
|
cpu_ctx->work_size = cplan.work_size;
|
|
}
|
|
|
|
cplan.work_data = cpu_ctx->work_data;
|
|
|
|
ggml_graph_compute(cgraph, &cplan);
|
|
}
|
|
|
|
static struct ggml_backend_interface cpu_backend_interface = {
|
|
/* .get_name = */ ggml_backend_cpu_name,
|
|
/* .free = */ ggml_backend_cpu_free,
|
|
/* .alloc_buffer = */ ggml_backend_cpu_alloc_buffer,
|
|
/* .set_tensor_async = */ ggml_backend_cpu_set_tensor_async,
|
|
/* .get_tensor_async = */ ggml_backend_cpu_get_tensor_async,
|
|
/* .synchronize = */ ggml_backend_cpu_synchronize,
|
|
/* .cpy_tensor_from = */ ggml_backend_cpu_cpy_tensor_from,
|
|
/* .cpy_tensor_to = */ ggml_backend_cpu_cpy_tensor_to,
|
|
/* .graph_plan_create = */ ggml_backend_cpu_graph_plan_create,
|
|
/* .graph_plan_free = */ ggml_backend_cpu_graph_plan_free,
|
|
/* .graph_plan_compute = */ ggml_backend_cpu_graph_plan_compute,
|
|
/* .graph_compute = */ ggml_backend_cpu_graph_compute
|
|
};
|
|
|
|
struct ggml_backend * ggml_backend_cpu_init(void) {
|
|
struct ggml_backend_cpu_context * ctx = malloc(sizeof(struct ggml_backend_cpu_context));
|
|
ctx->n_threads = GGML_DEFAULT_N_THREADS;
|
|
ctx->work_data = NULL;
|
|
ctx->work_size = 0;
|
|
|
|
struct ggml_backend * cpu_backend = malloc(sizeof(struct ggml_backend));
|
|
|
|
*cpu_backend = (struct ggml_backend) {
|
|
/* .interface = */ cpu_backend_interface,
|
|
/* .context = */ ctx
|
|
};
|
|
return cpu_backend;
|
|
}
|
|
|
|
void ggml_backend_cpu_set_n_threads(struct ggml_backend * backend_cpu, int n_threads) {
|
|
struct ggml_backend_cpu_context * ctx = (struct ggml_backend_cpu_context *)backend_cpu->context;
|
|
ctx->n_threads = n_threads;
|
|
}
|
|
|
|
// splits
|
|
|
|
struct ggml_graph_splits ggml_graph_split_init(void) {
|
|
struct ggml_graph_splits splits = {0};
|
|
return splits;
|
|
}
|
|
|
|
// TODO: this can be removed after allocating the graphs in a ggml_context
|
|
void ggml_graph_splits_free(struct ggml_graph_splits * splits) {
|
|
for (int i = 0; i < splits->n_splits; i++) {
|
|
if (splits->splits[i].graph) {
|
|
free(splits->splits[i].graph);
|
|
}
|
|
}
|
|
}
|
|
|
|
void ggml_graph_splits_add_n_va(struct ggml_graph_splits * splits, struct ggml_tensor *** inputs, struct ggml_context * ctx, const char * fmt, va_list args) {
|
|
GGML_ASSERT(splits->n_splits < GGML_MAX_SPLITS);
|
|
|
|
struct ggml_graph_split * split = &splits->splits[splits->n_splits];
|
|
|
|
|
|
if (splits->n_splits == 0) {
|
|
// always add the first split
|
|
int i = 0;
|
|
while (inputs[i] != NULL) {
|
|
GGML_ASSERT(i < GGML_MAX_SPLIT_INPUTS);
|
|
split->src_inputs[i] = *inputs[i];
|
|
split->dst_inputs[i] = *inputs[i];
|
|
i++;
|
|
}
|
|
split->src_inputs[i] = NULL;
|
|
split->dst_inputs[i] = NULL;
|
|
split->ctx = ctx;
|
|
}
|
|
// check if the split is on the same context as the previous one
|
|
else if (splits->n_splits > 0 && splits->splits[splits->n_splits - 1].ctx == ctx) {
|
|
// add to the previous split
|
|
char name[GGML_MAX_NAME - 2];
|
|
int n = vsnprintf(name, sizeof(name), fmt, args);
|
|
char new_name[GGML_MAX_NAME];
|
|
snprintf(new_name, sizeof(new_name), "%.*s,%s", GGML_MAX_NAME - n - 2, splits->splits[splits->n_splits - 1].name, name);
|
|
strcpy(splits->splits[splits->n_splits - 1].name, new_name);
|
|
return;
|
|
} else {
|
|
// add a new split
|
|
int i = 0;
|
|
while (inputs[i] != NULL) {
|
|
GGML_ASSERT(i < GGML_MAX_SPLIT_INPUTS);
|
|
split->src_inputs[i] = *inputs[i];
|
|
split->dst_inputs[i] = ggml_dup_tensor(ctx, *inputs[i]);
|
|
ggml_format_name(split->dst_inputs[i], "%s (split output)", split->src_inputs[i]->name);
|
|
// TODO: maybe support different layings in ggml_backend_cpy_tensor instead
|
|
for (int j = 0; j < GGML_MAX_DIMS; j++) {
|
|
split->dst_inputs[i]->nb[j] = split->src_inputs[i]->nb[j];
|
|
}
|
|
ggml_set_name(split->dst_inputs[i], ggml_get_name(*inputs[i]));
|
|
*inputs[i] = split->dst_inputs[i];
|
|
i++;
|
|
}
|
|
split->src_inputs[i] = NULL;
|
|
split->dst_inputs[i] = NULL;
|
|
split->ctx = ctx;
|
|
}
|
|
|
|
vsnprintf(split->name, GGML_MAX_NAME, fmt, args);
|
|
split->graph = NULL;
|
|
splits->n_splits++;
|
|
}
|
|
|
|
void ggml_graph_splits_add_n(struct ggml_graph_splits * splits, struct ggml_tensor *** input, struct ggml_context * ctx, const char * fmt, ...) {
|
|
va_list args;
|
|
va_start(args, fmt);
|
|
ggml_graph_splits_add_n_va(splits, input, ctx, fmt, args);
|
|
va_end(args);
|
|
}
|
|
|
|
void ggml_graph_splits_add(struct ggml_graph_splits * splits, struct ggml_tensor ** input, struct ggml_context * ctx, const char * fmt, ...) {
|
|
va_list args;
|
|
va_start(args, fmt);
|
|
ggml_graph_splits_add_n_va(splits, (struct ggml_tensor**[2]){ input, NULL }, ctx, fmt, args);
|
|
va_end(args);
|
|
}
|
|
|
|
void ggml_graph_splits_build_forward(struct ggml_graph_splits * splits, struct ggml_tensor * output) {
|
|
struct ggml_tensor *last_outputs[2] = { output, NULL };
|
|
struct ggml_tensor ** outputs;
|
|
|
|
for (int i = 0; i < splits->n_splits; i++) {
|
|
struct ggml_graph_split * split = &splits->splits[i];
|
|
|
|
if (i < splits->n_splits - 1) {
|
|
outputs = splits->splits[i + 1].src_inputs;
|
|
} else {
|
|
outputs = last_outputs;
|
|
}
|
|
|
|
// build the graph
|
|
// TODO: allocate graphs in context
|
|
split->graph = (struct ggml_cgraph *) malloc(sizeof(struct ggml_cgraph));
|
|
memset(split->graph, 0, sizeof(struct ggml_cgraph));
|
|
for (int j = 0; outputs[j] != NULL; j++) {
|
|
ggml_build_forward_expand(split->graph, outputs[j]);
|
|
}
|
|
|
|
for (int j = 1; j < split->graph->n_nodes; j++) {
|
|
if (split->graph->nodes[j]->backend != split->graph->nodes[0]->backend) {
|
|
fprintf(stderr, "split %s: node %s has different backend (%s) than the first node (%s)\n",
|
|
split->name, split->graph->nodes[j]->name,
|
|
ggml_backend_name(split->graph->nodes[j]->backend),
|
|
ggml_backend_name(split->graph->nodes[0]->backend));
|
|
}
|
|
}
|
|
for (int j = 1; j < split->graph->n_leafs; j++) {
|
|
if (split->graph->leafs[j]->backend != split->graph->leafs[0]->backend) {
|
|
fprintf(stderr, "split %s: leaf %s has different backend (%s) than the first leaf (%s)\n",
|
|
split->name, split->graph->leafs[j]->name,
|
|
ggml_backend_name(split->graph->leafs[j]->backend),
|
|
ggml_backend_name(split->graph->leafs[0]->backend));
|
|
}
|
|
}
|
|
}
|
|
|
|
// close graphs
|
|
for (int i = 0; i < splits->n_splits; i++) {
|
|
struct ggml_graph_split * split = &splits->splits[i];
|
|
ggml_graph_close(split->graph);
|
|
}
|
|
}
|
|
|
|
void ggml_graph_splits_compute(struct ggml_graph_splits * splits) {
|
|
uint64_t copy_us = 0;
|
|
uint64_t compute_cpu_us = 0;
|
|
uint64_t compute_gpu_us = 0;
|
|
int n_nodes = 0;
|
|
for (int i = 0; i < splits->n_splits; i++) {
|
|
struct ggml_graph_split * split = &splits->splits[i];
|
|
|
|
//printf("computing split %i (%s) on backend %s (%i nodes)\n", i, split->name, ggml_backend_name(split->dst_inputs[0]->backend), split->graph->n_nodes);
|
|
|
|
// copy the input tensor to the backend
|
|
uint64_t copy_start_us = ggml_time_us();
|
|
for (int j = 0; split->src_inputs[j] != NULL; j++) {
|
|
//printf("\tcopying tensor %d (%s) (%s -> %s) (%lu bytes)\n", j, split->src_inputs[j]->name, ggml_backend_name(split->src_inputs[j]->backend), ggml_backend_name(split->dst_inputs[j]->backend), ggml_nbytes(split->src_inputs[j]));
|
|
//printf("%p %p\n", split->src_inputs[j], split->dst_inputs[j]);
|
|
ggml_backend_tensor_copy(split->src_inputs[j], split->dst_inputs[j]);
|
|
}
|
|
// ggml_backend_synchronize(split->dst_inputs[0]->backend);
|
|
copy_us += ggml_time_us() - copy_start_us;
|
|
|
|
#if 0
|
|
char split_filename[GGML_MAX_NAME];
|
|
snprintf(split_filename, GGML_MAX_NAME, "split_%i.dot", i);
|
|
ggml_graph_dump_dot(split->graph, NULL, split_filename);
|
|
#endif
|
|
uint64_t start = ggml_time_us();
|
|
ggml_backend_graph_compute(split->dst_inputs[0]->backend, split->graph);
|
|
//ggml_backend_synchronize(split->dst_inputs[0]->backend);
|
|
uint64_t end = ggml_time_us();
|
|
if (strcmp(ggml_backend_name(split->dst_inputs[0]->backend), "CPU") == 0) {
|
|
compute_cpu_us += end - start;
|
|
} else {
|
|
compute_gpu_us += end - start;
|
|
}
|
|
|
|
n_nodes += split->graph->n_nodes;
|
|
}
|
|
|
|
//printf("splits: %d, nodes: %d, copy: %.2fms, compute_cpu: %.2fms, compute_gpu: %.2fms\n", splits->n_splits, n_nodes, copy_us / 1000.0, compute_cpu_us / 1000.0, compute_gpu_us / 1000.0);
|
|
//exit(0);
|
|
}
|
|
|
|
#if 0
|
|
// default allocator
|
|
struct free_block {
|
|
void * addr;
|
|
size_t size;
|
|
};
|
|
|
|
struct ggml_backend_default_allocator_context {
|
|
void * data;
|
|
size_t alignment;
|
|
int n_free_blocks;
|
|
struct free_block free_blocks[];
|
|
};
|
|
|
|
void ggml_backend_default_allocator_free_context(ggml_allocator_context_t ctx) {
|
|
struct ggml_backend_default_allocator_context * allocator_ctx = ctx;
|
|
free(allocator_ctx);
|
|
}
|
|
|
|
ggml_allocator_context_t ggml_backend_default_allocator_context(void * data, size_t size, size_t alignment, int n_free_blocks) {
|
|
struct ggml_backend_default_allocator_context * ctx = malloc(sizeof(struct ggml_backend_default_allocator_context) + n_free_blocks * sizeof(struct free_block));
|
|
ctx->data = data;
|
|
ctx->alignment = alignment;
|
|
ctx->n_free_blocks = 1;
|
|
size_t align_offset = align_offset(data, alignment);
|
|
ctx->free_blocks[0].addr = (char *)data + align_offset;
|
|
ctx->free_blocks[0].size = size - align_offset;
|
|
return ctx;
|
|
}
|
|
|
|
void * ggml_backend_default_allocator_alloc(ggml_allocator_context_t ctx, size_t size) {
|
|
struct ggml_backend_default_allocator_context * allocator_ctx = ctx;
|
|
size = align_size(size, allocator_ctx->alignment);
|
|
// find a free block
|
|
for (int i = 0; i < allocator_ctx->n_free_blocks; i++) {
|
|
struct free_block * block = &allocator_ctx->free_blocks[i];
|
|
if (block->size >= size) {
|
|
void * addr = block->addr;
|
|
block->addr += size;
|
|
block->size -= size;
|
|
if (block->size == 0) {
|
|
// remove block if empty
|
|
allocator_ctx->n_free_blocks--;
|
|
for (int j = i; j < allocator_ctx->n_free_blocks; j++) {
|
|
allocator_ctx->free_blocks[j] = allocator_ctx->free_blocks[j+1];
|
|
}
|
|
}
|
|
return addr;
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
// this is a very naive implementation, but for our case the number of free blocks should be very small
|
|
void ggml_backend_default_allocator_free(ggml_allocator_context_t ctx, void * ptr, size_t size) {
|
|
struct ggml_backend_default_allocator_context * allocator_ctx = ctx;
|
|
size = align_size(size, allocator_ctx->alignment);
|
|
// see if we can merge with an existing block
|
|
for (int i = 0; i < allocator_ctx->n_free_blocks; i++) {
|
|
struct free_block * block = &allocator_ctx->free_blocks[i];
|
|
// check if ptr is at the end of the block
|
|
if (block->addr + block->size == ptr) {
|
|
block->size += size;
|
|
// check if we can merge with the next block
|
|
if (i < allocator_ctx->n_free_blocks - 1 && block->addr + block->size == allocator_ctx->free_blocks[i+1].addr) {
|
|
block->size += allocator_ctx->free_blocks[i+1].size;
|
|
allocator_ctx->n_free_blocks--;
|
|
for (int j = i+1; j < allocator_ctx->n_free_blocks; j++) {
|
|
allocator_ctx->free_blocks[j] = allocator_ctx->free_blocks[j+1];
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
// check if ptr is at the beginning of the block
|
|
if (ptr + size == block->addr) {
|
|
block->addr = ptr;
|
|
block->size += size;
|
|
// check if we can merge with the previous block
|
|
if (i > 0 && allocator_ctx->free_blocks[i-1].addr + allocator_ctx->free_blocks[i-1].size == block->addr) {
|
|
allocator_ctx->free_blocks[i-1].size += block->size;
|
|
allocator_ctx->n_free_blocks--;
|
|
for (int j = i; j < allocator_ctx->n_free_blocks; j++) {
|
|
allocator_ctx->free_blocks[j] = allocator_ctx->free_blocks[j+1];
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
// otherwise, add a new block
|
|
if (allocator_ctx->n_free_blocks < MAX_FREE_BLOCKS) {
|
|
// insert the new block in the correct position to keep the array sorted
|
|
int insert_pos = 0;
|
|
while (insert_pos < allocator_ctx->n_free_blocks && allocator_ctx->free_blocks[insert_pos].addr < ptr) {
|
|
insert_pos++;
|
|
}
|
|
// shift all blocks from insert_pos onward to make room for the new block
|
|
for (int i = allocator_ctx->n_free_blocks; i > insert_pos; i--) {
|
|
allocator_ctx->free_blocks[i] = allocator_ctx->free_blocks[i-1];
|
|
}
|
|
// insert the new block
|
|
allocator_ctx->free_blocks[insert_pos].addr = ptr;
|
|
allocator_ctx->free_blocks[insert_pos].size = size;
|
|
allocator_ctx->n_free_blocks++;
|
|
}
|
|
else {
|
|
GGML_ASSERT(!"out of free blocks");
|
|
}
|
|
}
|
|
|
|
static bool ggml_is_view(struct ggml_tensor * t) {
|
|
return t->op == GGML_OP_RESHAPE || t->op == GGML_OP_VIEW || t->op == GGML_OP_TRANSPOSE ||
|
|
t->op == GGML_OP_PERMUTE || t->op == GGML_OP_NONE;
|
|
}
|
|
|
|
|
|
NOTE: id can be n_leaf OR n_node instead, we can determine the type by checking if the node is a leaf or not
|
|
|
|
void allocate_graph(struct ggml_cgraph * gf, struct ggml_buffer * buffer) {
|
|
int node_children_count[GGML_MAX_NODES*2];
|
|
int node_view_count[GGML_MAX_NODES*2];
|
|
memset(node_children_count, 0, sizeof(int) * (gf->n_nodes + gf->n_leafs));
|
|
memset(node_view_count, 0, sizeof(int) * (gf->n_nodes + gf->n_leafs));
|
|
|
|
// count number of children and views
|
|
for (int i = 0; i < gf->n_nodes; i++) {
|
|
struct ggml_tensor * node = gf->nodes[i];
|
|
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
|
struct ggml_tensor * parent = node->src[j];
|
|
if (parent == NULL) {
|
|
break;
|
|
}
|
|
// todo: ....
|
|
node_children_count[parent->id] += 1;
|
|
if (ggml_is_view(parent)) {
|
|
struct ggml_tensor * ancestor = parent;
|
|
do {
|
|
node_view_count[ancestor->id] += 1;
|
|
ancestor = ancestor->src[0];
|
|
} while (ggml_is_view(ancestor));
|
|
}
|
|
}
|
|
}
|
|
|
|
// allocate tensors
|
|
for (int i = 0; i < gf->n_nodes; i++) {
|
|
struct ggml_tensor * node = gf->nodes[i];
|
|
bool is_view = ggml_is_view(node);
|
|
if (is_view) {
|
|
// allocate view accordingly to the OP
|
|
node->data = node->src[0]->data; // + offset
|
|
struct ggml_tensor * ancestor = node->src[0];
|
|
while (ggml_is_view(ancestor)) {
|
|
ancestor = ancestor->src[0];
|
|
}
|
|
node_view_count[ancestor->id] -= 1;
|
|
} else {
|
|
if (node->data == NULL) {
|
|
// allocate tensor
|
|
// TODO: if last children and size == parent.size, then reuse parent tensor (auto in-place)
|
|
// may need a list of ops that can be in-place
|
|
ggml_backend_alloc_tensor(buffer, node);
|
|
}
|
|
}
|
|
|
|
// update parents
|
|
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
|
struct ggml_tensor * parent = node->src[j];
|
|
if (parent == NULL) {
|
|
break;
|
|
}
|
|
if (is_view) {
|
|
node_view_count[parent->id] -= 1;
|
|
}
|
|
node_children_count[parent->id] -= 1;
|
|
if (node_children_count[parent->id] == 0 && node_view_count[parent->id] == 0) {
|
|
// free parent
|
|
ggml_backend_free_tensor(buffer, parent);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
void ggml_graph_allocate_tensors(struct ggml_cgraph * graph, struct ggml_context * ctx) {
|
|
ggml_graph_allocate_tensors_n(&graph, 1, ctx);
|
|
}
|
|
|
|
static bool ggml_is_view(struct ggml_tensor * t) {
|
|
return t->op == GGML_OP_RESHAPE || t->op == GGML_OP_VIEW || t->op == GGML_OP_TRANSPOSE ||
|
|
t->op == GGML_OP_PERMUTE || t->op == GGML_OP_CPY;
|
|
}
|
|
|
|
void ggml_graph_allocate_tensors_n(struct ggml_cgraph ** graphs, int n_graphs, struct ggml_context * ctx) {
|
|
struct ggml_buffer * buffer = ggml_get_buffer(ctx);
|
|
for (int i = 0; i < n_graphs; i++) {
|
|
struct ggml_cgraph * graph = graphs[i];
|
|
for (int j = 0; j < graph->n_leafs; j++) {
|
|
struct ggml_tensor * leaf = graph->leafs[j];
|
|
GGML_ASSERT(leaf->backend == buffer->backend_buffer->backend);
|
|
if (leaf->data == NULL) {
|
|
//printf("allocating leaf %s\n", leaf->name);
|
|
ggml_backend_buffer_tensor_alloc(buffer->backend_buffer, leaf);
|
|
}
|
|
}
|
|
|
|
for (int j = 0; j < graph->n_nodes; j++) {
|
|
struct ggml_tensor * node = graph->nodes[j];
|
|
GGML_ASSERT(node->backend == buffer->backend_buffer->backend);
|
|
if (node->data == NULL) {
|
|
if (ggml_is_view(node)) {
|
|
size_t offset;
|
|
memcpy(&offset, node->op_params, sizeof(size_t));
|
|
switch(node->op) {
|
|
case GGML_OP_VIEW:
|
|
//printf("view %s (%s), offset %zu\n", node->name, ggml_op_name(node->op), offset);
|
|
node->data = (char *) node->src[0]->data + offset;
|
|
break;
|
|
case GGML_OP_RESHAPE:
|
|
case GGML_OP_TRANSPOSE:
|
|
case GGML_OP_PERMUTE:
|
|
node->data = node->src[0]->data;
|
|
break;
|
|
case GGML_OP_CPY:
|
|
node->data = node->src[1]->data;
|
|
break;
|
|
default:
|
|
GGML_ASSERT(!"unknown view op");
|
|
break;
|
|
}
|
|
} else {
|
|
//printf("allocating tensor %s\n", node->name);
|
|
ggml_backend_buffer_tensor_alloc(buffer->backend_buffer, node);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
//printf("\n\n\n");
|
|
}
|
|
|
|
void ggml_graph_splits_allocate_tensors(struct ggml_graph_splits * splits) {
|
|
bool visited[GGML_MAX_SPLITS] = {false};
|
|
for (int i = 0; i < splits->n_splits; i++) {
|
|
if (!visited[i]) {
|
|
struct ggml_graph_split * split = &splits->splits[i];
|
|
struct ggml_context * ctx = split->ctx;
|
|
struct ggml_cgraph * backend_graphs[GGML_MAX_SPLITS];
|
|
int num_graphs = 0;
|
|
for (int j = i; j < splits->n_splits; j++) {
|
|
if (splits->splits[j].ctx == ctx) {
|
|
backend_graphs[num_graphs] = splits->splits[j].graph;
|
|
visited[j] = true;
|
|
num_graphs++;
|
|
// TODO: need to ensure that the output tensors are never freed
|
|
// maybe this can be done automatically in ggml_graph_allocate_tensors_n by assuming that n_childs == 0 => output tensor
|
|
}
|
|
}
|
|
//printf("allocating tensors for %s [%d graphs/%d splits]\n", ggml_backend_name(ggml_get_buffer(ctx)->backend_buffer->backend), num_graphs, splits->n_splits);
|
|
ggml_graph_allocate_tensors_n(backend_graphs, num_graphs, ctx);
|
|
}
|
|
}
|
|
//printf("done allocating tensors\n");
|
|
}
|
|
|