llama.cpp/llama.cpp

7708 lines
276 KiB
C++

#define LLAMA_API_INTERNAL
#include "llama.h"
#include "ggml.h"
#include "ggml-alloc.h"
#ifdef GGML_USE_CUBLAS
# include "ggml-cuda.h"
#elif defined(GGML_USE_CLBLAST)
# include "ggml-opencl.h"
#endif
#ifdef GGML_USE_METAL
# include "ggml-metal.h"
#endif
#ifdef GGML_USE_MPI
# include "ggml-mpi.h"
#endif
#ifdef GGML_USE_K_QUANTS
# ifndef QK_K
# ifdef GGML_QKK_64
# define QK_K 64
# else
# define QK_K 256
# endif
# endif
#endif
#ifdef __has_include
#if __has_include(<unistd.h>)
#include <unistd.h>
#if defined(_POSIX_MAPPED_FILES)
#include <sys/mman.h>
#endif
#if defined(_POSIX_MEMLOCK_RANGE)
#include <sys/resource.h>
#endif
#endif
#endif
#if defined(_WIN32)
#define WIN32_LEAN_AND_MEAN
#ifndef NOMINMAX
#define NOMINMAX
#endif
#include <windows.h>
#include <io.h>
#include <stdio.h> // for _fseeki64
#endif
#include <algorithm>
#include <array>
#include <cassert>
#include <cinttypes>
#include <climits>
#include <cstdarg>
#include <cstddef>
#include <cstdint>
#include <cstdio>
#include <cstring>
#include <ctime>
#include <fstream>
#include <initializer_list>
#include <map>
#include <memory>
#include <mutex>
#include <numeric>
#include <queue>
#include <random>
#include <regex>
#include <sstream>
#include <thread>
#include <unordered_map>
#include <set>
#if defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data
#endif
#ifdef __GNUC__
#ifdef __MINGW32__
#define LLAMA_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
#else
#define LLAMA_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
#endif
#else
#define LLAMA_ATTRIBUTE_FORMAT(...)
#endif
//
// logging
//
LLAMA_ATTRIBUTE_FORMAT(2, 3)
static void llama_log_internal (llama_log_level level, const char* format, ...);
static void llama_log_callback_default(llama_log_level level, const char * text, void * user_data);
#define LLAMA_LOG_INFO(...) llama_log_internal(LLAMA_LOG_LEVEL_INFO , __VA_ARGS__)
#define LLAMA_LOG_WARN(...) llama_log_internal(LLAMA_LOG_LEVEL_WARN , __VA_ARGS__)
#define LLAMA_LOG_ERROR(...) llama_log_internal(LLAMA_LOG_LEVEL_ERROR, __VA_ARGS__)
//
// helpers
//
static size_t utf8_len(char src) {
const size_t lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 };
uint8_t highbits = static_cast<uint8_t>(src) >> 4;
return lookup[highbits];
}
static void replace_all(std::string & s, const std::string & search, const std::string & replace) {
std::string result;
for (size_t pos = 0; ; pos += search.length()) {
auto new_pos = s.find(search, pos);
if (new_pos == std::string::npos) {
result += s.substr(pos, s.size() - pos);
break;
}
result += s.substr(pos, new_pos - pos) + replace;
pos = new_pos;
}
s = std::move(result);
}
#ifdef GGML_USE_CPU_HBM
#include <hbwmalloc.h>
#endif
static void zeros(std::ofstream & file, size_t n) {
char zero = 0;
for (size_t i = 0; i < n; ++i) {
file.write(&zero, 1);
}
}
LLAMA_ATTRIBUTE_FORMAT(1, 2)
static std::string format(const char * fmt, ...) {
va_list ap;
va_list ap2;
va_start(ap, fmt);
va_copy(ap2, ap);
int size = vsnprintf(NULL, 0, fmt, ap);
GGML_ASSERT(size >= 0 && size < INT_MAX); // NOLINT
std::vector<char> buf(size + 1);
int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
GGML_ASSERT(size2 == size);
va_end(ap2);
va_end(ap);
return std::string(buf.data(), size);
}
//
// gguf constants (sync with gguf.py)
//
enum llm_arch {
LLM_ARCH_LLAMA,
LLM_ARCH_FALCON,
LLM_ARCH_BAICHUAN,
LLM_ARCH_GPT2,
LLM_ARCH_GPTJ,
LLM_ARCH_GPTNEOX,
LLM_ARCH_MPT,
LLM_ARCH_STARCODER,
LLM_ARCH_UNKNOWN,
};
static std::map<llm_arch, std::string> LLM_ARCH_NAMES = {
{ LLM_ARCH_LLAMA, "llama" },
{ LLM_ARCH_FALCON, "falcon" },
{ LLM_ARCH_GPT2, "gpt2" },
{ LLM_ARCH_GPTJ, "gptj" },
{ LLM_ARCH_GPTNEOX, "gptneox" },
{ LLM_ARCH_MPT, "mpt" },
{ LLM_ARCH_BAICHUAN, "baichuan" },
{ LLM_ARCH_STARCODER, "starcoder" },
};
enum llm_kv {
LLM_KV_GENERAL_ARCHITECTURE,
LLM_KV_GENERAL_QUANTIZATION_VERSION,
LLM_KV_GENERAL_ALIGNMENT,
LLM_KV_GENERAL_NAME,
LLM_KV_GENERAL_AUTHOR,
LLM_KV_GENERAL_URL,
LLM_KV_GENERAL_DESCRIPTION,
LLM_KV_GENERAL_LICENSE,
LLM_KV_GENERAL_SOURCE_URL,
LLM_KV_GENERAL_SOURCE_HF_REPO,
LLM_KV_CONTEXT_LENGTH,
LLM_KV_EMBEDDING_LENGTH,
LLM_KV_BLOCK_COUNT,
LLM_KV_FEED_FORWARD_LENGTH,
LLM_KV_USE_PARALLEL_RESIDUAL,
LLM_KV_TENSOR_DATA_LAYOUT,
LLM_KV_ATTENTION_HEAD_COUNT,
LLM_KV_ATTENTION_HEAD_COUNT_KV,
LLM_KV_ATTENTION_MAX_ALIBI_BIAS,
LLM_KV_ATTENTION_CLAMP_KQV,
LLM_KV_ATTENTION_LAYERNORM_EPS,
LLM_KV_ATTENTION_LAYERNORM_RMS_EPS,
LLM_KV_ROPE_DIMENSION_COUNT,
LLM_KV_ROPE_FREQ_BASE,
LLM_KV_ROPE_SCALE_LINEAR,
LLM_KV_TOKENIZER_MODEL,
LLM_KV_TOKENIZER_LIST,
LLM_KV_TOKENIZER_TOKEN_TYPE,
LLM_KV_TOKENIZER_SCORES,
LLM_KV_TOKENIZER_MERGES,
LLM_KV_TOKENIZER_BOS_ID,
LLM_KV_TOKENIZER_EOS_ID,
LLM_KV_TOKENIZER_UNK_ID,
LLM_KV_TOKENIZER_SEP_ID,
LLM_KV_TOKENIZER_PAD_ID,
LLM_KV_TOKENIZER_HF_JSON,
LLM_KV_TOKENIZER_RWKV,
};
static std::map<llm_kv, std::string> LLM_KV_NAMES = {
{ LLM_KV_GENERAL_ARCHITECTURE, "general.architecture" },
{ LLM_KV_GENERAL_QUANTIZATION_VERSION, "general.quantization_version" },
{ LLM_KV_GENERAL_ALIGNMENT, "general.alignment" },
{ LLM_KV_GENERAL_NAME, "general.name" },
{ LLM_KV_GENERAL_AUTHOR, "general.author" },
{ LLM_KV_GENERAL_URL, "general.url" },
{ LLM_KV_GENERAL_DESCRIPTION, "general.description" },
{ LLM_KV_GENERAL_LICENSE, "general.license" },
{ LLM_KV_GENERAL_SOURCE_URL, "general.source_url" },
{ LLM_KV_GENERAL_SOURCE_HF_REPO, "general.source_hf_repo" },
{ LLM_KV_CONTEXT_LENGTH, "%s.context_length" },
{ LLM_KV_EMBEDDING_LENGTH, "%s.embedding_length" },
{ LLM_KV_BLOCK_COUNT, "%s.block_count" },
{ LLM_KV_FEED_FORWARD_LENGTH, "%s.feed_forward_length" },
{ LLM_KV_USE_PARALLEL_RESIDUAL, "%s.use_parallel_residual" },
{ LLM_KV_TENSOR_DATA_LAYOUT, "%s.tensor_data_layout" },
{ LLM_KV_ATTENTION_HEAD_COUNT, "%s.attention.head_count" },
{ LLM_KV_ATTENTION_HEAD_COUNT_KV, "%s.attention.head_count_kv" },
{ LLM_KV_ATTENTION_MAX_ALIBI_BIAS, "%s.attention.max_alibi_bias" },
{ LLM_KV_ATTENTION_CLAMP_KQV, "%s.attention.clamp_kqv" },
{ LLM_KV_ATTENTION_LAYERNORM_EPS, "%s.attention.layer_norm_epsilon" },
{ LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, "%s.attention.layer_norm_rms_epsilon" },
{ LLM_KV_ROPE_DIMENSION_COUNT, "%s.rope.dimension_count" },
{ LLM_KV_ROPE_FREQ_BASE, "%s.rope.freq_base" },
{ LLM_KV_ROPE_SCALE_LINEAR, "%s.rope.scale_linear" },
{ LLM_KV_TOKENIZER_MODEL, "tokenizer.ggml.model" },
{ LLM_KV_TOKENIZER_LIST, "tokenizer.ggml.tokens" },
{ LLM_KV_TOKENIZER_TOKEN_TYPE, "tokenizer.ggml.token_type" },
{ LLM_KV_TOKENIZER_SCORES, "tokenizer.ggml.scores" },
{ LLM_KV_TOKENIZER_MERGES, "tokenizer.ggml.merges" },
{ LLM_KV_TOKENIZER_BOS_ID, "tokenizer.ggml.bos_token_id" },
{ LLM_KV_TOKENIZER_EOS_ID, "tokenizer.ggml.eos_token_id" },
{ LLM_KV_TOKENIZER_UNK_ID, "tokenizer.ggml.unknown_token_id" },
{ LLM_KV_TOKENIZER_SEP_ID, "tokenizer.ggml.seperator_token_id" },
{ LLM_KV_TOKENIZER_PAD_ID, "tokenizer.ggml.padding_token_id" },
{ LLM_KV_TOKENIZER_HF_JSON, "tokenizer.huggingface.json" },
{ LLM_KV_TOKENIZER_RWKV, "tokenizer.rwkv.world" },
};
struct LLM_KV {
LLM_KV(llm_arch arch) : arch(arch) {}
llm_arch arch;
std::string operator()(llm_kv kv) const {
return ::format(LLM_KV_NAMES[kv].c_str(), LLM_ARCH_NAMES[arch].c_str());
}
};
enum llm_tensor {
LLM_TENSOR_TOKEN_EMBD,
LLM_TENSOR_POS_EMBD,
LLM_TENSOR_OUTPUT,
LLM_TENSOR_OUTPUT_NORM,
LLM_TENSOR_ROPE_FREQS,
LLM_TENSOR_ATTN_Q,
LLM_TENSOR_ATTN_K,
LLM_TENSOR_ATTN_V,
LLM_TENSOR_ATTN_QKV,
LLM_TENSOR_ATTN_OUT,
LLM_TENSOR_ATTN_NORM,
LLM_TENSOR_ATTN_NORM_2,
LLM_TENSOR_ATTN_ROT_EMBD,
LLM_TENSOR_FFN_GATE,
LLM_TENSOR_FFN_DOWN,
LLM_TENSOR_FFN_UP,
LLM_TENSOR_FFN_NORM,
};
static std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NAMES = {
{
LLM_ARCH_LLAMA,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
{ LLM_TENSOR_OUTPUT, "output" },
{ LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
{ LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
},
},
{
LLM_ARCH_BAICHUAN,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
{ LLM_TENSOR_OUTPUT, "output" },
{ LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
{ LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
},
},
{
LLM_ARCH_FALCON,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
{ LLM_TENSOR_OUTPUT, "output" },
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
{ LLM_TENSOR_ATTN_NORM_2, "blk.%d.attn_norm_2" },
{ LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
},
},
{
LLM_ARCH_GPT2,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
},
},
{
LLM_ARCH_GPTJ,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
},
},
{
LLM_ARCH_GPTNEOX,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
{ LLM_TENSOR_OUTPUT, "output" },
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
{ LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
},
},
{
LLM_ARCH_MPT,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
},
},
{
LLM_ARCH_STARCODER,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_POS_EMBD, "position_embd" },
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
{ LLM_TENSOR_OUTPUT, "output" },
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
{ LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
},
},
{
LLM_ARCH_UNKNOWN,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
},
},
};
static llm_arch llm_arch_from_string(const std::string & name) {
for (const auto & kv : LLM_ARCH_NAMES) { // NOLINT
if (kv.second == name) {
return kv.first;
}
}
return LLM_ARCH_UNKNOWN;
}
// helper to handle gguf constants
// usage:
//
// const auto tn = LLM_TN(LLM_ARCH_LLAMA);
//
// std::string name = tn(LLM_TENSOR_OUTPUT); -> "output"
// std::string name = tn(LLM_TENSOR_TOKEN_EMBD, "bias"); -> "token_embd.bias"
// std::string name = tn(LLM_TENSOR_ATTN_NORM, "weight", 3); -> "blk.3.attn_norm.weight"
//
struct LLM_TN {
LLM_TN(llm_arch arch) : arch(arch) {}
llm_arch arch;
std::string operator()(llm_tensor tensor) const {
return LLM_TENSOR_NAMES[arch].at(tensor);
}
std::string operator()(llm_tensor tensor, const std::string & suffix) const {
return LLM_TENSOR_NAMES[arch].at(tensor) + "." + suffix;
}
std::string operator()(llm_tensor tensor, int bid) const {
return ::format(LLM_TENSOR_NAMES[arch].at(tensor).c_str(), bid);
}
std::string operator()(llm_tensor tensor, const std::string & suffix, int bid) const {
return ::format(LLM_TENSOR_NAMES[arch].at(tensor).c_str(), bid) + "." + suffix;
}
};
//
// gguf helpers
//
#define GGUF_GET_KEY(ctx, dst, func, type, req, key) \
{ \
const std::string skey(key); \
const int kid = gguf_find_key(ctx, skey.c_str()); \
if (kid >= 0) { \
enum gguf_type ktype = gguf_get_kv_type(ctx, kid); \
if (ktype != (type)) { \
throw std::runtime_error(format("key %s has wrong type: %s", skey.c_str(), gguf_type_name(ktype))); \
} \
(dst) = func(ctx, kid); \
} else if (req) { \
throw std::runtime_error(format("key not found in model: %s", skey.c_str())); \
} \
}
//
// ggml helpers
//
static void ggml_graph_compute_helper(std::vector<uint8_t> & buf, ggml_cgraph * graph, int n_threads) {
struct ggml_cplan plan = ggml_graph_plan(graph, n_threads);
if (plan.work_size > 0) {
buf.resize(plan.work_size);
plan.work_data = buf.data();
}
ggml_graph_compute(graph, &plan);
}
//
// llama helpers
//
#ifdef GGML_USE_CUBLAS
# define llama_host_malloc(n) ggml_cuda_host_malloc(n)
# define llama_host_free(data) ggml_cuda_host_free(data)
#elif GGML_USE_METAL
# define llama_host_malloc(n) ggml_metal_host_malloc(n)
# define llama_host_free(data) ggml_metal_host_free(data)
#elif GGML_USE_CPU_HBM
# define llama_host_malloc(n) hbw_malloc(n)
# define llama_host_free(data) if (data != NULL) hbw_free(data)
#else
# define llama_host_malloc(n) malloc(n)
# define llama_host_free(data) free(data)
#endif
#if defined(_WIN32)
static std::string llama_format_win_err(DWORD err) {
LPSTR buf;
size_t size = FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS,
NULL, err, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPSTR)&buf, 0, NULL);
if (!size) {
return "FormatMessageA failed";
}
std::string ret(buf, size);
LocalFree(buf);
return ret;
}
#endif
struct llama_buffer {
void * data = NULL;
size_t size = 0;
// fallback to malloc / free
// useful in cases where CUDA can try to allocate PINNED memory
bool fallback = false;
void resize(size_t n) {
llama_host_free(data);
data = llama_host_malloc(n);
if (!data) {
fallback = true;
data = malloc(n);
} else {
fallback = false;
}
GGML_ASSERT(data);
size = n;
}
~llama_buffer() {
if (data) {
if (fallback) { // NOLINT
free(data);
} else {
llama_host_free(data);
}
}
data = NULL;
}
};
struct llama_file {
// use FILE * so we don't have to re-open the file to mmap
FILE * fp;
size_t size;
llama_file(const char * fname, const char * mode) {
fp = std::fopen(fname, mode);
if (fp == NULL) {
throw std::runtime_error(format("failed to open %s: %s", fname, strerror(errno)));
}
seek(0, SEEK_END);
size = tell();
seek(0, SEEK_SET);
}
size_t tell() const {
#ifdef _WIN32
__int64 ret = _ftelli64(fp);
#else
long ret = std::ftell(fp);
#endif
GGML_ASSERT(ret != -1); // this really shouldn't fail
return (size_t) ret;
}
void seek(size_t offset, int whence) const {
#ifdef _WIN32
int ret = _fseeki64(fp, (__int64) offset, whence);
#else
int ret = std::fseek(fp, (long) offset, whence);
#endif
GGML_ASSERT(ret == 0); // same
}
void read_raw(void * ptr, size_t len) const {
if (len == 0) {
return;
}
errno = 0;
std::size_t ret = std::fread(ptr, len, 1, fp);
if (ferror(fp)) {
throw std::runtime_error(format("read error: %s", strerror(errno)));
}
if (ret != 1) {
throw std::runtime_error(std::string("unexpectedly reached end of file"));
}
}
uint32_t read_u32() const {
uint32_t ret;
read_raw(&ret, sizeof(ret));
return ret;
}
void write_raw(const void * ptr, size_t len) const {
if (len == 0) {
return;
}
errno = 0;
size_t ret = std::fwrite(ptr, len, 1, fp);
if (ret != 1) {
throw std::runtime_error(format("write error: %s", strerror(errno)));
}
}
void write_u32(std::uint32_t val) const {
write_raw(&val, sizeof(val));
}
~llama_file() {
if (fp) {
std::fclose(fp);
}
}
};
struct llama_mmap {
void * addr;
size_t size;
llama_mmap(const llama_mmap &) = delete;
#ifdef _POSIX_MAPPED_FILES
static constexpr bool SUPPORTED = true;
llama_mmap(struct llama_file * file, size_t prefetch = (size_t) -1 /* -1 = max value */, bool numa = false) {
size = file->size;
int fd = fileno(file->fp);
int flags = MAP_SHARED;
// prefetch/readahead impairs performance on NUMA systems
if (numa) { prefetch = 0; }
#ifdef __linux__
if (prefetch) { flags |= MAP_POPULATE; }
#endif
addr = mmap(NULL, file->size, PROT_READ, flags, fd, 0);
if (addr == MAP_FAILED) {
throw std::runtime_error(format("mmap failed: %s", strerror(errno)));
}
if (prefetch > 0) {
// Advise the kernel to preload the mapped memory
if (posix_madvise(addr, std::min(file->size, prefetch), POSIX_MADV_WILLNEED)) {
fprintf(stderr, "warning: posix_madvise(.., POSIX_MADV_WILLNEED) failed: %s\n",
strerror(errno));
}
}
if (numa) {
// advise the kernel not to use readahead
// (because the next page might not belong on the same node)
if (posix_madvise(addr, file->size, POSIX_MADV_RANDOM)) {
fprintf(stderr, "warning: posix_madvise(.., POSIX_MADV_RANDOM) failed: %s\n",
strerror(errno));
}
}
}
~llama_mmap() {
munmap(addr, size);
}
#elif defined(_WIN32)
static constexpr bool SUPPORTED = true;
llama_mmap(struct llama_file * file, bool prefetch = true, bool numa = false) {
(void) numa;
size = file->size;
HANDLE hFile = (HANDLE) _get_osfhandle(_fileno(file->fp));
HANDLE hMapping = CreateFileMappingA(hFile, NULL, PAGE_READONLY, 0, 0, NULL);
DWORD error = GetLastError();
if (hMapping == NULL) {
throw std::runtime_error(format("CreateFileMappingA failed: %s", llama_format_win_err(error).c_str()));
}
addr = MapViewOfFile(hMapping, FILE_MAP_READ, 0, 0, 0);
error = GetLastError();
CloseHandle(hMapping);
if (addr == NULL) {
throw std::runtime_error(format("MapViewOfFile failed: %s", llama_format_win_err(error).c_str()));
}
if (prefetch) {
// PrefetchVirtualMemory is only present on Windows 8 and above, so we dynamically load it
BOOL (WINAPI *pPrefetchVirtualMemory) (HANDLE, ULONG_PTR, PWIN32_MEMORY_RANGE_ENTRY, ULONG);
HMODULE hKernel32 = GetModuleHandleW(L"kernel32.dll");
// may fail on pre-Windows 8 systems
pPrefetchVirtualMemory = reinterpret_cast<decltype(pPrefetchVirtualMemory)> (GetProcAddress(hKernel32, "PrefetchVirtualMemory"));
if (pPrefetchVirtualMemory) {
// advise the kernel to preload the mapped memory
WIN32_MEMORY_RANGE_ENTRY range;
range.VirtualAddress = addr;
range.NumberOfBytes = (SIZE_T)size;
if (!pPrefetchVirtualMemory(GetCurrentProcess(), 1, &range, 0)) {
fprintf(stderr, "warning: PrefetchVirtualMemory failed: %s\n",
llama_format_win_err(GetLastError()).c_str());
}
}
}
}
~llama_mmap() {
if (!UnmapViewOfFile(addr)) {
fprintf(stderr, "warning: UnmapViewOfFile failed: %s\n",
llama_format_win_err(GetLastError()).c_str());
}
}
#else
static constexpr bool SUPPORTED = false;
llama_mmap(struct llama_file * file, bool prefetch = true, bool numa = false) {
(void) file;
(void) prefetch;
(void) numa;
throw std::runtime_error(std::string("mmap not supported"));
}
#endif
};
// Represents some region of memory being locked using mlock or VirtualLock;
// will automatically unlock on destruction.
struct llama_mlock {
void * addr = NULL;
size_t size = 0;
bool failed_already = false;
llama_mlock() {}
llama_mlock(const llama_mlock &) = delete;
~llama_mlock() {
if (size) {
raw_unlock(addr, size);
}
}
void init(void * ptr) {
GGML_ASSERT(addr == NULL && size == 0); // NOLINT
addr = ptr;
}
void grow_to(size_t target_size) {
GGML_ASSERT(addr);
if (failed_already) {
return;
}
size_t granularity = lock_granularity();
target_size = (target_size + granularity - 1) & ~(granularity - 1);
if (target_size > size) {
if (raw_lock((uint8_t *) addr + size, target_size - size)) {
size = target_size;
} else {
failed_already = true;
}
}
}
#ifdef _POSIX_MEMLOCK_RANGE
static constexpr bool SUPPORTED = true;
static size_t lock_granularity() {
return (size_t) sysconf(_SC_PAGESIZE);
}
#ifdef __APPLE__
#define MLOCK_SUGGESTION \
"Try increasing the sysctl values 'vm.user_wire_limit' and 'vm.global_user_wire_limit' and/or " \
"decreasing 'vm.global_no_user_wire_amount'. Also try increasing RLIMIT_MLOCK (ulimit -l).\n"
#else
#define MLOCK_SUGGESTION \
"Try increasing RLIMIT_MLOCK ('ulimit -l' as root).\n"
#endif
bool raw_lock(const void * addr, size_t size) const {
if (!mlock(addr, size)) {
return true;
}
char* errmsg = std::strerror(errno);
bool suggest = (errno == ENOMEM);
// Check if the resource limit is fine after all
struct rlimit lock_limit;
if (suggest && getrlimit(RLIMIT_MEMLOCK, &lock_limit)) {
suggest = false;
}
if (suggest && (lock_limit.rlim_max > lock_limit.rlim_cur + size)) {
suggest = false;
}
fprintf(stderr, "warning: failed to mlock %zu-byte buffer (after previously locking %zu bytes): %s\n%s",
size, this->size, errmsg, suggest ? MLOCK_SUGGESTION : "");
return false;
}
#undef MLOCK_SUGGESTION
static void raw_unlock(void * addr, size_t size) {
if (munlock(addr, size)) {
fprintf(stderr, "warning: failed to munlock buffer: %s\n", std::strerror(errno));
}
}
#elif defined(_WIN32)
static constexpr bool SUPPORTED = true;
static size_t lock_granularity() {
SYSTEM_INFO si;
GetSystemInfo(&si);
return (size_t) si.dwPageSize;
}
bool raw_lock(void * ptr, size_t len) const {
for (int tries = 1; ; tries++) {
if (VirtualLock(ptr, len)) {
return true;
}
if (tries == 2) {
fprintf(stderr, "warning: failed to VirtualLock %zu-byte buffer (after previously locking %zu bytes): %s\n",
len, size, llama_format_win_err(GetLastError()).c_str());
return false;
}
// It failed but this was only the first try; increase the working
// set size and try again.
SIZE_T min_ws_size, max_ws_size;
if (!GetProcessWorkingSetSize(GetCurrentProcess(), &min_ws_size, &max_ws_size)) {
fprintf(stderr, "warning: GetProcessWorkingSetSize failed: %s\n",
llama_format_win_err(GetLastError()).c_str());
return false;
}
// Per MSDN: "The maximum number of pages that a process can lock
// is equal to the number of pages in its minimum working set minus
// a small overhead."
// Hopefully a megabyte is enough overhead:
size_t increment = len + 1048576;
// The minimum must be <= the maximum, so we need to increase both:
min_ws_size += increment;
max_ws_size += increment;
if (!SetProcessWorkingSetSize(GetCurrentProcess(), min_ws_size, max_ws_size)) {
fprintf(stderr, "warning: SetProcessWorkingSetSize failed: %s\n",
llama_format_win_err(GetLastError()).c_str());
return false;
}
}
}
static void raw_unlock(void * ptr, size_t len) {
if (!VirtualUnlock(ptr, len)) {
fprintf(stderr, "warning: failed to VirtualUnlock buffer: %s\n",
llama_format_win_err(GetLastError()).c_str());
}
}
#else
static constexpr bool SUPPORTED = false;
static size_t lock_granularity() {
return (size_t) 65536;
}
bool raw_lock(const void * addr, size_t len) const {
fprintf(stderr, "warning: mlock not supported on this system\n");
return false;
}
static void raw_unlock(const void * addr, size_t len) {}
#endif
};
typedef void (*offload_func_t)(struct ggml_tensor * tensor);
static void llama_nop(struct ggml_tensor * tensor) { // don't offload by default
(void) tensor;
}
static std::string llama_token_to_str(const struct llama_context * ctx, llama_token token) {
std::vector<char> result(8, 0);
const int n_tokens = llama_token_to_piece(ctx, token, result.data(), result.size());
if (n_tokens < 0) {
result.resize(-n_tokens);
int check = llama_token_to_piece(ctx, token, result.data(), result.size());
GGML_ASSERT(check == -n_tokens);
} else {
result.resize(n_tokens);
}
return std::string(result.data(), result.size());
}
//
// globals
//
struct llama_state {
// We save the log callback globally
llama_log_callback log_callback = llama_log_callback_default;
void * log_callback_user_data = nullptr;
};
static llama_state g_state;
// available llama models
enum e_model {
MODEL_UNKNOWN,
MODEL_1B,
MODEL_3B,
MODEL_7B,
MODEL_13B,
MODEL_15B,
MODEL_30B,
MODEL_34B,
MODEL_40B,
MODEL_65B,
MODEL_70B,
};
static const size_t kB = 1024;
static const size_t MB = kB*kB;
static const size_t GB = kB*kB*kB;
// default hparams (LLaMA 7B)
struct llama_hparams {
uint32_t n_vocab = 32000;
uint32_t n_ctx_train = 2048; // the context size used during training
uint32_t n_ctx = 512; // the context size used during inference
uint32_t n_embd = 4096;
uint32_t n_head = 32;
uint32_t n_head_kv = 32;
uint32_t n_layer = 32;
uint32_t n_rot = 64;
uint32_t n_ff = 11008;
float f_norm_eps = 1e-5;
float f_norm_rms_eps = 1e-5;
float rope_freq_base = 10000.0f;
float rope_freq_scale = 1.0f;
bool operator!=(const llama_hparams & other) const {
return static_cast<bool>(memcmp(this, &other, sizeof(llama_hparams))); // NOLINT
}
uint32_t n_gqa() const {
return n_head/n_head_kv;
}
uint32_t n_embd_head() const {
return n_embd/n_head;
}
uint32_t n_embd_gqa() const {
return n_embd/n_gqa();
}
size_t kv_size() const {
size_t result = 2ull;
result *= (size_t) n_embd_gqa();
result *= (size_t) n_ctx;
result *= (size_t) n_layer;
result *= sizeof(ggml_fp16_t);
return result;
}
};
struct llama_layer {
// normalization
struct ggml_tensor * attn_norm;
struct ggml_tensor * attn_norm_b;
struct ggml_tensor * attn_norm_2;
struct ggml_tensor * attn_norm_2_b;
// attention
struct ggml_tensor * wq;
struct ggml_tensor * wk;
struct ggml_tensor * wv;
struct ggml_tensor * wo;
struct ggml_tensor * wqkv;
// attention bias
struct ggml_tensor * bo;
struct ggml_tensor * bqkv;
// normalization
struct ggml_tensor * ffn_norm;
struct ggml_tensor * ffn_norm_b;
// ff
struct ggml_tensor * w1; // ffn_gate
struct ggml_tensor * w2; // ffn_down
struct ggml_tensor * w3; // ffn_up
// ff bias
struct ggml_tensor * b2; // ffn_down
struct ggml_tensor * b3; // ffn_up
};
struct llama_kv_cell {
llama_pos pos = -1;
llama_pos delta = 0;
std::set<llama_seq_id> seq_id;
bool has_seq_id(const llama_seq_id & id) const {
return seq_id.find(id) != seq_id.end();
}
};
// ring-buffer of cached KV data
struct llama_kv_cache {
bool has_shift = false;
uint32_t head = 0;
uint32_t size = 0;
// computed before each graph build
uint32_t n = 0;
std::vector<llama_kv_cell> cells;
struct ggml_tensor * k = NULL;
struct ggml_tensor * v = NULL;
struct ggml_context * ctx = NULL;
llama_buffer buf;
~llama_kv_cache() {
if (ctx) {
ggml_free(ctx);
}
#ifdef GGML_USE_CUBLAS
ggml_cuda_free_data(k);
ggml_cuda_free_data(v);
#endif // GGML_USE_CUBLAS
}
};
struct llama_vocab {
using id = int32_t;
using token = std::string;
using ttype = llama_token_type;
struct token_data {
token text;
float score;
ttype type;
};
enum llama_vocab_type type = LLAMA_VOCAB_TYPE_SPM;
std::unordered_map<token, id> token_to_id;
std::vector<token_data> id_to_token;
std::map<std::pair<std::string, std::string>, int> bpe_ranks;
// default LLaMA special tokens
id special_bos_id = 1;
id special_eos_id = 2;
id special_unk_id = 0;
id special_sep_id = -1;
id special_pad_id = -1;
id linefeed_id = 13;
int find_bpe_rank(std::string token_left, std::string token_right) const {
replace_all(token_left, " ", "\u0120");
replace_all(token_left, "\n", "\u010A");
replace_all(token_right, " ", "\u0120");
replace_all(token_right, "\n", "\u010A");
auto it = bpe_ranks.find(std::make_pair(token_left, token_right));
if (it == bpe_ranks.end()) {
return -1;
}
return it->second;
}
};
struct llama_model {
e_model type = MODEL_UNKNOWN;
llm_arch arch = LLM_ARCH_UNKNOWN;
llama_ftype ftype = LLAMA_FTYPE_ALL_F32;
std::string name = "n/a";
llama_hparams hparams;
llama_vocab vocab;
struct ggml_tensor * tok_embeddings;
struct ggml_tensor * pos_embeddings;
struct ggml_tensor * output_norm;
struct ggml_tensor * output_norm_b;
struct ggml_tensor * output;
std::vector<llama_layer> layers;
int n_gpu_layers;
// context
struct ggml_context * ctx = NULL;
// the model memory buffer
llama_buffer buf;
// model memory mapped file
std::unique_ptr<llama_mmap> mapping;
// objects representing data potentially being locked in memory
llama_mlock mlock_buf;
llama_mlock mlock_mmap;
// for quantize-stats only
std::vector<std::pair<std::string, struct ggml_tensor *>> tensors_by_name;
int64_t t_load_us = 0;
int64_t t_start_us = 0;
~llama_model() {
if (ctx) {
ggml_free(ctx);
}
#ifdef GGML_USE_CUBLAS
for (size_t i = 0; i < tensors_by_name.size(); ++i) {
ggml_cuda_free_data(tensors_by_name[i].second);
}
ggml_cuda_free_scratch();
#elif defined(GGML_USE_CLBLAST)
for (size_t i = 0; i < tensors_by_name.size(); ++i) {
ggml_cl_free_data(tensors_by_name[i].second);
}
#endif
}
};
struct llama_context {
llama_context(const llama_model & model) : model(model), t_load_us(model.t_load_us), t_start_us(model.t_start_us) {}
~llama_context() {
if (model_owner) {
delete &model;
}
#ifdef GGML_USE_METAL
if (ctx_metal) {
ggml_metal_free(ctx_metal);
}
#endif
if (alloc) {
ggml_allocr_free(alloc);
}
}
std::mt19937 rng;
bool has_evaluated_once = false;
int64_t t_sample_us = 0;
int64_t t_eval_us = 0;
int64_t t_p_eval_us = 0;
int32_t n_sample = 0; // number of tokens sampled
int32_t n_eval = 0; // number of eval calls
int32_t n_p_eval = 0; // number of tokens in eval calls for the prompt (with batch size > 1)
const llama_model & model;
bool model_owner = false;
int64_t t_load_us;
int64_t t_start_us;
// key + value cache for the self attention
struct llama_kv_cache kv_self;
// decode output (2-dimensional array: [n_tokens][n_vocab])
std::vector<float> logits;
bool logits_all = false;
// input embedding (1-dimensional array: [n_embd])
std::vector<float> embedding;
// reusable buffer for `struct ggml_graph_plan.work_data`
std::vector<uint8_t> work_buffer;
// memory buffers used to evaluate the model
llama_buffer buf_compute;
llama_buffer buf_alloc;
ggml_allocr * alloc = NULL;
#ifdef GGML_USE_METAL
ggml_metal_context * ctx_metal = NULL;
#endif
#ifdef GGML_USE_MPI
ggml_mpi_context * ctx_mpi = NULL;
#endif
};
//
// kv cache helpers
//
static bool llama_kv_cache_init(
const struct llama_hparams & hparams,
struct llama_kv_cache & cache,
ggml_type wtype,
int n_gpu_layers) {
const uint32_t n_embd = hparams.n_embd_gqa();
const uint32_t n_layer = hparams.n_layer;
const uint32_t n_ctx = hparams.n_ctx;
const int64_t n_mem = n_layer*n_ctx;
const int64_t n_elements = n_embd*n_mem;
cache.has_shift = false;
cache.head = 0;
cache.size = n_ctx;
cache.cells.clear();
cache.cells.resize(n_ctx);
cache.buf.resize(2u*n_elements*ggml_type_size(wtype) + 2u*MB);
struct ggml_init_params params;
params.mem_size = cache.buf.size;
params.mem_buffer = cache.buf.data;
params.no_alloc = false;
cache.ctx = ggml_init(params);
if (!cache.ctx) {
LLAMA_LOG_ERROR("%s: failed to allocate memory for kv cache\n", __func__);
return false;
}
cache.k = ggml_new_tensor_1d(cache.ctx, wtype, n_elements);
cache.v = ggml_new_tensor_1d(cache.ctx, wtype, n_elements);
ggml_set_name(cache.k, "cache_k");
ggml_set_name(cache.v, "cache_v");
(void) n_gpu_layers;
#ifdef GGML_USE_CUBLAS
if (n_gpu_layers > (int)n_layer + 1) {
ggml_cuda_assign_buffers_no_scratch(cache.v);
}
if (n_gpu_layers > (int)n_layer + 2) {
ggml_cuda_assign_buffers_no_scratch(cache.k);
}
#endif // GGML_USE_CUBLAS
return true;
}
// find an empty slot of size "n_tokens" in the cache
// updates the cache head
static bool llama_kv_cache_find_slot(
struct llama_kv_cache & cache,
const struct llama_batch & batch) {
const uint32_t n_ctx = cache.size;
const uint32_t n_tokens = batch.n_tokens;
if (n_tokens > n_ctx) {
LLAMA_LOG_ERROR("%s: n_tokens=%d > n_ctx=%d\n", __func__, n_tokens, n_ctx);
return false;
}
uint32_t n_tested = 0;
while (true) {
if (cache.head + n_tokens > n_ctx) {
cache.head = 0;
n_tested += n_ctx - cache.head;
continue;
}
bool found = true;
for (uint32_t i = 0; i < n_tokens; i++) {
if (cache.cells[cache.head + i].pos >= 0) {
found = false;
cache.head += i + 1;
n_tested += i + 1;
break;
}
}
if (found) {
break;
}
if (n_tested >= n_ctx) {
//LLAMA_LOG_ERROR("%s: failed to find a slot for %d tokens\n", __func__, n_tokens);
return false;
}
}
for (uint32_t i = 0; i < n_tokens; i++) {
cache.cells[cache.head + i].pos = batch.pos[i];
cache.cells[cache.head + i].seq_id.insert(batch.seq_id[i]);
}
return true;
}
// find how many cells are currently in use
static int32_t llama_kv_cache_cell_max(const struct llama_kv_cache & cache) {
for (uint32_t i = cache.size - 1; i > 0; --i) {
if (cache.cells[i].pos >= 0 && !cache.cells[i].seq_id.empty()) {
return i + 1;
}
}
return 0;
}
static void llama_kv_cache_tokens_rm(struct llama_kv_cache & cache, int32_t c0, int32_t c1) {
if (c0 < 0) c0 = 0;
if (c1 < 0) c1 = cache.size;
for (int32_t i = c0; i < c1; ++i) {
cache.cells[i].pos = -1;
cache.cells[i].seq_id.clear();
}
}
static void llama_kv_cache_seq_rm(
struct llama_kv_cache & cache,
llama_seq_id seq_id,
llama_pos p0,
llama_pos p1) {
for (uint32_t i = 0; i < cache.size; ++i) {
if (cache.cells[i].has_seq_id(seq_id) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
cache.cells[i].seq_id.erase(seq_id);
if (cache.cells[i].seq_id.empty()) {
cache.cells[i].pos = -1;
}
}
}
}
static void llama_kv_cache_seq_cp(
struct llama_kv_cache & cache,
llama_seq_id seq_id_src,
llama_seq_id seq_id_dst,
llama_pos p0,
llama_pos p1) {
for (uint32_t i = 0; i < cache.size; ++i) {
if (cache.cells[i].has_seq_id(seq_id_src) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
cache.cells[i].seq_id.insert(seq_id_dst);
}
}
}
static void llama_kv_cache_seq_keep(struct llama_kv_cache & cache, llama_seq_id seq_id) {
for (uint32_t i = 0; i < cache.size; ++i) {
if (!cache.cells[i].has_seq_id(seq_id)) {
cache.cells[i].pos = -1;
cache.cells[i].seq_id.clear();
}
}
}
static void llama_kv_cache_seq_shift(
struct llama_kv_cache & cache,
llama_seq_id seq_id,
llama_pos p0,
llama_pos p1,
llama_pos delta) {
for (uint32_t i = 0; i < cache.size; ++i) {
if (cache.cells[i].has_seq_id(seq_id) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
cache.cells[i].pos += delta;
if (cache.cells[i].pos < 0) {
cache.cells[i].pos = -1;
cache.cells[i].seq_id.clear();
} else {
cache.has_shift = true;
cache.cells[i].delta = delta;
}
}
}
}
//
// model loading and saving
//
enum llama_fver {
GGUF_FILE_VERSION_V1 = 1,
GGUF_FILE_VERSION_V2 = 2,
};
static const char * llama_file_version_name(llama_fver version) {
switch (version) {
case GGUF_FILE_VERSION_V1: return "GGUF V1 (support until nov 2023)";
case GGUF_FILE_VERSION_V2: return "GGUF V2 (latest)";
}
return "unknown";
}
static std::string llama_format_tensor_shape(const std::vector<int64_t> & ne) {
char buf[256];
snprintf(buf, sizeof(buf), "%5" PRId64, ne.at(0));
for (size_t i = 1; i < ne.size(); i++) {
snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), ", %5" PRId64, ne.at(i));
}
return buf;
}
static std::string llama_format_tensor_shape(const struct ggml_tensor * t) {
char buf[256];
snprintf(buf, sizeof(buf), "%5" PRId64, t->ne[0]);
for (int i = 1; i < GGML_MAX_DIMS; i++) {
snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), ", %5" PRId64, t->ne[i]);
}
return buf;
}
struct llama_model_loader {
int n_kv = 0;
int n_tensors = 0;
int n_created = 0;
int64_t n_elements = 0;
size_t n_bytes = 0;
bool use_mmap = false;
llama_file file;
llama_ftype ftype;
llama_fver fver;
std::unique_ptr<llama_mmap> mapping;
struct gguf_context * ctx_gguf = NULL;
struct ggml_context * ctx_meta = NULL;
llama_model_loader(const std::string & fname, bool use_mmap) : file(fname.c_str(), "rb") {
struct gguf_init_params params = {
/*.no_alloc = */ true,
/*.ctx = */ &ctx_meta,
};
ctx_gguf = gguf_init_from_file(fname.c_str(), params);
if (!ctx_gguf) {
throw std::runtime_error(format("%s: failed to load model from %s\n", __func__, fname.c_str()));
}
n_kv = gguf_get_n_kv(ctx_gguf);
n_tensors = gguf_get_n_tensors(ctx_gguf);
fver = (enum llama_fver ) gguf_get_version(ctx_gguf);
for (int i = 0; i < n_tensors; i++) {
const char * name = gguf_get_tensor_name(ctx_gguf, i);
struct ggml_tensor * t = ggml_get_tensor(ctx_meta, name);
n_elements += ggml_nelements(t);
n_bytes += ggml_nbytes(t);
}
LLAMA_LOG_INFO("%s: loaded meta data with %d key-value pairs and %d tensors from %s (version %s)\n",
__func__, n_kv, n_tensors, fname.c_str(), llama_file_version_name(fver));
// determine file type based on the number of tensors for each quantization and print meta data
// TODO: make optional
{
std::map<enum ggml_type, uint32_t> n_type;
uint32_t n_type_max = 0;
enum ggml_type type_max = GGML_TYPE_F32;
for (int i = 0; i < n_tensors; i++) {
const char * name = gguf_get_tensor_name(ctx_gguf, i);
struct ggml_tensor * meta = ggml_get_tensor(ctx_meta, name);
n_type[meta->type]++;
if (n_type_max < n_type[meta->type]) {
n_type_max = n_type[meta->type];
type_max = meta->type;
}
LLAMA_LOG_INFO("%s: - tensor %4d: %32s %-8s [ %s ]\n", __func__, i, name, ggml_type_name(meta->type), llama_format_tensor_shape(meta).c_str());
}
switch (type_max) {
case GGML_TYPE_F32: ftype = LLAMA_FTYPE_ALL_F32; break;
case GGML_TYPE_F16: ftype = LLAMA_FTYPE_MOSTLY_F16; break;
case GGML_TYPE_Q4_0: ftype = LLAMA_FTYPE_MOSTLY_Q4_0; break;
case GGML_TYPE_Q4_1: ftype = LLAMA_FTYPE_MOSTLY_Q4_1; break;
case GGML_TYPE_Q5_0: ftype = LLAMA_FTYPE_MOSTLY_Q5_0; break;
case GGML_TYPE_Q5_1: ftype = LLAMA_FTYPE_MOSTLY_Q5_1; break;
case GGML_TYPE_Q8_0: ftype = LLAMA_FTYPE_MOSTLY_Q8_0; break;
case GGML_TYPE_Q2_K: ftype = LLAMA_FTYPE_MOSTLY_Q2_K; break;
case GGML_TYPE_Q3_K: ftype = LLAMA_FTYPE_MOSTLY_Q3_K_M; break;
case GGML_TYPE_Q4_K: ftype = LLAMA_FTYPE_MOSTLY_Q4_K_M; break;
case GGML_TYPE_Q5_K: ftype = LLAMA_FTYPE_MOSTLY_Q5_K_M; break;
case GGML_TYPE_Q6_K: ftype = LLAMA_FTYPE_MOSTLY_Q6_K; break;
default:
{
LLAMA_LOG_WARN("%s: unknown type %s\n", __func__, ggml_type_name(type_max));
ftype = LLAMA_FTYPE_ALL_F32;
} break;
}
// this is a way to mark that we have "guessed" the file type
ftype = (llama_ftype) (ftype | LLAMA_FTYPE_GUESSED);
{
const int kid = gguf_find_key(ctx_gguf, "general.file_type");
if (kid >= 0) {
ftype = (llama_ftype) gguf_get_val_u32(ctx_gguf, kid);
}
}
for (int i = 0; i < n_kv; i++) {
const char * name = gguf_get_key(ctx_gguf, i);
const enum gguf_type type = gguf_get_kv_type(ctx_gguf, i);
LLAMA_LOG_INFO("%s: - kv %3d: %42s %-8s\n", __func__, i, name, gguf_type_name(type));
}
// print type counts
for (auto & kv : n_type) {
if (kv.second == 0) {
continue;
}
LLAMA_LOG_INFO("%s: - type %4s: %4d tensors\n", __func__, ggml_type_name(kv.first), kv.second);
}
}
if (!llama_mmap::SUPPORTED) {
LLAMA_LOG_WARN("%s: mmap is not supported on this platform\n", __func__);
use_mmap = false;
}
this->use_mmap = use_mmap;
}
~llama_model_loader() {
if (ctx_gguf) {
gguf_free(ctx_gguf);
}
if (ctx_meta) {
ggml_free(ctx_meta);
}
}
std::string get_arch_name() const {
const auto kv = LLM_KV(LLM_ARCH_UNKNOWN);
std::string arch_name;
GGUF_GET_KEY(ctx_gguf, arch_name, gguf_get_val_str, GGUF_TYPE_STRING, false, kv(LLM_KV_GENERAL_ARCHITECTURE));
return arch_name;
}
enum llm_arch get_arch() const {
const std::string arch_name = get_arch_name();
return llm_arch_from_string(arch_name);
}
const char * get_tensor_name(int i) const {
return gguf_get_tensor_name(ctx_gguf, i);
}
struct ggml_tensor * get_tensor_meta(int i) const {
return ggml_get_tensor(ctx_meta, get_tensor_name(i));
}
void calc_sizes(size_t & ctx_size_p, size_t & mmapped_size_p) const {
ctx_size_p = 0;
mmapped_size_p = 0;
for (int i = 0; i < n_tensors; i++) {
struct ggml_tensor * meta = get_tensor_meta(i);
ctx_size_p += sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE;
(use_mmap ? mmapped_size_p : ctx_size_p) += ggml_nbytes_pad(meta);
}
}
struct ggml_tensor * create_tensor_for(struct ggml_context * ctx, struct ggml_tensor * meta, ggml_backend backend) {
if (backend != GGML_BACKEND_CPU) {
ggml_set_no_alloc(ctx, true);
}
struct ggml_tensor * tensor = ggml_dup_tensor(ctx, meta);
tensor->backend = backend; // TODO: ggml_set_backend
ggml_set_name(tensor, ggml_get_name(meta));
if (backend != GGML_BACKEND_CPU) {
ggml_set_no_alloc(ctx, use_mmap);
}
n_created++;
return tensor;
}
struct ggml_tensor * create_tensor(struct ggml_context * ctx, const std::string & name, const std::vector<int64_t> & ne, ggml_backend backend) {
struct ggml_tensor * cur = ggml_get_tensor(ctx_meta, name.c_str());
if (cur == NULL) {
throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name.c_str()));
}
{
bool is_ok = true;
for (size_t i = 0; i < ne.size(); ++i) {
if (ne[i] != cur->ne[i]) {
is_ok = false;
break;
}
}
if (!is_ok) {
throw std::runtime_error(
format("%s: tensor '%s' has wrong shape; expected %s, got %s",
__func__, name.c_str(),
llama_format_tensor_shape(ne).c_str(),
llama_format_tensor_shape(cur).c_str()));
}
}
return create_tensor_for(ctx, cur, backend);
}
void done_getting_tensors() const {
if (n_created != n_tensors) {
throw std::runtime_error(format("%s: wrong number of tensors; expected %d, got %d", __func__, n_tensors, n_created));
}
}
size_t file_offset(const char * name) const {
const int idx = gguf_find_tensor(ctx_gguf, name);
if (idx < 0) {
throw std::runtime_error(format("%s: tensor '%s' not found in the file", __func__, name));
}
return gguf_get_data_offset(ctx_gguf) + gguf_get_tensor_offset(ctx_gguf, idx);
}
void load_data_for(struct ggml_tensor * cur) const {
const size_t offs = file_offset(ggml_get_name(cur));
if (use_mmap) {
cur->data = (uint8_t *) mapping->addr + offs;
} else {
file.seek(offs, SEEK_SET);
file.read_raw(cur->data, ggml_nbytes(cur));
}
}
void load_all_data(struct ggml_context * ctx, llama_progress_callback progress_callback, void * progress_callback_user_data, llama_mlock * lmlock) {
size_t size_data = 0;
size_t size_lock = 0;
size_t size_pref = 0; // prefetch
for (int i = 0; i < gguf_get_n_tensors(ctx_gguf); i++) {
struct ggml_tensor * cur = ggml_get_tensor(ctx, gguf_get_tensor_name(ctx_gguf, i));
size_data += ggml_nbytes(cur);
if (cur->backend == GGML_BACKEND_CPU) {
size_pref += ggml_nbytes(cur);
}
}
if (use_mmap) {
mapping.reset(new llama_mmap(&file, size_pref, ggml_is_numa()));
if (lmlock) {
lmlock->init(mapping->addr);
}
}
size_t done_size = 0;
for (int i = 0; i < gguf_get_n_tensors(ctx_gguf); i++) {
struct ggml_tensor * cur = ggml_get_tensor(ctx, gguf_get_tensor_name(ctx_gguf, i));
GGML_ASSERT(cur); // unused tensors should have been caught by load_data already
if (progress_callback) {
progress_callback((float) done_size / size_data, progress_callback_user_data);
}
// allocate temp buffer if not using mmap
if (!use_mmap && cur->data == NULL) {
GGML_ASSERT(cur->backend != GGML_BACKEND_CPU);
#ifdef GGML_USE_CPU_HBM
cur->data = (uint8_t*)hbw_malloc(ggml_nbytes(cur));
#else
cur->data = (uint8_t*)malloc(ggml_nbytes(cur));
#endif
}
load_data_for(cur);
switch (cur->backend) {
case GGML_BACKEND_CPU:
if (use_mmap && lmlock) {
size_lock += ggml_nbytes(cur);
lmlock->grow_to(size_lock);
}
break;
#if defined(GGML_USE_CUBLAS)
case GGML_BACKEND_GPU:
case GGML_BACKEND_GPU_SPLIT:
// old code:
//ggml_cuda_transform_tensor(lt.data, lt.ggml_tensor);
// TODO: test if this works !!
ggml_cuda_transform_tensor(cur->data, cur);
if (!use_mmap) {
free(cur->data);
}
break;
#elif defined(GGML_USE_CLBLAST)
case GGML_BACKEND_GPU:
ggml_cl_transform_tensor(cur->data, cur);
if (!use_mmap) {
free(cur->data);
}
break;
#endif
default:
continue;
}
done_size += ggml_nbytes(cur);
}
}
};
//
// load LLaMA models
//
static std::string llama_model_ftype_name(enum llama_ftype ftype) {
if (ftype & LLAMA_FTYPE_GUESSED) {
return llama_model_ftype_name((enum llama_ftype) (ftype & ~LLAMA_FTYPE_GUESSED)) + " (guessed)";
}
switch (ftype) {
case LLAMA_FTYPE_ALL_F32: return "all F32";
case LLAMA_FTYPE_MOSTLY_F16: return "mostly F16";
case LLAMA_FTYPE_MOSTLY_Q4_0: return "mostly Q4_0";
case LLAMA_FTYPE_MOSTLY_Q4_1: return "mostly Q4_1";
case LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16:
return "mostly Q4_1, some F16";
case LLAMA_FTYPE_MOSTLY_Q5_0: return "mostly Q5_0";
case LLAMA_FTYPE_MOSTLY_Q5_1: return "mostly Q5_1";
case LLAMA_FTYPE_MOSTLY_Q8_0: return "mostly Q8_0";
// K-quants
case LLAMA_FTYPE_MOSTLY_Q2_K: return "mostly Q2_K";
case LLAMA_FTYPE_MOSTLY_Q3_K_S: return "mostly Q3_K - Small";
case LLAMA_FTYPE_MOSTLY_Q3_K_M: return "mostly Q3_K - Medium";
case LLAMA_FTYPE_MOSTLY_Q3_K_L: return "mostly Q3_K - Large";
case LLAMA_FTYPE_MOSTLY_Q4_K_S: return "mostly Q4_K - Small";
case LLAMA_FTYPE_MOSTLY_Q4_K_M: return "mostly Q4_K - Medium";
case LLAMA_FTYPE_MOSTLY_Q5_K_S: return "mostly Q5_K - Small";
case LLAMA_FTYPE_MOSTLY_Q5_K_M: return "mostly Q5_K - Medium";
case LLAMA_FTYPE_MOSTLY_Q6_K: return "mostly Q6_K";
default: return "unknown, may not work";
}
}
static const char * llama_model_type_name(e_model type) {
switch (type) {
case MODEL_1B: return "1B";
case MODEL_3B: return "3B";
case MODEL_7B: return "7B";
case MODEL_13B: return "13B";
case MODEL_15B: return "15B";
case MODEL_30B: return "30B";
case MODEL_34B: return "34B";
case MODEL_40B: return "40B";
case MODEL_65B: return "65B";
case MODEL_70B: return "70B";
default: return "?B";
}
}
static void llm_load_arch(llama_model_loader & ml, llama_model & model) {
model.arch = ml.get_arch();
if (model.arch == LLM_ARCH_UNKNOWN) {
throw std::runtime_error("unknown model architecture: '" + ml.get_arch_name() + "'");
}
}
static void llm_load_hparams(
llama_model_loader & ml,
llama_model & model,
int n_ctx,
float rope_freq_base,
float rope_freq_scale) {
struct gguf_context * ctx = ml.ctx_gguf;
const auto kv = LLM_KV(model.arch);
auto & hparams = model.hparams;
// get general kv
GGUF_GET_KEY(ctx, model.name, gguf_get_val_str, GGUF_TYPE_STRING, false, kv(LLM_KV_GENERAL_NAME));
// get hparams kv
GGUF_GET_KEY(ctx, hparams.n_vocab, gguf_get_arr_n, GGUF_TYPE_ARRAY, true, kv(LLM_KV_TOKENIZER_LIST));
GGUF_GET_KEY(ctx, hparams.n_ctx_train, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_CONTEXT_LENGTH));
GGUF_GET_KEY(ctx, hparams.n_embd, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_EMBEDDING_LENGTH));
GGUF_GET_KEY(ctx, hparams.n_ff, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_FEED_FORWARD_LENGTH));
GGUF_GET_KEY(ctx, hparams.n_head, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_ATTENTION_HEAD_COUNT));
GGUF_GET_KEY(ctx, hparams.n_layer, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_BLOCK_COUNT));
// n_head_kv is optional, default to n_head
hparams.n_head_kv = hparams.n_head;
GGUF_GET_KEY(ctx, hparams.n_head_kv, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_ATTENTION_HEAD_COUNT_KV));
// TODO: manually setting rope freq base and scale should override this
// FIXME: partial fix when the param specified is not the default value, but
// will not work for overriding the model value to the params default
llama_context_params defaults = llama_context_default_params();
// rope_freq_base
{
float ropebase = 10000.0f;
GGUF_GET_KEY(ctx, ropebase, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ROPE_FREQ_BASE));
if (ropebase != 10000.0f && rope_freq_base == defaults.rope_freq_base) {
rope_freq_base = ropebase;
}
}
// rope_freq_scale (inverse of the kv) is optional
{
float ropescale = 1.0f;
GGUF_GET_KEY(ctx, ropescale, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ROPE_SCALE_LINEAR));
if (ropescale != 1.0f && rope_freq_scale == defaults.rope_freq_scale) {
rope_freq_scale = 1.0f/ropescale;
}
}
// sanity check for n_rot (optional)
{
hparams.n_rot = hparams.n_embd / hparams.n_head;
GGUF_GET_KEY(ctx, hparams.n_rot, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_ROPE_DIMENSION_COUNT));
if (model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_FALCON) {
if (hparams.n_rot != hparams.n_embd / hparams.n_head) {
throw std::runtime_error(format("invalid n_rot: %u, expected %u", hparams.n_rot, hparams.n_embd / hparams.n_head));
}
}
// gpt-neox n_rot = rotary_pct * (n_embd / n_head)
// gpt-j n_rot = rotary_dim
}
// arch-specific KVs
switch (model.arch) {
case LLM_ARCH_LLAMA:
{
GGUF_GET_KEY(ctx, hparams.f_norm_rms_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, kv(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS));
switch (hparams.n_layer) {
case 26: model.type = e_model::MODEL_3B; break;
case 32: model.type = e_model::MODEL_7B; break;
case 40: model.type = e_model::MODEL_13B; break;
case 48: model.type = e_model::MODEL_34B; break;
case 60: model.type = e_model::MODEL_30B; break;
case 80: model.type = hparams.n_head == hparams.n_head_kv ? e_model::MODEL_65B : e_model::MODEL_70B; break;
default: model.type = e_model::MODEL_UNKNOWN;
}
} break;
case LLM_ARCH_FALCON:
{
GGUF_GET_KEY(ctx, hparams.f_norm_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, kv(LLM_KV_ATTENTION_LAYERNORM_EPS));
switch (hparams.n_layer) {
case 32: model.type = e_model::MODEL_7B; break;
case 60: model.type = e_model::MODEL_40B; break;
default: model.type = e_model::MODEL_UNKNOWN;
}
} break;
case LLM_ARCH_BAICHUAN:
{
GGUF_GET_KEY(ctx, hparams.f_norm_rms_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, kv(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS));
switch (hparams.n_layer) {
case 32: model.type = e_model::MODEL_7B; break;
case 40: model.type = e_model::MODEL_13B; break;
default: model.type = e_model::MODEL_UNKNOWN;
}
} break;
case LLM_ARCH_STARCODER:
{
GGUF_GET_KEY(ctx, hparams.f_norm_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, kv(LLM_KV_ATTENTION_LAYERNORM_EPS));
switch (hparams.n_layer) {
case 24: model.type = e_model::MODEL_1B; break;
case 36: model.type = e_model::MODEL_3B; break;
case 42: model.type = e_model::MODEL_7B; break;
case 40: model.type = e_model::MODEL_15B; break;
default: model.type = e_model::MODEL_UNKNOWN;
}
} break;
default: (void)0;
};
model.ftype = ml.ftype;
hparams.n_ctx = n_ctx;
hparams.rope_freq_base = rope_freq_base;
hparams.rope_freq_scale = rope_freq_scale;
}
// TODO: This should probably be in llama.h
static std::vector<llama_vocab::id> llama_tokenize_internal(const llama_vocab & vocab, std::string raw_text, bool bos);
static llama_token llama_byte_to_token(const llama_vocab & vocab, uint8_t ch);
static void llm_load_vocab(
llama_model_loader & ml,
llama_model & model) {
auto & vocab = model.vocab;
struct gguf_context * ctx = ml.ctx_gguf;
const auto kv = LLM_KV(model.arch);
const int token_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_LIST).c_str());
if (token_idx == -1) {
throw std::runtime_error("cannot find tokenizer vocab in model file\n");
}
const int score_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_SCORES).c_str());
if (score_idx == -1) {
throw std::runtime_error("cannot find tokenizer scores in model file\n");
}
const float * scores = (const float * ) gguf_get_arr_data(ctx, score_idx);
const int toktype_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_TOKEN_TYPE).c_str());
if (toktype_idx == -1) {
throw std::runtime_error("cannot find token type list in GGUF file\n");
}
const int * toktypes = (const int * ) gguf_get_arr_data(ctx, toktype_idx);
// determine vocab type
{
std::string tokenizer_name;
GGUF_GET_KEY(ctx, tokenizer_name, gguf_get_val_str, GGUF_TYPE_STRING, true, kv(LLM_KV_TOKENIZER_MODEL));
if (tokenizer_name == "llama") {
vocab.type = LLAMA_VOCAB_TYPE_SPM;
// default special tokens
vocab.special_bos_id = 1;
vocab.special_eos_id = 2;
vocab.special_unk_id = 0;
vocab.special_sep_id = -1;
vocab.special_pad_id = -1;
} else if (tokenizer_name == "gpt2") {
vocab.type = LLAMA_VOCAB_TYPE_BPE;
// read bpe merges and populate bpe ranks
const int merges_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_MERGES).c_str());
if (merges_keyidx == -1) {
throw std::runtime_error("cannot find tokenizer merges in model file\n");
}
const int n_merges = gguf_get_arr_n(ctx, merges_keyidx);
for (int i = 0; i < n_merges; i++) {
const std::string word = gguf_get_arr_str(ctx, merges_keyidx, i);
std::string first;
std::string second;
const size_t pos = word.find(' ', 1);
if (pos != std::string::npos) {
first = word.substr(0, pos);
second = word.substr(pos + 1);
}
vocab.bpe_ranks.emplace(std::make_pair(first, second), i);
}
// default special tokens
vocab.special_bos_id = 11;
vocab.special_eos_id = 11;
vocab.special_unk_id = -1;
vocab.special_sep_id = -1;
vocab.special_pad_id = -1;
} else {
LLAMA_LOG_WARN("%s: unknown tokenizer: '%s'", __func__, tokenizer_name.c_str());
LLAMA_LOG_WARN("%s: using default tokenizer: 'llama'", __func__);
vocab.type = LLAMA_VOCAB_TYPE_SPM;
}
}
const uint32_t n_vocab = gguf_get_arr_n(ctx, token_idx);
vocab.id_to_token.resize(n_vocab);
for (uint32_t i = 0; i < n_vocab; i++) {
std::string word = gguf_get_arr_str(ctx, token_idx, i);
vocab.token_to_id[word] = i;
auto & token_data = vocab.id_to_token[i];
token_data.text = std::move(word);
token_data.score = scores[i];
token_data.type = (llama_token_type) toktypes[i];
}
// determine the newline token: LLaMA "<0x0A>" == 10 == '\n', Falcon 193 == '\n'
if (vocab.type == LLAMA_VOCAB_TYPE_SPM) {
vocab.linefeed_id = llama_byte_to_token(vocab, '\n');
} else {
vocab.linefeed_id = llama_tokenize_internal(vocab, "\n", false)[0];
}
// special tokens
GGUF_GET_KEY(ctx, vocab.special_bos_id, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_TOKENIZER_BOS_ID));
GGUF_GET_KEY(ctx, vocab.special_eos_id, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_TOKENIZER_EOS_ID));
GGUF_GET_KEY(ctx, vocab.special_unk_id, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_TOKENIZER_UNK_ID));
GGUF_GET_KEY(ctx, vocab.special_sep_id, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_TOKENIZER_SEP_ID));
GGUF_GET_KEY(ctx, vocab.special_pad_id, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_TOKENIZER_PAD_ID));
}
static void llm_load_print_meta(llama_model_loader & ml, llama_model & model) {
const auto & hparams = model.hparams;
const auto & vocab = model.vocab;
// hparams
LLAMA_LOG_INFO("%s: format = %s\n", __func__, llama_file_version_name(ml.fver));
LLAMA_LOG_INFO("%s: arch = %s\n", __func__, LLM_ARCH_NAMES.at(model.arch).c_str());
LLAMA_LOG_INFO("%s: vocab type = %s\n", __func__, vocab.type == LLAMA_VOCAB_TYPE_SPM ? "SPM" : "BPE"); // TODO: fix
LLAMA_LOG_INFO("%s: n_vocab = %u\n", __func__, hparams.n_vocab);
LLAMA_LOG_INFO("%s: n_merges = %u\n", __func__, (int) vocab.bpe_ranks.size());
LLAMA_LOG_INFO("%s: n_ctx_train = %u\n", __func__, hparams.n_ctx_train);
LLAMA_LOG_INFO("%s: n_ctx = %u\n", __func__, hparams.n_ctx);
LLAMA_LOG_INFO("%s: n_embd = %u\n", __func__, hparams.n_embd);
LLAMA_LOG_INFO("%s: n_head = %u\n", __func__, hparams.n_head);
LLAMA_LOG_INFO("%s: n_head_kv = %u\n", __func__, hparams.n_head_kv);
LLAMA_LOG_INFO("%s: n_layer = %u\n", __func__, hparams.n_layer);
LLAMA_LOG_INFO("%s: n_rot = %u\n", __func__, hparams.n_rot); // a.k.a. n_embd_head, n_head_dim
LLAMA_LOG_INFO("%s: n_gqa = %u\n", __func__, hparams.n_gqa());
LLAMA_LOG_INFO("%s: f_norm_eps = %.1e\n", __func__, hparams.f_norm_eps);
LLAMA_LOG_INFO("%s: f_norm_rms_eps = %.1e\n", __func__, hparams.f_norm_rms_eps);
LLAMA_LOG_INFO("%s: n_ff = %u\n", __func__, hparams.n_ff);
LLAMA_LOG_INFO("%s: freq_base = %.1f\n", __func__, hparams.rope_freq_base);
LLAMA_LOG_INFO("%s: freq_scale = %g\n", __func__, hparams.rope_freq_scale);
LLAMA_LOG_INFO("%s: model type = %s\n", __func__, llama_model_type_name(model.type));
LLAMA_LOG_INFO("%s: model ftype = %s\n", __func__, llama_model_ftype_name(model.ftype).c_str());
LLAMA_LOG_INFO("%s: model params = %.2f B\n", __func__, ml.n_elements*1e-9);
if (ml.n_bytes < GB) {
LLAMA_LOG_INFO("%s: model size = %.2f MiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements);
} else {
LLAMA_LOG_INFO("%s: model size = %.2f GiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements);
}
// general kv
LLAMA_LOG_INFO("%s: general.name = %s\n", __func__, model.name.c_str());
// special tokens
if (vocab.special_bos_id != -1) { LLAMA_LOG_INFO( "%s: BOS token = %d '%s'\n", __func__, vocab.special_bos_id, vocab.id_to_token[vocab.special_bos_id].text.c_str() ); }
if (vocab.special_eos_id != -1) { LLAMA_LOG_INFO( "%s: EOS token = %d '%s'\n", __func__, vocab.special_eos_id, vocab.id_to_token[vocab.special_eos_id].text.c_str() ); }
if (vocab.special_unk_id != -1) { LLAMA_LOG_INFO( "%s: UNK token = %d '%s'\n", __func__, vocab.special_unk_id, vocab.id_to_token[vocab.special_unk_id].text.c_str() ); }
if (vocab.special_sep_id != -1) { LLAMA_LOG_INFO( "%s: SEP token = %d '%s'\n", __func__, vocab.special_sep_id, vocab.id_to_token[vocab.special_sep_id].text.c_str() ); }
if (vocab.special_pad_id != -1) { LLAMA_LOG_INFO( "%s: PAD token = %d '%s'\n", __func__, vocab.special_pad_id, vocab.id_to_token[vocab.special_pad_id].text.c_str() ); }
if (vocab.linefeed_id != -1) { LLAMA_LOG_INFO( "%s: LF token = %d '%s'\n", __func__, vocab.linefeed_id, vocab.id_to_token[vocab.linefeed_id].text.c_str() ); }
}
static void llm_load_tensors(
llama_model_loader & ml,
llama_model & model,
int n_batch,
int n_gpu_layers,
int main_gpu,
const float * tensor_split,
const bool mul_mat_q,
bool low_vram,
ggml_type memory_type,
bool use_mlock,
llama_progress_callback progress_callback,
void * progress_callback_user_data) {
model.t_start_us = ggml_time_us();
auto & ctx = model.ctx;
auto & hparams = model.hparams;
model.n_gpu_layers = n_gpu_layers;
size_t ctx_size;
size_t mmapped_size;
ml.calc_sizes(ctx_size, mmapped_size);
LLAMA_LOG_INFO("%s: ggml ctx size = %7.2f MB\n", __func__, ctx_size/1024.0/1024.0);
// create the ggml context
{
model.buf.resize(ctx_size);
if (use_mlock) {
model.mlock_buf.init (model.buf.data);
model.mlock_buf.grow_to(model.buf.size);
}
struct ggml_init_params params = {
/*.mem_size =*/ model.buf.size,
/*.mem_buffer =*/ model.buf.data,
/*.no_alloc =*/ ml.use_mmap,
};
model.ctx = ggml_init(params);
if (!model.ctx) {
throw std::runtime_error(format("ggml_init() failed"));
}
}
(void) main_gpu;
(void) mul_mat_q;
#if defined(GGML_USE_CUBLAS)
LLAMA_LOG_INFO("%s: using " GGML_CUDA_NAME " for GPU acceleration\n", __func__);
ggml_cuda_set_main_device(main_gpu);
ggml_cuda_set_mul_mat_q(mul_mat_q);
#define LLAMA_BACKEND_OFFLOAD GGML_BACKEND_GPU
#define LLAMA_BACKEND_OFFLOAD_SPLIT GGML_BACKEND_GPU_SPLIT
#elif defined(GGML_USE_CLBLAST)
LLAMA_LOG_INFO("%s: using OpenCL for GPU acceleration\n", __func__);
#define LLAMA_BACKEND_OFFLOAD GGML_BACKEND_GPU
#define LLAMA_BACKEND_OFFLOAD_SPLIT GGML_BACKEND_GPU
#else
#define LLAMA_BACKEND_OFFLOAD GGML_BACKEND_CPU
#define LLAMA_BACKEND_OFFLOAD_SPLIT GGML_BACKEND_CPU
#endif
// prepare memory for the weights
size_t vram_weights = 0;
{
const int64_t n_embd = hparams.n_embd;
const int64_t n_embd_gqa = hparams.n_embd_gqa();
const int64_t n_layer = hparams.n_layer;
const int64_t n_vocab = hparams.n_vocab;
const auto tn = LLM_TN(model.arch);
switch (model.arch) {
case LLM_ARCH_LLAMA:
{
model.tok_embeddings = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, GGML_BACKEND_CPU);
// output
{
ggml_backend backend_norm;
ggml_backend backend_output;
if (n_gpu_layers > int(n_layer)) {
// norm is not performance relevant on its own but keeping it in VRAM reduces data copying
// on Windows however this is detrimental unless everything is on the GPU
#ifndef _WIN32
backend_norm = low_vram ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD;
#else
backend_norm = low_vram || n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD;
#endif // _WIN32
backend_output = LLAMA_BACKEND_OFFLOAD_SPLIT;
} else {
backend_norm = GGML_BACKEND_CPU;
backend_output = GGML_BACKEND_CPU;
}
model.output_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, backend_norm);
model.output = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, backend_output);
if (backend_norm == GGML_BACKEND_GPU) {
vram_weights += ggml_nbytes(model.output_norm);
}
if (backend_output == GGML_BACKEND_GPU_SPLIT) {
vram_weights += ggml_nbytes(model.output);
}
}
const uint32_t n_ff = hparams.n_ff;
const int i_gpu_start = n_layer - n_gpu_layers;
model.layers.resize(n_layer);
for (uint32_t i = 0; i < n_layer; ++i) {
const ggml_backend backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; // NOLINT
const ggml_backend backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; // NOLINT
auto & layer = model.layers[i];
layer.attn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, backend);
layer.wq = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, backend_split);
layer.wk = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, backend_split);
layer.wv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, backend_split);
layer.wo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, backend_split);
layer.ffn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, backend);
layer.w1 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, backend_split);
layer.w2 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, backend_split);
layer.w3 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, backend_split);
if (backend == GGML_BACKEND_GPU) {
vram_weights +=
ggml_nbytes(layer.attn_norm) + ggml_nbytes(layer.wq) + ggml_nbytes(layer.wk) +
ggml_nbytes(layer.wv) + ggml_nbytes(layer.wo) + ggml_nbytes(layer.ffn_norm) +
ggml_nbytes(layer.w1) + ggml_nbytes(layer.w2) + ggml_nbytes(layer.w3);
}
}
} break;
case LLM_ARCH_BAICHUAN:
{
model.tok_embeddings = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, GGML_BACKEND_CPU);
{
ggml_backend backend_norm;
ggml_backend backend_output;
if (n_gpu_layers > int(n_layer)) {
// norm is not performance relevant on its own but keeping it in VRAM reduces data copying
// on Windows however this is detrimental unless everything is on the GPU
#ifndef _WIN32
backend_norm = low_vram ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD;
#else
backend_norm = low_vram || n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD;
#endif // _WIN32
backend_output = LLAMA_BACKEND_OFFLOAD_SPLIT;
} else {
backend_norm = GGML_BACKEND_CPU;
backend_output = GGML_BACKEND_CPU;
}
model.output_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, backend_norm);
model.output = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, backend_output);
if (backend_norm == GGML_BACKEND_GPU) {
vram_weights += ggml_nbytes(model.output_norm);
}
if (backend_output == GGML_BACKEND_GPU_SPLIT) {
vram_weights += ggml_nbytes(model.output);
}
}
const uint32_t n_ff = hparams.n_ff;
const int i_gpu_start = n_layer - n_gpu_layers;
model.layers.resize(n_layer);
for (uint32_t i = 0; i < n_layer; ++i) {
const ggml_backend backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; // NOLINT
const ggml_backend backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; // NOLINT
auto & layer = model.layers[i];
layer.attn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, backend);
layer.wq = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, backend_split);
layer.wk = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, backend_split);
layer.wv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, backend_split);
layer.wo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, backend_split);
layer.ffn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, backend);
layer.w1 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, backend_split);
layer.w2 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, backend_split);
layer.w3 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, backend_split);
if (backend == GGML_BACKEND_GPU) {
vram_weights +=
ggml_nbytes(layer.attn_norm) + ggml_nbytes(layer.wq) + ggml_nbytes(layer.wk) +
ggml_nbytes(layer.wv) + ggml_nbytes(layer.wo) + ggml_nbytes(layer.ffn_norm) +
ggml_nbytes(layer.w1) + ggml_nbytes(layer.w2) + ggml_nbytes(layer.w3);
}
}
} break;
case LLM_ARCH_FALCON:
{
// TODO: CPU-only for now
model.tok_embeddings = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, GGML_BACKEND_CPU);
// output
{
ggml_backend backend_norm;
ggml_backend backend_output;
if (n_gpu_layers > int(n_layer)) {
// norm is not performance relevant on its own but keeping it in VRAM reduces data copying
// on Windows however this is detrimental unless everything is on the GPU
#ifndef _WIN32
backend_norm = low_vram ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD;
#else
backend_norm = low_vram || n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD;
#endif // _WIN32
backend_output = LLAMA_BACKEND_OFFLOAD_SPLIT;
} else {
backend_norm = GGML_BACKEND_CPU;
backend_output = GGML_BACKEND_CPU;
}
model.output_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, backend_norm);
model.output_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, backend_norm);
model.output = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, backend_output);
if (backend_norm == GGML_BACKEND_GPU) {
vram_weights += ggml_nbytes(model.output_norm);
vram_weights += ggml_nbytes(model.output_norm_b);
}
if (backend_output == GGML_BACKEND_GPU_SPLIT) {
vram_weights += ggml_nbytes(model.output);
}
}
const uint32_t n_ff = hparams.n_ff;
const int i_gpu_start = n_layer - n_gpu_layers;
model.layers.resize(n_layer);
for (uint32_t i = 0; i < n_layer; ++i) {
const ggml_backend backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; // NOLINT
const ggml_backend backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; // NOLINT
auto & layer = model.layers[i];
layer.attn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, backend);
layer.attn_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, backend);
if (gguf_find_tensor(ml.ctx_gguf, tn(LLM_TENSOR_ATTN_NORM_2, "weight", i).c_str()) >= 0) {
layer.attn_norm_2 = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, backend);
layer.attn_norm_2_b = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, backend);
if (backend == GGML_BACKEND_GPU) {
vram_weights += ggml_nbytes(layer.attn_norm_2);
vram_weights += ggml_nbytes(layer.attn_norm_2_b);
}
}
layer.wqkv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, backend_split);
layer.wo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, backend_split);
layer.w2 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, backend_split);
layer.w3 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, backend_split);
if (backend == GGML_BACKEND_GPU) {
vram_weights +=
ggml_nbytes(layer.attn_norm) + ggml_nbytes(layer.attn_norm_b) +
ggml_nbytes(layer.wqkv) + ggml_nbytes(layer.wo) +
ggml_nbytes(layer.w2) + ggml_nbytes(layer.w3);
}
}
} break;
case LLM_ARCH_STARCODER:
{
model.tok_embeddings = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, GGML_BACKEND_CPU);
model.pos_embeddings = ml.create_tensor(ctx, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train}, GGML_BACKEND_CPU);
// output
{
ggml_backend backend_norm;
ggml_backend backend_output;
if (n_gpu_layers > int(n_layer)) {
// norm is not performance relevant on its own but keeping it in VRAM reduces data copying
// on Windows however this is detrimental unless everything is on the GPU
#ifndef _WIN32
backend_norm = low_vram ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD;
#else
backend_norm = low_vram || n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD;
#endif // _WIN32
backend_output = LLAMA_BACKEND_OFFLOAD_SPLIT;
} else {
backend_norm = GGML_BACKEND_CPU;
backend_output = GGML_BACKEND_CPU;
}
model.output_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, backend_norm);
model.output_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, backend_norm);
model.output = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, backend_output);
if (backend_norm == GGML_BACKEND_GPU) {
vram_weights += ggml_nbytes(model.output_norm);
vram_weights += ggml_nbytes(model.output_norm_b);
}
if (backend_output == GGML_BACKEND_GPU_SPLIT) {
vram_weights += ggml_nbytes(model.output);
}
}
const uint32_t n_ff = hparams.n_ff;
const int i_gpu_start = n_layer - n_gpu_layers;
model.layers.resize(n_layer);
for (uint32_t i = 0; i < n_layer; ++i) {
const ggml_backend backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; // NOLINT
const ggml_backend backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; // NOLINT
auto & layer = model.layers[i];
layer.attn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, backend);
layer.attn_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, backend);
layer.wqkv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, backend_split);
layer.bqkv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, backend_split);
layer.wo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, backend_split);
layer.bo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, backend_split);
layer.ffn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, backend);
layer.ffn_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, backend);
layer.w2 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, backend_split);
layer.b2 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, backend_split);
layer.w3 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, backend_split);
layer.b3 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, backend_split);
if (backend == GGML_BACKEND_GPU) {
vram_weights +=
ggml_nbytes(layer.attn_norm) + ggml_nbytes(layer.attn_norm_b) +
ggml_nbytes(layer.wqkv) + ggml_nbytes(layer.bqkv) +
ggml_nbytes(layer.wo) + ggml_nbytes(layer.bo) +
ggml_nbytes(layer.ffn_norm) + ggml_nbytes(layer.ffn_norm_b) +
ggml_nbytes(layer.w2) + ggml_nbytes(layer.b2) +
ggml_nbytes(layer.w3) + ggml_nbytes(layer.b3);
}
}
} break;
default:
throw std::runtime_error("unknown architecture");
};
}
ml.done_getting_tensors();
// print memory requirements
{
const size_t scale = memory_type == GGML_TYPE_F32 ? 2 : 1;
// this is the total memory required to run the inference
size_t mem_required =
ctx_size +
mmapped_size - vram_weights; // weights in VRAM not in memory
// this is the memory required by one llama_state
const size_t mem_required_state = scale*hparams.kv_size();
LLAMA_LOG_INFO("%s: mem required = %7.2f MB (+ %7.2f MB per state)\n", __func__,
mem_required / 1024.0 / 1024.0, mem_required_state / 1024.0 / 1024.0);
(void) n_batch;
#if defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer));
LLAMA_LOG_INFO("%s: offloading %d repeating layers to GPU\n", __func__, n_gpu);
if (n_gpu_layers > (int) hparams.n_layer) {
LLAMA_LOG_INFO("%s: offloading non-repeating layers to GPU\n", __func__);
}
size_t vram_kv_cache = 0;
#ifdef GGML_USE_CUBLAS
const int max_backend_supported_layers = hparams.n_layer + 3;
const int max_offloadable_layers = low_vram ? hparams.n_layer + 1 : hparams.n_layer + 3;
if (n_gpu_layers > (int) hparams.n_layer + 1) {
if (low_vram) {
LLAMA_LOG_INFO("%s: cannot offload v cache to GPU due to low VRAM option\n", __func__);
} else {
LLAMA_LOG_INFO("%s: offloading v cache to GPU\n", __func__);
vram_kv_cache += hparams.kv_size() / 2;
}
}
if (n_gpu_layers > (int) hparams.n_layer + 2) {
if (low_vram) {
LLAMA_LOG_WARN("%s: cannot offload k cache to GPU due to low VRAM option\n", __func__);
} else {
LLAMA_LOG_INFO("%s: offloading k cache to GPU\n", __func__);
vram_kv_cache += hparams.kv_size() / 2;
}
}
#elif defined(GGML_USE_CLBLAST)
const int max_backend_supported_layers = hparams.n_layer + 1;
const int max_offloadable_layers = hparams.n_layer + 1;
#endif // GGML_USE_CUBLAS
LLAMA_LOG_INFO("%s: offloaded %d/%d layers to GPU\n",
__func__, std::min(n_gpu_layers, max_offloadable_layers), max_backend_supported_layers);
LLAMA_LOG_INFO("%s: VRAM used: %zu MB\n",
__func__, (vram_weights + vram_kv_cache + MB - 1) / MB); // round up
#else
(void) n_gpu_layers;
#endif // defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
}
// populate `tensors_by_name`
for (int i = 0; i < ml.n_tensors; ++i) {
struct ggml_tensor * cur = ggml_get_tensor(ctx, ml.get_tensor_name(i));
model.tensors_by_name.emplace_back(ggml_get_name(cur), cur);
}
(void) tensor_split;
#if defined(GGML_USE_CUBLAS)
{
ggml_cuda_set_tensor_split(tensor_split);
}
#endif
ml.load_all_data(ctx, progress_callback, progress_callback_user_data, use_mlock ? &model.mlock_mmap : NULL);
if (progress_callback) {
progress_callback(1.0f, progress_callback_user_data);
}
model.mapping = std::move(ml.mapping);
// loading time will be recalculate after the first eval, so
// we take page faults deferred by mmap() into consideration
model.t_load_us = ggml_time_us() - model.t_start_us;
}
static bool llama_model_load(
const std::string & fname,
llama_model & model,
int n_ctx,
int n_batch,
int n_gpu_layers,
int main_gpu,
const float * tensor_split,
const bool mul_mat_q,
float rope_freq_base,
float rope_freq_scale,
bool low_vram,
ggml_type memory_type,
bool use_mmap,
bool use_mlock,
bool vocab_only,
llama_progress_callback progress_callback,
void *progress_callback_user_data) {
try {
std::unique_ptr<llama_model_loader> ml(new llama_model_loader(fname, use_mmap));
llm_load_arch (*ml, model);
llm_load_hparams(*ml, model, n_ctx, rope_freq_base, rope_freq_scale);
llm_load_vocab (*ml, model);
llm_load_print_meta(*ml, model);
if (model.hparams.n_vocab != model.vocab.id_to_token.size()) {
throw std::runtime_error("vocab size mismatch");
}
if (vocab_only) {
LLAMA_LOG_INFO("%s: vocab only - skipping tensors\n", __func__);
return true;
}
llm_load_tensors(
*ml, model, n_batch, n_gpu_layers,
main_gpu, tensor_split, mul_mat_q, low_vram, memory_type,
use_mlock, progress_callback, progress_callback_user_data);
} catch (const std::exception & err) {
LLAMA_LOG_ERROR("error loading model: %s\n", err.what());
return false;
}
return true;
}
static struct ggml_cgraph * llm_build_llama(
llama_context & lctx,
const llama_batch & batch) {
const auto & model = lctx.model;
const auto & hparams = model.hparams;
const auto & kv_self = lctx.kv_self;
GGML_ASSERT(!!kv_self.ctx);
const int64_t n_embd = hparams.n_embd;
const int64_t n_layer = hparams.n_layer;
const int64_t n_ctx = hparams.n_ctx;
const int64_t n_head = hparams.n_head;
const int64_t n_head_kv = hparams.n_head_kv;
const int64_t n_embd_head = hparams.n_embd_head();
const int64_t n_embd_gqa = hparams.n_embd_gqa();
GGML_ASSERT(n_embd_head == hparams.n_rot);
const float freq_base = hparams.rope_freq_base;
const float freq_scale = hparams.rope_freq_scale;
const float norm_rms_eps = hparams.f_norm_rms_eps;
const int n_gpu_layers = model.n_gpu_layers;
const int32_t n_tokens = batch.n_tokens;
const int32_t n_kv = ggml_allocr_is_measure(lctx.alloc) ? n_ctx : kv_self.n;
const int32_t kv_head = ggml_allocr_is_measure(lctx.alloc) ? n_ctx - n_tokens : kv_self.head;
const bool do_rope_shift = ggml_allocr_is_measure(lctx.alloc) || kv_self.has_shift;
//printf("n_kv = %d\n", n_kv);
auto & buf_compute = lctx.buf_compute;
struct ggml_init_params params = {
/*.mem_size =*/ buf_compute.size,
/*.mem_buffer =*/ buf_compute.data,
/*.no_alloc =*/ false,
};
params.no_alloc = true;
struct ggml_context * ctx0 = ggml_init(params);
ggml_cgraph * gf = ggml_new_graph(ctx0);
struct ggml_tensor * cur;
struct ggml_tensor * inpL;
if (batch.token) {
struct ggml_tensor * inp_tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
ggml_allocr_alloc(lctx.alloc, inp_tokens);
if (!ggml_allocr_is_measure(lctx.alloc)) {
memcpy(inp_tokens->data, batch.token, n_tokens*ggml_element_size(inp_tokens));
}
ggml_set_name(inp_tokens, "inp_tokens");
inpL = ggml_get_rows(ctx0, model.tok_embeddings, inp_tokens);
} else {
#ifdef GGML_USE_MPI
GGML_ASSERT(false && "not implemented");
#endif
inpL = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, n_tokens);
ggml_allocr_alloc(lctx.alloc, inpL);
if (!ggml_allocr_is_measure(lctx.alloc)) {
memcpy(inpL->data, batch.embd, n_tokens * n_embd * ggml_element_size(inpL));
}
}
const int i_gpu_start = n_layer - n_gpu_layers;
(void) i_gpu_start;
// offload functions set the tensor output backend to GPU
// tensors are GPU-accelerated if any input or the output has been offloaded
//
// with the low VRAM option VRAM scratch is disabled in llama_load_model_internal
// in that case ggml_cuda_assign_buffers has no effect
offload_func_t offload_func_nr = llama_nop; // nr = non-repeating
offload_func_t offload_func_kq = llama_nop;
offload_func_t offload_func_v = llama_nop;
#ifdef GGML_USE_CUBLAS
if (n_gpu_layers > n_layer) {
offload_func_nr = ggml_cuda_assign_buffers_no_alloc;
}
if (n_gpu_layers > n_layer + 1) {
offload_func_v = ggml_cuda_assign_buffers_no_alloc;
}
if (n_gpu_layers > n_layer + 2) {
offload_func_kq = ggml_cuda_assign_buffers_no_alloc;
}
#endif // GGML_USE_CUBLAS
// KQ_scale
struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
ggml_set_name(KQ_scale, "1/sqrt(n_embd_head)");
ggml_allocr_alloc(lctx.alloc, KQ_scale);
if (!ggml_allocr_is_measure(lctx.alloc)) {
ggml_set_f32(KQ_scale, 1.0f/sqrtf(float(n_embd_head)));
}
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1);
offload_func_kq(KQ_mask);
ggml_set_name(KQ_mask, "KQ_mask");
ggml_allocr_alloc(lctx.alloc, KQ_mask);
if (!ggml_allocr_is_measure(lctx.alloc)) {
float * data = (float *) KQ_mask->data;
memset(data, 0, ggml_nbytes(KQ_mask));
for (int h = 0; h < 1; ++h) {
for (int j = 0; j < n_tokens; ++j) {
const llama_pos pos = batch.pos[j];
const llama_seq_id seq_id = batch.seq_id[j];
for (int i = 0; i < n_kv; ++i) {
if (!kv_self.cells[i].has_seq_id(seq_id) || kv_self.cells[i].pos > pos) {
data[h*(n_kv*n_tokens) + j*n_kv + i] = -INFINITY;
}
}
}
}
}
// KQ_pos - contains the positions
struct ggml_tensor * KQ_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
offload_func_kq(KQ_pos);
ggml_set_name(KQ_pos, "KQ_pos");
ggml_allocr_alloc(lctx.alloc, KQ_pos);
if (!ggml_allocr_is_measure(lctx.alloc)) {
int * data = (int *) KQ_pos->data;
for (int i = 0; i < n_tokens; ++i) {
data[i] = batch.pos[i];
}
}
// shift the entire K-cache if needed
if (do_rope_shift) {
struct ggml_tensor * K_shift = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_ctx);
offload_func_kq(K_shift);
ggml_set_name(K_shift, "K_shift");
ggml_allocr_alloc(lctx.alloc, K_shift);
if (!ggml_allocr_is_measure(lctx.alloc)) {
int * data = (int *) K_shift->data;
for (int i = 0; i < n_ctx; ++i) {
data[i] = kv_self.cells[i].delta;
}
}
for (int il = 0; il < n_layer; ++il) {
struct ggml_tensor * tmp =
ggml_rope_custom_inplace(ctx0,
ggml_view_3d(ctx0, kv_self.k,
n_embd_head, n_head_kv, n_ctx,
ggml_element_size(kv_self.k)*n_embd_head,
ggml_element_size(kv_self.k)*n_embd_gqa,
ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il),
K_shift, n_embd_head, 0, 0, freq_base, freq_scale);
offload_func_kq(tmp);
ggml_build_forward_expand(gf, tmp);
}
}
for (int il = 0; il < n_layer; ++il) {
ggml_format_name(inpL, "layer_inp_%d", il);
offload_func_t offload_func = llama_nop;
#ifdef GGML_USE_CUBLAS
if (il >= i_gpu_start) {
offload_func = ggml_cuda_assign_buffers_no_alloc;
}
#endif // GGML_USE_CUBLAS
struct ggml_tensor * inpSA = inpL;
// norm
{
cur = ggml_rms_norm(ctx0, inpL, norm_rms_eps);
offload_func(cur);
ggml_set_name(cur, "rms_norm_0");
// cur = cur*attn_norm(broadcasted)
cur = ggml_mul(ctx0, cur, model.layers[il].attn_norm);
offload_func(cur);
ggml_set_name(cur, "attention_norm_0");
}
// self-attention
{
// compute Q and K and RoPE them
struct ggml_tensor * tmpk = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
offload_func_kq(tmpk);
ggml_set_name(tmpk, "tmpk");
struct ggml_tensor * tmpq = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
offload_func_kq(tmpq);
ggml_set_name(tmpq, "tmpq");
struct ggml_tensor * Kcur = ggml_rope_custom(ctx0, ggml_reshape_3d(ctx0, tmpk, n_embd_head, n_head_kv, n_tokens), KQ_pos, n_embd_head, 0, 0, freq_base, freq_scale);
offload_func_kq(Kcur);
ggml_set_name(Kcur, "Kcur");
struct ggml_tensor * Qcur = ggml_rope_custom(ctx0, ggml_reshape_3d(ctx0, tmpq, n_embd_head, n_head, n_tokens), KQ_pos, n_embd_head, 0, 0, freq_base, freq_scale);
offload_func_kq(Qcur);
ggml_set_name(Qcur, "Qcur");
// store key and value to memory
{
// compute the transposed [n_tokens, n_embd] V matrix
struct ggml_tensor * tmpv = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
offload_func_v(tmpv);
ggml_set_name(tmpv, "tmpv");
struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, tmpv, n_embd_gqa, n_tokens));
offload_func_v(Vcur);
ggml_set_name(Vcur, "Vcur");
struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, n_tokens*n_embd_gqa, (ggml_element_size(kv_self.k)*n_embd_gqa)*(il*n_ctx + kv_head));
offload_func_kq(k);
ggml_set_name(k, "k");
struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, n_tokens, n_embd_gqa,
( n_ctx)*ggml_element_size(kv_self.v),
(il*n_ctx)*ggml_element_size(kv_self.v)*n_embd_gqa + kv_head*ggml_element_size(kv_self.v));
offload_func_v(v);
ggml_set_name(v, "v");
// important: storing RoPE-ed version of K in the KV cache!
ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k));
ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, v));
}
struct ggml_tensor * Q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
offload_func_kq(Q);
ggml_set_name(Q, "Q");
struct ggml_tensor * K =
ggml_view_3d(ctx0, kv_self.k,
n_embd_head, n_kv, n_head_kv,
ggml_element_size(kv_self.k)*n_embd_gqa,
ggml_element_size(kv_self.k)*n_embd_head,
ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il);
offload_func_kq(K);
ggml_set_name(K, "K");
// K * Q
struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
offload_func_kq(KQ);
ggml_set_name(KQ, "KQ");
// KQ_scaled = KQ / sqrt(n_embd_head)
// KQ_scaled shape [n_kv, n_tokens, n_head, 1]
struct ggml_tensor * KQ_scaled = ggml_scale(ctx0, KQ, KQ_scale);
offload_func_kq(KQ_scaled);
ggml_set_name(KQ_scaled, "KQ_scaled");
// KQ_masked = mask_past(KQ_scaled)
struct ggml_tensor * KQ_masked = ggml_add(ctx0, KQ_scaled, KQ_mask);
offload_func_kq(KQ_masked);
ggml_set_name(KQ_masked, "KQ_masked");
// KQ = soft_max(KQ_masked)
struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked);
offload_func_v(KQ_soft_max);
ggml_set_name(KQ_soft_max, "KQ_soft_max");
// split cached V into n_head heads
struct ggml_tensor * V =
ggml_view_3d(ctx0, kv_self.v,
n_kv, n_embd_head, n_head_kv,
ggml_element_size(kv_self.v)*n_ctx,
ggml_element_size(kv_self.v)*n_ctx*n_embd_head,
ggml_element_size(kv_self.v)*n_ctx*n_embd_gqa*il);
offload_func_v(V);
ggml_set_name(V, "V");
#if 1
struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max);
offload_func_v(KQV);
ggml_set_name(KQV, "KQV");
#else
// make V contiguous in memory to speed up the matmul, however we waste time on the copy
// on M1 this is faster for the perplexity computation, but ~5% slower for the single-token generation
// is there a better way?
struct ggml_tensor * V_cont = ggml_cpy(ctx0, V, ggml_new_tensor_3d(ctx0, kv_self.v->type, n_ctx, n_embd_head, n_head));
struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V_cont, KQ_soft_max);
#endif
// KQV_merged = KQV.permute(0, 2, 1, 3)
struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
offload_func_v(KQV_merged);
ggml_set_name(KQV_merged, "KQV_merged");
// cur = KQV_merged.contiguous().view(n_embd, n_tokens)
cur = ggml_cont_2d(ctx0, KQV_merged, n_embd, n_tokens);
offload_func_v(cur);
ggml_set_name(cur, "KQV_merged_contiguous");
// projection (no bias)
cur = ggml_mul_mat(ctx0,
model.layers[il].wo,
cur);
offload_func(cur);
ggml_set_name(cur, "result_wo");
}
struct ggml_tensor * inpFF = ggml_add(ctx0, cur, inpSA);
offload_func(inpFF);
ggml_set_name(inpFF, "inpFF");
// feed-forward network
{
// norm
{
cur = ggml_rms_norm(ctx0, inpFF, norm_rms_eps);
offload_func(cur);
ggml_set_name(cur, "rms_norm_1");
// cur = cur*ffn_norm(broadcasted)
cur = ggml_mul(ctx0, cur, model.layers[il].ffn_norm);
offload_func(cur);
ggml_set_name(cur, "ffn_norm");
}
struct ggml_tensor * tmp = ggml_mul_mat(ctx0,
model.layers[il].w3,
cur);
offload_func(tmp);
ggml_set_name(tmp, "result_w3");
cur = ggml_mul_mat(ctx0,
model.layers[il].w1,
cur);
offload_func(cur);
ggml_set_name(cur, "result_w1");
// SILU activation
cur = ggml_silu(ctx0, cur);
offload_func(cur);
ggml_set_name(cur, "silu");
cur = ggml_mul(ctx0, cur, tmp);
offload_func(cur);
ggml_set_name(cur, "silu_x_result_w3");
cur = ggml_mul_mat(ctx0,
model.layers[il].w2,
cur);
offload_func(cur);
ggml_set_name(cur, "result_w2");
}
cur = ggml_add(ctx0, cur, inpFF);
offload_func(cur);
ggml_set_name(cur, "inpFF_+_result_w2");
// input for next layer
inpL = cur;
}
cur = inpL;
// norm
{
cur = ggml_rms_norm(ctx0, cur, norm_rms_eps);
offload_func_nr(cur);
ggml_set_name(cur, "rms_norm_2");
// cur = cur*norm(broadcasted)
cur = ggml_mul(ctx0, cur, model.output_norm);
// offload_func_nr(cur); // TODO CPU + GPU mirrored backend
ggml_set_name(cur, "result_norm");
}
// lm_head
cur = ggml_mul_mat(ctx0, model.output, cur);
ggml_set_name(cur, "result_output");
ggml_build_forward_expand(gf, cur);
ggml_free(ctx0);
return gf;
}
static struct ggml_cgraph * llm_build_baichaun(
llama_context & lctx,
const llama_batch & batch) {
const auto & model = lctx.model;
const auto & hparams = model.hparams;
const auto & kv_self = lctx.kv_self;
GGML_ASSERT(!!kv_self.ctx);
const int64_t n_embd = hparams.n_embd;
const int64_t n_layer = hparams.n_layer;
const int64_t n_ctx = hparams.n_ctx;
const int64_t n_head = hparams.n_head;
const int64_t n_head_kv = hparams.n_head_kv;
const int64_t n_embd_head = hparams.n_embd_head();
const int64_t n_embd_gqa = hparams.n_embd_gqa();
GGML_ASSERT(n_embd_head == hparams.n_rot);
const float freq_base = hparams.rope_freq_base;
const float freq_scale = hparams.rope_freq_scale;
const float norm_rms_eps = hparams.f_norm_rms_eps;
const int n_gpu_layers = model.n_gpu_layers;
const int32_t n_tokens = batch.n_tokens;
const int32_t n_kv = ggml_allocr_is_measure(lctx.alloc) ? n_ctx : kv_self.n;
const int32_t kv_head = ggml_allocr_is_measure(lctx.alloc) ? n_ctx - n_tokens : kv_self.head;
const bool do_rope_shift = ggml_allocr_is_measure(lctx.alloc) || kv_self.has_shift;
auto & buf_compute = lctx.buf_compute;
struct ggml_init_params params = {
/*.mem_size =*/ buf_compute.size,
/*.mem_buffer =*/ buf_compute.data,
/*.no_alloc =*/ false,
};
params.no_alloc = true;
struct ggml_context * ctx0 = ggml_init(params);
ggml_cgraph * gf = ggml_new_graph(ctx0);
struct ggml_tensor * cur;
struct ggml_tensor * inpL;
if (batch.token) {
struct ggml_tensor * inp_tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
ggml_allocr_alloc(lctx.alloc, inp_tokens);
if (!ggml_allocr_is_measure(lctx.alloc)) {
memcpy(inp_tokens->data, batch.token, n_tokens*ggml_element_size(inp_tokens));
}
ggml_set_name(inp_tokens, "inp_tokens");
inpL = ggml_get_rows(ctx0, model.tok_embeddings, inp_tokens);
} else {
#ifdef GGML_USE_MPI
GGML_ASSERT(false && "not implemented");
#endif
inpL = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, n_tokens);
ggml_allocr_alloc(lctx.alloc, inpL);
if (!ggml_allocr_is_measure(lctx.alloc)) {
memcpy(inpL->data, batch.embd, n_tokens * n_embd * ggml_element_size(inpL));
}
}
const int i_gpu_start = n_layer - n_gpu_layers;
(void) i_gpu_start;
// offload functions set the tensor output backend to GPU
// tensors are GPU-accelerated if any input or the output has been offloaded
//
// with the low VRAM option VRAM scratch is disabled in llama_load_model_internal
// in that case ggml_cuda_assign_buffers has no effect
offload_func_t offload_func_nr = llama_nop; // nr = non-repeating
offload_func_t offload_func_kq = llama_nop;
offload_func_t offload_func_v = llama_nop;
#ifdef GGML_USE_CUBLAS
if (n_gpu_layers > n_layer) {
offload_func_nr = ggml_cuda_assign_buffers_no_alloc;
}
if (n_gpu_layers > n_layer + 1) {
offload_func_v = ggml_cuda_assign_buffers_no_alloc;
}
if (n_gpu_layers > n_layer + 2) {
offload_func_kq = ggml_cuda_assign_buffers_no_alloc;
}
#endif // GGML_USE_CUBLAS
// KQ_scale
struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
ggml_set_name(KQ_scale, "1/sqrt(n_embd_head)");
ggml_allocr_alloc(lctx.alloc, KQ_scale);
if (!ggml_allocr_is_measure(lctx.alloc)) {
ggml_set_f32(KQ_scale, 1.0f/sqrtf(float(n_embd)/n_head));
}
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1);
offload_func_kq(KQ_mask);
ggml_set_name(KQ_mask, "KQ_mask");
ggml_allocr_alloc(lctx.alloc, KQ_mask);
if (!ggml_allocr_is_measure(lctx.alloc)) {
float * data = (float *) KQ_mask->data;
memset(data, 0, ggml_nbytes(KQ_mask));
for (int h = 0; h < 1; ++h) {
for (int j = 0; j < n_tokens; ++j) {
const llama_pos pos = batch.pos[j];
const llama_seq_id seq_id = batch.seq_id[j];
for (int i = 0; i < n_kv; ++i) {
if (!kv_self.cells[i].has_seq_id(seq_id) || kv_self.cells[i].pos > pos) {
data[h*(n_kv*n_tokens) + j*n_kv + i] = -INFINITY;
}
}
}
}
}
// KQ_pos - contains the positions
struct ggml_tensor * KQ_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
offload_func_kq(KQ_pos);
ggml_set_name(KQ_pos, "KQ_pos");
ggml_allocr_alloc(lctx.alloc, KQ_pos);
if (!ggml_allocr_is_measure(lctx.alloc)) {
int * data = (int *) KQ_pos->data;
for (int i = 0; i < n_tokens; ++i) {
data[i] = batch.pos[i];
}
}
// shift the entire K-cache if needed
if (do_rope_shift) {
struct ggml_tensor * K_shift = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_ctx);
offload_func_kq(K_shift);
ggml_set_name(K_shift, "K_shift");
ggml_allocr_alloc(lctx.alloc, K_shift);
if (!ggml_allocr_is_measure(lctx.alloc)) {
int * data = (int *) K_shift->data;
for (int i = 0; i < n_ctx; ++i) {
data[i] = kv_self.cells[i].delta;
}
}
for (int il = 0; il < n_layer; ++il) {
struct ggml_tensor * tmp =
ggml_rope_custom_inplace(ctx0,
ggml_view_3d(ctx0, kv_self.k,
n_embd_head, n_head_kv, n_ctx,
ggml_element_size(kv_self.k)*n_embd_head,
ggml_element_size(kv_self.k)*n_embd_gqa,
ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il),
K_shift, n_embd_head, 0, 0, freq_base, freq_scale);
offload_func_kq(tmp);
ggml_build_forward_expand(gf, tmp);
}
}
for (int il = 0; il < n_layer; ++il) {
ggml_format_name(inpL, "layer_inp_%d", il);
offload_func_t offload_func = llama_nop;
#ifdef GGML_USE_CUBLAS
if (il >= i_gpu_start) {
offload_func = ggml_cuda_assign_buffers_no_alloc;
}
#endif // GGML_USE_CUBLAS
struct ggml_tensor * inpSA = inpL;
// norm
{
cur = ggml_rms_norm(ctx0, inpL, norm_rms_eps);
offload_func(cur);
ggml_set_name(cur, "rms_norm_0");
// cur = cur*attn_norm(broadcasted)
cur = ggml_mul(ctx0, cur, model.layers[il].attn_norm);
offload_func(cur);
ggml_set_name(cur, "attention_norm_0");
}
// self-attention
{
// compute Q and K and RoPE them
struct ggml_tensor * tmpk = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
offload_func_kq(tmpk);
ggml_set_name(tmpk, "tmpk");
struct ggml_tensor * tmpq = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
offload_func_kq(tmpq);
ggml_set_name(tmpq, "tmpq");
struct ggml_tensor * Kcur;
struct ggml_tensor * Qcur;
switch (model.type) {
case MODEL_7B:
Kcur = ggml_rope_custom(ctx0, ggml_reshape_3d(ctx0, tmpk, n_embd_head, n_head_kv, n_tokens), KQ_pos, n_embd_head, 0, 0, freq_base, freq_scale);
Qcur = ggml_rope_custom(ctx0, ggml_reshape_3d(ctx0, tmpq, n_embd_head, n_head, n_tokens), KQ_pos, n_embd_head, 0, 0, freq_base, freq_scale);
break;
case MODEL_13B:
Kcur = ggml_reshape_3d(ctx0, tmpk, n_embd/n_head, n_head, n_tokens);
Qcur = ggml_reshape_3d(ctx0, tmpq, n_embd/n_head, n_head, n_tokens);
break;
default:
GGML_ASSERT(false);
}
offload_func_kq(Kcur);
ggml_set_name(Kcur, "Kcur");
offload_func_kq(Qcur);
ggml_set_name(Qcur, "Qcur");
// store key and value to memory
{
// compute the transposed [n_tokens, n_embd] V matrix
struct ggml_tensor * tmpv = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
offload_func_v(tmpv);
ggml_set_name(tmpv, "tmpv");
struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, tmpv, n_embd_gqa, n_tokens));
offload_func_v(Vcur);
ggml_set_name(Vcur, "Vcur");
struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, n_tokens*n_embd_gqa, (ggml_element_size(kv_self.k)*n_embd_gqa)*(il*n_ctx + kv_head));
offload_func_kq(k);
ggml_set_name(k, "k");
struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, n_tokens, n_embd_gqa,
( n_ctx)*ggml_element_size(kv_self.v),
(il*n_ctx)*ggml_element_size(kv_self.v)*n_embd_gqa + kv_head*ggml_element_size(kv_self.v));
offload_func_v(v);
ggml_set_name(v, "v");
// important: storing RoPE-ed version of K in the KV cache!
ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k));
ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, v));
}
struct ggml_tensor * Q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
offload_func_kq(Q);
ggml_set_name(Q, "Q");
struct ggml_tensor * K =
ggml_view_3d(ctx0, kv_self.k,
n_embd_head, n_kv, n_head_kv,
ggml_element_size(kv_self.k)*n_embd_gqa,
ggml_element_size(kv_self.k)*n_embd_head,
ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il);
offload_func_kq(K);
ggml_set_name(K, "K");
// K * Q
struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
offload_func_kq(KQ);
ggml_set_name(KQ, "KQ");
// KQ_scaled = KQ / sqrt(n_embd_head)
// KQ_scaled shape [n_past + n_tokens, n_tokens, n_head, 1]
struct ggml_tensor * KQ_scaled = ggml_scale(ctx0, KQ, KQ_scale);
offload_func_kq(KQ_scaled);
ggml_set_name(KQ_scaled, "KQ_scaled");
struct ggml_tensor * KQ_masked;
struct ggml_tensor * KQ_scaled_alibi;
switch (model.type) {
case MODEL_7B:
KQ_masked = ggml_add(ctx0, KQ_scaled, KQ_mask);
break;
case MODEL_13B:
// TODO: replace with ggml_add()
KQ_scaled_alibi = ggml_alibi(ctx0, KQ_scaled, /*n_past*/ 0, n_head, 8);
ggml_set_name(KQ_scaled_alibi, "KQ_scaled_alibi");
KQ_masked = ggml_add(ctx0, KQ_scaled_alibi, KQ_mask);
break;
default:
GGML_ASSERT(false);
}
// KQ = soft_max(KQ_masked)
struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked);
offload_func_v(KQ_soft_max);
ggml_set_name(KQ_soft_max, "KQ_soft_max");
// split cached V into n_head heads
struct ggml_tensor * V =
ggml_view_3d(ctx0, kv_self.v,
n_kv, n_embd_head, n_head_kv,
ggml_element_size(kv_self.v)*n_ctx,
ggml_element_size(kv_self.v)*n_ctx*n_embd_head,
ggml_element_size(kv_self.v)*n_ctx*n_embd_gqa*il);
offload_func_v(V);
ggml_set_name(V, "V");
struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max);
offload_func_v(KQV);
ggml_set_name(KQV, "KQV");
// KQV_merged = KQV.permute(0, 2, 1, 3)
struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
offload_func_v(KQV_merged);
ggml_set_name(KQV_merged, "KQV_merged");
// cur = KQV_merged.contiguous().view(n_embd, n_tokens)
cur = ggml_cont_2d(ctx0, KQV_merged, n_embd, n_tokens);
offload_func_v(cur);
ggml_set_name(cur, "KQV_merged_contiguous");
// projection (no bias)
cur = ggml_mul_mat(ctx0,
model.layers[il].wo,
cur);
offload_func(cur);
ggml_set_name(cur, "result_wo");
}
struct ggml_tensor * inpFF = ggml_add(ctx0, cur, inpSA);
offload_func(inpFF);
ggml_set_name(inpFF, "inpFF");
// feed-forward network
{
// norm
{
cur = ggml_rms_norm(ctx0, inpFF, norm_rms_eps);
offload_func(cur);
ggml_set_name(cur, "rms_norm_1");
// cur = cur*ffn_norm(broadcasted)
cur = ggml_mul(ctx0, cur, model.layers[il].ffn_norm);
offload_func(cur);
ggml_set_name(cur, "ffn_norm");
}
struct ggml_tensor * tmp = ggml_mul_mat(ctx0,
model.layers[il].w3,
cur);
offload_func(tmp);
ggml_set_name(tmp, "result_w3");
cur = ggml_mul_mat(ctx0,
model.layers[il].w1,
cur);
offload_func(cur);
ggml_set_name(cur, "result_w1");
// SILU activation
cur = ggml_silu(ctx0, cur);
offload_func(cur);
ggml_set_name(cur, "silu");
cur = ggml_mul(ctx0, cur, tmp);
offload_func(cur);
ggml_set_name(cur, "silu_x_result_w3");
cur = ggml_mul_mat(ctx0,
model.layers[il].w2,
cur);
offload_func(cur);
ggml_set_name(cur, "result_w2");
}
cur = ggml_add(ctx0, cur, inpFF);
offload_func(cur);
ggml_set_name(cur, "inpFF_+_result_w2");
// input for next layer
inpL = cur;
}
cur = inpL;
// norm
{
cur = ggml_rms_norm(ctx0, cur, norm_rms_eps);
offload_func_nr(cur);
ggml_set_name(cur, "rms_norm_2");
// cur = cur*norm(broadcasted)
cur = ggml_mul(ctx0, cur, model.output_norm);
// offload_func_nr(cur); // TODO CPU + GPU mirrored backend
ggml_set_name(cur, "result_norm");
}
// lm_head
cur = ggml_mul_mat(ctx0, model.output, cur);
ggml_set_name(cur, "result_output");
ggml_build_forward_expand(gf, cur);
ggml_free(ctx0);
return gf;
}
static struct ggml_cgraph * llm_build_falcon(
llama_context & lctx,
const llama_batch & batch) {
const auto & model = lctx.model;
const auto & hparams = model.hparams;
const auto & kv_self = lctx.kv_self;
GGML_ASSERT(!!kv_self.ctx);
const int64_t n_embd = hparams.n_embd;
const int64_t n_layer = hparams.n_layer;
const int64_t n_ctx = hparams.n_ctx;
const int64_t n_head = hparams.n_head;
const int64_t n_head_kv = hparams.n_head_kv;
const int64_t n_embd_head = hparams.n_embd_head();
const int64_t n_embd_gqa = hparams.n_embd_gqa();
GGML_ASSERT(n_embd_head == hparams.n_rot);
const float freq_base = hparams.rope_freq_base;
const float freq_scale = hparams.rope_freq_scale;
const float norm_eps = hparams.f_norm_eps;
const int n_gpu_layers = model.n_gpu_layers;
const int32_t n_tokens = batch.n_tokens;
const int32_t n_kv = ggml_allocr_is_measure(lctx.alloc) ? n_ctx : kv_self.n;
const int32_t kv_head = ggml_allocr_is_measure(lctx.alloc) ? n_ctx - n_tokens : kv_self.head;
const bool do_rope_shift = ggml_allocr_is_measure(lctx.alloc) || kv_self.has_shift;
//printf("kv_head = %d, n_kv = %d, n_tokens = %d, n_ctx = %d, is_measure = %d, has_shift = %d\n",
// kv_head, n_kv, n_tokens, n_ctx, ggml_allocr_is_measure(lctx.alloc), kv_self.has_shift);
auto & buf_compute = lctx.buf_compute;
struct ggml_init_params params = {
/*.mem_size =*/ buf_compute.size,
/*.mem_buffer =*/ buf_compute.data,
/*.no_alloc =*/ false,
};
params.no_alloc = true;
struct ggml_context * ctx0 = ggml_init(params);
ggml_cgraph * gf = ggml_new_graph(ctx0);
struct ggml_tensor * cur;
struct ggml_tensor * inpL;
if (batch.token) {
struct ggml_tensor * inp_tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
ggml_allocr_alloc(lctx.alloc, inp_tokens);
if (!ggml_allocr_is_measure(lctx.alloc)) {
memcpy(inp_tokens->data, batch.token, n_tokens*ggml_element_size(inp_tokens));
}
ggml_set_name(inp_tokens, "inp_tokens");
inpL = ggml_get_rows(ctx0, model.tok_embeddings, inp_tokens);
} else {
#ifdef GGML_USE_MPI
GGML_ASSERT(false && "not implemented");
#endif
inpL = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, n_tokens);
ggml_allocr_alloc(lctx.alloc, inpL);
if (!ggml_allocr_is_measure(lctx.alloc)) {
memcpy(inpL->data, batch.embd, n_tokens * n_embd * ggml_element_size(inpL));
}
}
const int i_gpu_start = n_layer - n_gpu_layers;
(void) i_gpu_start;
// offload functions set the tensor output backend to GPU
// tensors are GPU-accelerated if any input or the output has been offloaded
//
// with the low VRAM option VRAM scratch is disabled in llama_load_model_internal
// in that case ggml_cuda_assign_buffers has no effect
offload_func_t offload_func_nr = llama_nop; // nr = non-repeating
offload_func_t offload_func_kq = llama_nop;
offload_func_t offload_func_v = llama_nop;
#ifdef GGML_USE_CUBLAS
if (n_gpu_layers > n_layer) {
offload_func_nr = ggml_cuda_assign_buffers_no_alloc;
}
if (n_gpu_layers > n_layer + 1) {
offload_func_v = ggml_cuda_assign_buffers_no_alloc;
}
if (n_gpu_layers > n_layer + 2) {
offload_func_kq = ggml_cuda_assign_buffers_no_alloc;
}
#endif // GGML_USE_CUBLAS
// KQ_scale
struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
ggml_set_name(KQ_scale, "1/sqrt(n_embd_head)");
ggml_allocr_alloc(lctx.alloc, KQ_scale);
if (!ggml_allocr_is_measure(lctx.alloc)) {
ggml_set_f32(KQ_scale, 1.0f/sqrtf(float(n_embd)/n_head));
}
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1);
offload_func_kq(KQ_mask);
ggml_set_name(KQ_mask, "KQ_mask");
ggml_allocr_alloc(lctx.alloc, KQ_mask);
if (!ggml_allocr_is_measure(lctx.alloc)) {
float * data = (float *) KQ_mask->data;
memset(data, 0, ggml_nbytes(KQ_mask));
for (int h = 0; h < 1; ++h) {
for (int j = 0; j < n_tokens; ++j) {
const llama_pos pos = batch.pos[j];
const llama_seq_id seq_id = batch.seq_id[j];
for (int i = 0; i < n_kv; ++i) {
if (!kv_self.cells[i].has_seq_id(seq_id) || kv_self.cells[i].pos > pos) {
data[h*(n_kv*n_tokens) + j*n_kv + i] = -INFINITY;
}
}
}
}
}
// KQ_pos - contains the positions
struct ggml_tensor * KQ_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
offload_func_kq(KQ_pos);
ggml_set_name(KQ_pos, "KQ_pos");
ggml_allocr_alloc(lctx.alloc, KQ_pos);
if (!ggml_allocr_is_measure(lctx.alloc)) {
int * data = (int *) KQ_pos->data;
for (int i = 0; i < n_tokens; ++i) {
data[i] = batch.pos[i];
}
}
// shift the entire K-cache if needed
if (do_rope_shift) {
struct ggml_tensor * K_shift = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_ctx);
offload_func_kq(K_shift);
ggml_set_name(K_shift, "K_shift");
ggml_allocr_alloc(lctx.alloc, K_shift);
if (!ggml_allocr_is_measure(lctx.alloc)) {
int * data = (int *) K_shift->data;
for (int i = 0; i < n_ctx; ++i) {
data[i] = kv_self.cells[i].delta;
}
}
for (int il = 0; il < n_layer; ++il) {
struct ggml_tensor * tmp =
ggml_rope_custom_inplace(ctx0,
ggml_view_3d(ctx0, kv_self.k,
n_embd_head, n_head_kv, n_ctx,
ggml_element_size(kv_self.k)*n_embd_head,
ggml_element_size(kv_self.k)*n_embd_gqa,
ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il),
K_shift, n_embd_head, 2, 0, freq_base, freq_scale);
offload_func_kq(tmp);
ggml_build_forward_expand(gf, tmp);
}
}
for (int il = 0; il < n_layer; ++il) {
struct ggml_tensor * attn_norm;
offload_func_t offload_func = llama_nop;
#ifdef GGML_USE_CUBLAS
if (il >= i_gpu_start) {
offload_func = ggml_cuda_assign_buffers_no_alloc;
}
#endif // GGML_USE_CUBLAS
// self-attention
// TODO: refactor into common function (shared with LLaMA)
{
attn_norm = ggml_norm(ctx0, inpL, norm_eps);
offload_func(attn_norm);
attn_norm = ggml_add(ctx0,
ggml_mul(ctx0, attn_norm, model.layers[il].attn_norm),
model.layers[il].attn_norm_b);
offload_func(attn_norm->src[0]);
offload_func(attn_norm);
if (model.layers[il].attn_norm_2) { // Falcon-40B
cur = ggml_norm(ctx0, inpL, norm_eps);
offload_func(cur);
cur = ggml_add(ctx0,
ggml_mul(ctx0, cur, model.layers[il].attn_norm_2),
model.layers[il].attn_norm_2_b);
offload_func(cur->src[0]);
offload_func(cur);
} else { // Falcon 7B
cur = attn_norm;
}
// compute QKV
cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
offload_func_kq(cur);
// Note that the strides for Kcur, Vcur are set up so that the
// resulting views are misaligned with the tensor's storage
// (by applying the K/V offset we shift the tensor's original
// view to stick out behind the viewed QKV tensor's allocated
// memory, so to say). This is ok because no actual accesses
// happen to that out-of-range memory, but it can require some
// trickery when trying to accurately dump these views for
// debugging.
const size_t wsize = ggml_type_size(cur->type);
// TODO: these 2 ggml_conts are technically not needed, but we add them until CUDA support for
// non-contiguous views is added for the rope operator
struct ggml_tensor * tmpq = ggml_cont(ctx0, ggml_view_3d(
ctx0, cur, n_embd_head, n_head, n_tokens,
wsize * n_embd_head,
wsize * n_embd_head * (n_head + 2 * n_head_kv),
0));
offload_func_kq(tmpq);
struct ggml_tensor * tmpk = ggml_cont(ctx0, ggml_view_3d(
ctx0, cur, n_embd_head, n_head_kv, n_tokens,
wsize * n_embd_head,
wsize * n_embd_head * (n_head + 2 * n_head_kv),
wsize * n_embd_head * n_head));
offload_func_kq(tmpk);
struct ggml_tensor * tmpv = ggml_view_3d(
ctx0, cur, n_embd_head, n_head_kv, n_tokens,
wsize * n_embd_head,
wsize * n_embd_head * (n_head + 2 * n_head_kv),
wsize * n_embd_head * (n_head + n_head_kv));
offload_func_v(tmpv);
// using mode = 2 for neox mode
struct ggml_tensor * Qcur = ggml_rope_custom(ctx0, tmpq, KQ_pos, n_embd_head, 2, 0, freq_base, freq_scale);
offload_func_kq(Qcur);
struct ggml_tensor * Kcur = ggml_rope_custom(ctx0, tmpk, KQ_pos, n_embd_head, 2, 0, freq_base, freq_scale);
offload_func_kq(Kcur);
{
struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, ggml_cont(ctx0, tmpv), n_embd_gqa, n_tokens));
offload_func_v(Vcur);
offload_func_v(Vcur->src[0]->src[0]);
ggml_set_name(Vcur, "Vcur");
struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, n_tokens*n_embd_gqa, (ggml_element_size(kv_self.k)*n_embd_gqa)*(il*n_ctx + kv_head));
offload_func_kq(k);
ggml_set_name(k, "k");
struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, n_tokens, n_embd_gqa,
( n_ctx)*ggml_element_size(kv_self.v),
(il*n_ctx)*ggml_element_size(kv_self.v)*n_embd_gqa + kv_head*ggml_element_size(kv_self.v));
offload_func_v(v);
ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k));
ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, v));
}
struct ggml_tensor * Q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
offload_func_kq(Q);
ggml_set_name(Q, "Q");
struct ggml_tensor * K =
ggml_view_3d(ctx0, kv_self.k,
n_embd_head, n_kv, n_head_kv,
ggml_element_size(kv_self.k)*n_embd_gqa,
ggml_element_size(kv_self.k)*n_embd_head,
ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il);
offload_func_kq(K);
ggml_set_name(K, "K");
struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
offload_func_kq(KQ);
ggml_set_name(KQ, "KQ");
struct ggml_tensor * KQ_scaled = ggml_scale(ctx0, KQ, KQ_scale);
offload_func_kq(KQ_scaled);
ggml_set_name(KQ_scaled, "KQ_scaled");
struct ggml_tensor * KQ_masked = ggml_add(ctx0, KQ_scaled, KQ_mask);
offload_func_kq(KQ_masked);
ggml_set_name(KQ_masked, "KQ_masked");
struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked);
offload_func_v(KQ_soft_max);
ggml_set_name(KQ_soft_max, "KQ_soft_max");
struct ggml_tensor * V =
ggml_view_3d(ctx0, kv_self.v,
n_kv, n_embd_head, n_head_kv,
ggml_element_size(kv_self.v)*n_ctx,
ggml_element_size(kv_self.v)*n_ctx*n_embd_head,
ggml_element_size(kv_self.v)*n_ctx*n_embd_gqa*il);
offload_func_v(V);
ggml_set_name(V, "V");
struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max);
offload_func_v(KQV);
ggml_set_name(KQV, "KQV");
struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
offload_func_v(KQV_merged);
ggml_set_name(KQV_merged, "KQV_merged");
cur = ggml_cont_2d(ctx0, KQV_merged, n_embd, n_tokens);
offload_func_v(cur);
ggml_set_name(cur, "KQV_merged_contiguous");
cur = ggml_mul_mat(ctx0, model.layers[il].wo, cur);
offload_func(cur);
ggml_set_name(cur, "result_wo");
}
struct ggml_tensor * attn_out = cur;
// feed forward
{
struct ggml_tensor * inpFF = attn_norm;
cur = ggml_mul_mat(ctx0, model.layers[il].w3, inpFF);
offload_func(cur);
cur = ggml_gelu(ctx0, cur);
offload_func(cur);
cur = ggml_mul_mat(ctx0, model.layers[il].w2, cur);
offload_func(cur);
}
cur = ggml_add(ctx0, cur, attn_out);
offload_func(cur);
cur = ggml_add(ctx0, cur, inpL);
offload_func(cur);
// input for next layer
inpL = cur;
}
cur = inpL;
// norm
{
cur = ggml_norm(ctx0, cur, norm_eps);
offload_func_nr(cur);
cur = ggml_add(ctx0,
ggml_mul(ctx0, cur, model.output_norm),
model.output_norm_b);
ggml_set_name(cur, "result_norm");
}
cur = ggml_mul_mat(ctx0, model.output, cur);
ggml_set_name(cur, "result_output");
ggml_build_forward_expand(gf, cur);
ggml_free(ctx0);
return gf;
}
static struct ggml_cgraph * llm_build_starcoder(
llama_context & lctx,
const llama_batch & batch) {
const auto & model = lctx.model;
const auto & hparams = model.hparams;
const auto & kv_self = lctx.kv_self;
GGML_ASSERT(!!kv_self.ctx);
const int64_t n_embd = hparams.n_embd;
const int64_t n_layer = hparams.n_layer;
const int64_t n_ctx = hparams.n_ctx;
const int64_t n_head = hparams.n_head;
const int64_t n_head_kv = hparams.n_head_kv;
const int64_t n_embd_head = hparams.n_embd_head();
const int64_t n_embd_gqa = hparams.n_embd_gqa();
GGML_ASSERT(n_embd_head == hparams.n_rot);
const float norm_eps = hparams.f_norm_eps;
const int32_t n_tokens = batch.n_tokens;
const int32_t n_kv = ggml_allocr_is_measure(lctx.alloc) ? n_ctx : kv_self.n;
const int32_t kv_head = ggml_allocr_is_measure(lctx.alloc) ? n_ctx - n_tokens : kv_self.head;
auto & buf_compute = lctx.buf_compute;
struct ggml_init_params params = {
/*.mem_size =*/ buf_compute.size,
/*.mem_buffer =*/ buf_compute.data,
/*.no_alloc =*/ false,
};
params.no_alloc = true;
struct ggml_context * ctx0 = ggml_init(params);
ggml_cgraph * gf = ggml_new_graph(ctx0);
struct ggml_tensor * cur;
struct ggml_tensor * token;
struct ggml_tensor * position;
struct ggml_tensor * inpL;
if (batch.token) {
struct ggml_tensor * inp_tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
ggml_allocr_alloc(lctx.alloc, inp_tokens);
if (!ggml_allocr_is_measure(lctx.alloc)) {
memcpy(inp_tokens->data, batch.token, n_tokens*ggml_element_size(inp_tokens));
}
ggml_set_name(inp_tokens, "inp_tokens");
token = ggml_get_rows(ctx0, model.tok_embeddings, inp_tokens);
} else {
#ifdef GGML_USE_MPI
GGML_ASSERT(false && "not implemented");
#endif
token = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, n_tokens);
ggml_allocr_alloc(lctx.alloc, token);
if (!ggml_allocr_is_measure(lctx.alloc)) {
memcpy(token->data, batch.embd, n_tokens * n_embd * ggml_element_size(token));
}
}
{
// Compute position embeddings.
struct ggml_tensor * inp_positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
ggml_allocr_alloc(lctx.alloc, inp_positions);
if (!ggml_allocr_is_measure(lctx.alloc)) {
for (int i = 0; i < n_tokens; ++i) {
((int32_t *) inp_positions->data)[i] = batch.pos[i];
}
}
ggml_set_name(inp_positions, "inp_positions");
position = ggml_get_rows(ctx0, model.pos_embeddings, inp_positions);
}
// KQ_scale
struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
ggml_set_name(KQ_scale, "1/sqrt(n_embd_head)");
ggml_allocr_alloc(lctx.alloc, KQ_scale);
if (!ggml_allocr_is_measure(lctx.alloc)) {
ggml_set_f32(KQ_scale, 1.0f/sqrtf(float(n_embd)/n_head));
}
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1);
ggml_set_name(KQ_mask, "KQ_mask");
ggml_allocr_alloc(lctx.alloc, KQ_mask);
if (!ggml_allocr_is_measure(lctx.alloc)) {
float * data = (float *) KQ_mask->data;
memset(data, 0, ggml_nbytes(KQ_mask));
for (int h = 0; h < 1; ++h) {
for (int j = 0; j < n_tokens; ++j) {
const llama_pos pos = batch.pos[j];
const llama_seq_id seq_id = batch.seq_id[j];
for (int i = 0; i < n_kv; ++i) {
if (!kv_self.cells[i].has_seq_id(seq_id) || kv_self.cells[i].pos > pos) {
data[h*(n_kv*n_tokens) + j*n_kv + i] = -INFINITY;
}
}
}
}
}
inpL = ggml_add(ctx0, token, position);
ggml_set_name(inpL, "inpL");
for (int il = 0; il < n_layer; ++il) {
{
// Norm
cur = ggml_norm(ctx0, inpL, norm_eps);
cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].attn_norm), model.layers[il].attn_norm_b);
}
{
// Self Attention
cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wqkv, cur), model.layers[il].bqkv);
struct ggml_tensor * tmpq = ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*n_embd);
struct ggml_tensor * tmpk = ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], sizeof(float)*n_embd);
struct ggml_tensor * tmpv = ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], sizeof(float)*(n_embd + n_embd_gqa));
struct ggml_tensor * Qcur = tmpq;
struct ggml_tensor * Kcur = tmpk;
{
struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, ggml_cont(ctx0, tmpv), n_embd_gqa, n_tokens));
ggml_set_name(Vcur, "Vcur");
struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, n_tokens*n_embd_gqa, (ggml_element_size(kv_self.k)*n_embd_gqa)*(il*n_ctx + kv_head));
ggml_set_name(k, "k");
struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, n_tokens, n_embd_gqa,
( n_ctx)*ggml_element_size(kv_self.v),
(il*n_ctx)*ggml_element_size(kv_self.v)*n_embd_gqa + kv_head*ggml_element_size(kv_self.v));
ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k));
ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, v));
}
struct ggml_tensor * Q =
ggml_permute(ctx0,
ggml_cpy(ctx0,
Qcur,
ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_embd_head, n_head, n_tokens)),
0, 2, 1, 3);
ggml_set_name(Q, "Q");
struct ggml_tensor * K =
ggml_view_3d(ctx0, kv_self.k,
n_embd_head, n_kv, n_head_kv,
ggml_element_size(kv_self.k)*n_embd_gqa,
ggml_element_size(kv_self.k)*n_embd_head,
ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il);
ggml_set_name(K, "K");
// K * Q
struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
ggml_set_name(KQ, "KQ");
// KQ_scaled = KQ / sqrt(n_embd_head)
// KQ_scaled shape [n_past + n_tokens, n_tokens, n_head, 1]
struct ggml_tensor * KQ_scaled = ggml_scale_inplace(ctx0, KQ, KQ_scale);
ggml_set_name(KQ_scaled, "KQ_scaled");
// KQ_masked = mask_past(KQ_scaled)
struct ggml_tensor * KQ_masked = ggml_add(ctx0, KQ_scaled, KQ_mask);
ggml_set_name(KQ_masked, "KQ_masked");
// KQ = soft_max(KQ_masked)
struct ggml_tensor * KQ_soft_max = ggml_soft_max_inplace(ctx0, KQ_masked);
ggml_set_name(KQ_soft_max, "KQ_soft_max");
// split cached V into n_head heads
struct ggml_tensor * V =
ggml_view_3d(ctx0, kv_self.v,
n_kv, n_embd_head, n_head_kv,
ggml_element_size(kv_self.v)*n_ctx,
ggml_element_size(kv_self.v)*n_ctx*n_embd_head,
ggml_element_size(kv_self.v)*n_ctx*n_embd_gqa*il);
ggml_set_name(V, "V");
struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max);
ggml_set_name(KQV, "KQV");
// KQV_merged = KQV.permute(0, 2, 1, 3)
struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
ggml_set_name(KQV_merged, "KQV_merged");
// cur = KQV_merged.contiguous().view(n_embd, n_tokens)
cur = ggml_cont_2d(ctx0, KQV_merged, n_embd, n_tokens);
ggml_set_name(cur, "KQV_merged_contiguous");
}
// Projection
cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wo, cur), model.layers[il].bo);
// Add the input
cur = ggml_add(ctx0, cur, inpL);
struct ggml_tensor * inpFF = cur;
// FF
{
// Norm
{
cur = ggml_norm(ctx0, inpFF, norm_eps);
cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].ffn_norm), model.layers[il].ffn_norm_b);
}
cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].w3, cur), model.layers[il].b3);
// GELU activation
cur = ggml_gelu(ctx0, cur);
// Projection
cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].w2, cur), model.layers[il].b2);
}
inpL = ggml_add(ctx0, cur, inpFF);
}
// Output Norm
{
cur = ggml_norm(ctx0, inpL, norm_eps);
cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.output_norm), model.output_norm_b);
}
ggml_set_name(cur, "result_norm");
cur = ggml_mul_mat(ctx0, model.output, cur);
ggml_set_name(cur, "result_output");
ggml_build_forward_expand(gf, cur);
ggml_free(ctx0);
return gf;
}
static struct ggml_cgraph * llama_build_graph(
llama_context & lctx,
const llama_batch & batch) {
const auto & model = lctx.model;
struct ggml_cgraph * result = NULL;
switch (model.arch) {
case LLM_ARCH_LLAMA:
{
result = llm_build_llama(lctx, batch);
} break;
case LLM_ARCH_BAICHUAN:
{
result = llm_build_baichaun(lctx, batch);
} break;
case LLM_ARCH_FALCON:
{
result = llm_build_falcon(lctx, batch);
} break;
case LLM_ARCH_STARCODER:
{
result = llm_build_starcoder(lctx, batch);
} break;
default:
GGML_ASSERT(false);
};
return result;
}
// decode a batch of tokens by evaluating the transformer
//
// - lctx: llama context
// - batch: batch to evaluate
// - n_threads: number of threads to use
//
// return 0 on success
// return positive int on warning
// return negative int on error
//
static int llama_decode_internal(
llama_context & lctx,
llama_batch batch,
int n_threads) {
const uint32_t n_tokens = batch.n_tokens;
if (n_tokens == 0) {
LLAMA_LOG_ERROR("%s: n_tokens == 0", __func__);
return -1;
}
GGML_ASSERT((!batch.token && batch.embd) || (batch.token && !batch.embd)); // NOLINT
const int64_t t_start_us = ggml_time_us();
#ifdef GGML_USE_MPI
// TODO: needs fix after #3228
GGML_ASSERT(false && "not implemented");
//ggml_mpi_eval_init(lctx.ctx_mpi, &n_tokens, &n_past, &n_threads);
#endif
GGML_ASSERT(n_threads > 0);
const auto & model = lctx.model;
const auto & hparams = model.hparams;
auto & kv_self = lctx.kv_self;
GGML_ASSERT(!!kv_self.ctx);
const int64_t n_embd = hparams.n_embd;
const int64_t n_vocab = hparams.n_vocab;
// helpers for smoother batch API transistion
// after deprecating the llama_eval calls, these will be removed
std::vector<llama_pos> pos;
std::vector<llama_seq_id> seq_id;
if (batch.pos == nullptr) {
pos.resize(n_tokens);
for (uint32_t i = 0; i < n_tokens; i++) {
pos[i] = batch.all_pos_0 + i*batch.all_pos_1;
}
batch.pos = pos.data();
}
if (batch.seq_id == nullptr) {
seq_id.resize(n_tokens);
for (uint32_t i = 0; i < n_tokens; i++) {
seq_id[i] = batch.all_seq_id;
}
batch.seq_id = seq_id.data();
}
// we always start to search for a free slot from the start of the cache
// TODO: better strategies can be implemented
kv_self.head = 0;
if (!llama_kv_cache_find_slot(kv_self, batch)) {
return 1;
}
// a heuristic, to avoid attending the full cache if it is not yet utilized
// after enough generations, the benefit from this heuristic disappears
// if we start defragmenting the cache, the benefit from this will be more important
//kv_self.n = std::max(32, GGML_PAD(llama_kv_cache_cell_max(kv_self), 32)); // TODO: this might be better for CUDA?
kv_self.n = std::max(32, llama_kv_cache_cell_max(kv_self));
//printf("kv_self.n = %d\n", kv_self.n);
ggml_allocr_reset(lctx.alloc);
ggml_cgraph * gf = llama_build_graph(lctx, batch);
ggml_allocr_alloc_graph(lctx.alloc, gf);
#ifdef GGML_USE_CUBLAS
for (int i = 0; i < gf->n_leafs; i++) {
ggml_tensor * node = gf->leafs[i];
if (node->backend == GGML_BACKEND_GPU && node->extra == NULL) {
ggml_cuda_assign_scratch_offset(node, (char*)node->data - (char *) lctx.buf_alloc.data);
ggml_cuda_copy_to_device(node);
}
}
for (int i = 0; i < gf->n_nodes; i++) {
ggml_tensor * node = gf->nodes[i];
if (node->backend == GGML_BACKEND_GPU && node->extra == NULL) {
ggml_cuda_assign_scratch_offset(node, (char*)node->data - (char *) lctx.buf_alloc.data);
}
}
#endif
// LLAMA_LOG_INFO("graph build time: %.3f ms (%d nodes, %d leafs)\n", (ggml_time_us() - t_start_us)/1000.0, gf->n_nodes, gf->n_leafs);
// for big prompts, if BLAS is enabled, it is better to use only one thread
// otherwise, the threads are spin-lock waiting for the BLAS calls and are degrading the performance
// TODO: this is mostly important for Apple Silicon where CBLAS is still performing very well
// we still need some threads to process all non-mul_mat ops, but not too much to avoid interfering
// with the BLAS calls. need a better solution
if (n_tokens >= 32 && ggml_cpu_has_blas() && !ggml_cpu_has_gpublas()) {
n_threads = std::min(4, n_threads);
}
struct ggml_tensor * res = gf->nodes[gf->n_nodes - 1];
struct ggml_tensor * embeddings = gf->nodes[gf->n_nodes - 2];
GGML_ASSERT(strcmp(res->name, "result_output") == 0);
GGML_ASSERT(strcmp(embeddings->name, "result_norm") == 0);
#if GGML_USE_MPI
const int64_t n_layer = hparams.n_layer;
ggml_mpi_graph_compute_pre(lctx.ctx_mpi, gf, n_layer);
#endif
#ifdef GGML_USE_METAL
if (lctx.ctx_metal) {
ggml_metal_set_n_cb (lctx.ctx_metal, n_threads);
ggml_metal_graph_compute(lctx.ctx_metal, gf);
} else {
ggml_graph_compute_helper(lctx.work_buffer, gf, n_threads);
}
#else
ggml_graph_compute_helper(lctx.work_buffer, gf, n_threads);
#endif
#if GGML_USE_MPI
ggml_mpi_graph_compute_post(lctx.ctx_mpi, gf, n_layer);
#endif
// update the kv ring buffer
lctx.kv_self.head += n_tokens;
lctx.kv_self.has_shift = false;
#ifdef GGML_PERF
// print timing information per ggml operation (for debugging purposes)
// requires GGML_PERF to be defined
ggml_graph_print(gf);
#endif
// plot the computation graph in dot format (for debugging purposes)
//if (n_past%100 == 0) {
// ggml_graph_dump_dot(gf, NULL, "llama.dot");
//}
// extract logits
{
auto & logits_out = lctx.logits;
if (batch.logits) {
logits_out.resize(n_vocab * n_tokens);
for (uint32_t i = 0; i < n_tokens; i++) {
if (batch.logits[i] == 0) {
continue;
}
memcpy(logits_out.data() + (n_vocab*i), (float *) ggml_get_data(res) + (n_vocab*i), sizeof(float)*n_vocab);
}
} else if (lctx.logits_all) {
logits_out.resize(n_vocab * n_tokens);
memcpy(logits_out.data(), (float *) ggml_get_data(res), sizeof(float)*n_vocab*n_tokens);
} else {
logits_out.resize(n_vocab);
memcpy(logits_out.data(), (float *) ggml_get_data(res) + (n_vocab*(n_tokens - 1)), sizeof(float)*n_vocab);
}
}
// extract embeddings
if (!lctx.embedding.empty()) {
auto & embedding_out = lctx.embedding;
embedding_out.resize(n_embd);
memcpy(embedding_out.data(), (float *) ggml_get_data(embeddings) + (n_embd*(n_tokens - 1)), sizeof(float)*n_embd);
}
// measure the performance only for the single-token evals
if (n_tokens == 1) {
lctx.t_eval_us += ggml_time_us() - t_start_us;
lctx.n_eval++;
}
else if (n_tokens > 1) {
lctx.t_p_eval_us += ggml_time_us() - t_start_us;
lctx.n_p_eval += n_tokens;
}
// get a more accurate load time, upon first eval
// TODO: fix this
if (!lctx.has_evaluated_once) {
lctx.t_load_us = ggml_time_us() - lctx.t_start_us;
lctx.has_evaluated_once = true;
}
return 0;
}
//
// tokenizer
//
static enum llama_vocab_type llama_vocab_get_type(const llama_vocab & vocab) {
return vocab.type;
}
static bool llama_is_normal_token(const llama_vocab & vocab, llama_token id) {
return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_NORMAL;
}
static bool llama_is_unknown_token(const llama_vocab & vocab, llama_token id) {
return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_UNKNOWN;
}
static bool llama_is_control_token(const llama_vocab & vocab, llama_token id) {
return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_CONTROL;
}
static bool llama_is_byte_token(const llama_vocab & vocab, llama_token id) {
return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_BYTE;
}
static uint8_t llama_token_to_byte(const llama_vocab & vocab, llama_token id) {
GGML_ASSERT(llama_is_byte_token(vocab, id));
const auto& token_data = vocab.id_to_token.at(id);
auto buf = token_data.text.substr(3, 2);
return strtol(buf.c_str(), NULL, 16);
}
static llama_token llama_byte_to_token(const llama_vocab & vocab, uint8_t ch) {
char buf[7];
int result = snprintf(buf, sizeof(buf), "<0x%02X>", ch);
GGML_ASSERT(0 <= result && result < 7);
return vocab.token_to_id.at(buf);
}
static void llama_escape_whitespace(std::string & text) {
replace_all(text, " ", "\xe2\x96\x81");
}
static void llama_unescape_whitespace(std::string & word) {
replace_all(word, "\xe2\x96\x81", " ");
}
struct llm_symbol {
using index = int;
index prev;
index next;
const char * text;
size_t n;
};
static_assert(std::is_trivially_copyable<llm_symbol>::value, "llm_symbol is not trivially copyable");
// SPM tokenizer
// original implementation:
// https://github.com/ggerganov/llama.cpp/commit/074bea2eb1f1349a0118239c4152914aecaa1be4
struct llm_bigram_spm {
struct comparator {
bool operator()(llm_bigram_spm & l, llm_bigram_spm & r) {
return (l.score < r.score) || (l.score == r.score && l.left > r.left);
}
};
using queue_storage = std::vector<llm_bigram_spm>;
using queue = std::priority_queue<llm_bigram_spm, queue_storage, comparator>;
llm_symbol::index left;
llm_symbol::index right;
float score;
size_t size;
};
struct llm_tokenizer_spm {
llm_tokenizer_spm(const llama_vocab & vocab): vocab(vocab) {}
void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
// split string into utf8 chars
int index = 0;
size_t offs = 0;
while (offs < text.size()) {
llm_symbol sym;
size_t len = utf8_len(text[offs]);
sym.text = text.c_str() + offs;
sym.n = std::min(len, text.size() - offs);
offs += sym.n;
sym.prev = index - 1;
sym.next = offs == text.size() ? -1 : index + 1;
index++;
symbols.emplace_back(sym);
}
// seed the work queue with all possible 2-character tokens.
for (size_t i = 1; i < symbols.size(); ++i) {
try_add_bigram(i - 1, i);
}
// keep substituting the highest frequency pairs for as long as we can.
while (!work_queue.empty()) {
auto bigram = work_queue.top();
work_queue.pop();
auto & left_sym = symbols[bigram.left];
auto & right_sym = symbols[bigram.right];
// if one of the symbols already got merged, skip it.
if (left_sym.n == 0 || right_sym.n == 0 ||
left_sym.n + right_sym.n != bigram.size) {
continue;
}
// merge the right sym into the left one
left_sym.n += right_sym.n;
right_sym.n = 0;
//LLAMA_LOG_INFO("left = '%*s' size = %zu\n", (int) left_sym.n, left_sym.text, bigram.size);
// remove the right sym from the chain
left_sym.next = right_sym.next;
if (right_sym.next >= 0) {
symbols[right_sym.next].prev = bigram.left;
}
// find more substitutions
try_add_bigram(left_sym.prev, bigram.left);
try_add_bigram(bigram.left, left_sym.next);
}
for (int i = 0; i != -1; i = symbols[i].next) {
auto & symbol = symbols[i];
resegment(symbol, output);
}
}
private:
void resegment(llm_symbol & symbol, std::vector<llama_vocab::id> & output) {
auto text = std::string(symbol.text, symbol.n);
auto token = vocab.token_to_id.find(text);
// Do we need to support is_unused?
if (token != vocab.token_to_id.end()) {
output.push_back((*token).second);
return;
}
const auto p = rev_merge.find(text);
if (p == rev_merge.end()) {
// output any symbols that did not form tokens as bytes.
for (int j = 0; j < (int)symbol.n; ++j) {
llama_vocab::id token_id = llama_byte_to_token(vocab, symbol.text[j]);
output.push_back(token_id);
}
return;
}
resegment(symbols[p->second.first], output);
resegment(symbols[p->second.second], output);
}
void try_add_bigram(int left, int right) {
if (left == -1 || right == -1) {
return;
}
const std::string text = std::string(symbols[left].text, symbols[left].n + symbols[right].n);
auto token = vocab.token_to_id.find(text);
if (token == vocab.token_to_id.end()) {
return;
}
if (static_cast<size_t>((*token).second) >= vocab.id_to_token.size()) {
return;
}
const auto & tok_data = vocab.id_to_token[(*token).second];
llm_bigram_spm bigram;
bigram.left = left;
bigram.right = right;
bigram.score = tok_data.score;
bigram.size = text.size();
work_queue.push(bigram);
// Do we need to support is_unused?
rev_merge[text] = std::make_pair(left, right);
}
const llama_vocab & vocab;
std::vector<llm_symbol> symbols;
llm_bigram_spm::queue work_queue;
std::map<std::string, std::pair<int, int>> rev_merge;
};
// BPE tokenizer
// adapted from https://github.com/cmp-nct/ggllm.cpp [MIT License]
// tried to simplify unicode stuff, so most likely does not work 100% correctly!
// TODO: there are a lot of common parts between spm and bpe tokenizers, should be refactored and reused
struct llm_bigram_bpe {
struct comparator {
bool operator()(const llm_bigram_bpe & l, const llm_bigram_bpe & r) const {
return l.rank > r.rank || (l.rank == r.rank && l.left > r.left);
}
};
using queue_storage = std::vector<llm_bigram_bpe>;
using queue = std::priority_queue<llm_bigram_bpe, queue_storage, comparator>;
llm_symbol::index left;
llm_symbol::index right;
std::string text;
int rank;
size_t size;
};
struct llm_tokenizer_bpe {
llm_tokenizer_bpe(const llama_vocab & vocab): vocab(vocab) {}
void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
int final_prev_index = -1;
auto word_collection = bpe_gpt2_preprocess(text);
symbols_final.clear();
for (auto & word : word_collection) {
work_queue = llm_bigram_bpe::queue();
symbols.clear();
int index = 0;
size_t offset = 0;
while (offset < word.size()) {
llm_symbol sym;
size_t char_len = std::min(word.size() - offset, (size_t) ::utf8_len(word[offset]));
sym.text = word.c_str() + offset;
sym.n = 1;
sym.n = char_len;
offset += sym.n;
sym.prev = index - 1;
sym.next = offset == word.size() ? -1 : index + 1;
index++;
symbols.emplace_back(sym);
}
for (size_t i = 1; i < symbols.size(); ++i) {
add_new_bigram(i - 1, i);
}
// build token(s)
while (!work_queue.empty()) {
auto bigram = work_queue.top();
work_queue.pop();
auto & left_symbol = symbols[bigram.left];
auto & right_symbol = symbols[bigram.right];
if (left_symbol.n == 0 || right_symbol.n == 0) {
continue;
}
std::string left_token = std::string(left_symbol.text, left_symbol.n);
std::string right_token = std::string(right_symbol.text, right_symbol.n);
if (left_token + right_token != bigram.text) {
continue; // Skip this bigram if it's outdated
}
// merge the right sym into the left one
left_symbol.n += right_symbol.n;
right_symbol.n = 0;
// remove the right sym from the chain
left_symbol.next = right_symbol.next;
if (right_symbol.next >= 0) {
symbols[right_symbol.next].prev = bigram.left;
}
add_new_bigram(left_symbol.prev, bigram.left); // left side of current symbol
add_new_bigram(bigram.left, left_symbol.next); // right side of current symbol
}
// add the fnished tokens to the final list keeping correct order for next and prev
for (auto & sym : symbols) {
if (sym.n > 0) {
sym.prev = final_prev_index;
sym.next = -1;
if (final_prev_index != -1) {
symbols_final[final_prev_index].next = symbols_final.size();
}
symbols_final.emplace_back(sym);
final_prev_index = symbols_final.size() - 1;
}
}
}
symbols = symbols_final;
if (!symbols.empty()) {
for (int i = 0; i != -1; i = symbols[i].next) {
auto & symbol = symbols[i];
if (symbol.n == 0) {
continue;
}
const std::string str = std::string(symbol.text, symbol.n);
const auto token = vocab.token_to_id.find(str);
if (token == vocab.token_to_id.end()) {
for (auto j = str.begin(); j != str.end(); ++j) {
std::string byte_str(1, *j);
auto token_multibyte = vocab.token_to_id.find(byte_str);
if (token_multibyte == vocab.token_to_id.end()) {
try {
llama_token token_byte = llama_byte_to_token(vocab, *j);
output.push_back(token_byte);
} catch (const std::out_of_range & err) {
fprintf(stderr,"ERROR: byte not found in vocab: '%s'\n", byte_str.c_str());
}
} else {
output.push_back((*token_multibyte).second);
}
}
} else {
output.push_back((*token).second);
}
}
}
}
private:
void add_new_bigram(int left, int right) {
if (left == -1 || right == -1) {
return;
}
std::string left_token = std::string(symbols[left].text, symbols[left].n);
std::string right_token = std::string(symbols[right].text, symbols[right].n);
int rank_found = -1;
rank_found = vocab.find_bpe_rank(left_token, right_token);
if (rank_found < 0) {
return;
}
llm_bigram_bpe bigram;
bigram.left = left;
bigram.right = right;
bigram.text = left_token + right_token;
bigram.size = left_token.size() + right_token.size();
bigram.rank = rank_found;
work_queue.push(bigram);
}
// probably not 100% correct
static std::vector<std::string> bpe_gpt2_preprocess(const std::string & text) {
std::vector<std::string> words;
// ref: https://github.com/openai/gpt-2/blob/a74da5d99abaaba920de8131d64da2862a8f213b/src/encoder.py#L53
const std::string pattern = R"('s|'t|'re|'ve|'m|'ll|'d| ?[[:alpha:]]+| ?[[:digit:]]+| ?[^\s[:alpha:][:digit:]]+|\s+(?!\S)|\s+)";
const std::regex re(pattern);
auto words_begin = std::sregex_iterator(text.begin(), text.end(), re);
auto words_end = std::sregex_iterator();
auto n_words = std::distance(words_begin, words_end);
words.reserve(n_words);
for (auto it = words_begin; it != words_end; ++it) {
words.push_back(it->str());
}
return words;
}
const llama_vocab & vocab;
std::vector<llm_symbol> symbols;
std::vector<llm_symbol> symbols_final;
llm_bigram_bpe::queue work_queue;
};
static std::vector<llama_vocab::id> llama_tokenize_internal(const llama_vocab & vocab, std::string raw_text, bool bos) {
std::vector<llama_vocab::id> output;
// OG tokenizer behavior:
//
// tokenizer.encode('', add_bos=True) returns [1]
// tokenizer.encode('', add_bos=False) returns []
if (bos && vocab.special_bos_id != -1) {
output.push_back(vocab.special_bos_id);
}
if (raw_text.empty()) {
return output;
}
switch (vocab.type) {
case LLAMA_VOCAB_TYPE_SPM:
{
// without adding this leading whitespace, we do not get the same results as the original tokenizer
raw_text = " " + raw_text;
llm_tokenizer_spm tokenizer(vocab);
llama_escape_whitespace(raw_text);
tokenizer.tokenize(raw_text, output);
} break;
case LLAMA_VOCAB_TYPE_BPE:
{
llm_tokenizer_bpe tokenizer(vocab);
tokenizer.tokenize(raw_text, output);
} break;
};
return output;
}
//
// grammar - internal
//
struct llama_partial_utf8 {
uint32_t value; // bit value so far (unshifted)
int n_remain; // num bytes remaining; -1 indicates invalid sequence
};
struct llama_grammar {
const std::vector<std::vector<llama_grammar_element>> rules;
std::vector<std::vector<const llama_grammar_element *>> stacks;
// buffer for partially generated UTF-8 sequence from accepted tokens
llama_partial_utf8 partial_utf8;
};
struct llama_grammar_candidate {
size_t index;
const uint32_t * code_points;
llama_partial_utf8 partial_utf8;
};
// Decodes a UTF-8 string which may end in an incomplete sequence. Adds a terminating 0 for use as
// pointer. If an invalid sequence is encountered, returns `llama_partial_utf8.n_remain == -1`.
static std::pair<std::vector<uint32_t>, llama_partial_utf8> decode_utf8(
const char * src,
llama_partial_utf8 partial_start) {
static const int lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 2, 2, 3, 4 };
const char * pos = src;
std::vector<uint32_t> code_points;
uint32_t value = partial_start.value;
int n_remain = partial_start.n_remain;
// continue previous decode, if applicable
while (*pos != 0 && n_remain > 0) {
uint8_t next_byte = static_cast<uint8_t>(*pos);
if ((next_byte >> 6) != 2) {
// invalid sequence, abort
code_points.push_back(0);
return std::make_pair(std::move(code_points), llama_partial_utf8{ 0, -1 });
}
value = (value << 6) + (next_byte & 0x3F);
++pos;
--n_remain;
}
if (partial_start.n_remain > 0 && n_remain == 0) {
code_points.push_back(value);
}
// decode any subsequent utf-8 sequences, which may end in an incomplete one
while (*pos != 0) {
uint8_t first_byte = static_cast<uint8_t>(*pos);
uint8_t highbits = first_byte >> 4;
n_remain = lookup[highbits] - 1;
if (n_remain < 0) {
// invalid sequence, abort
code_points.clear();
code_points.push_back(0);
return std::make_pair(std::move(code_points), llama_partial_utf8{ 0, n_remain });
}
uint8_t mask = (1 << (7 - n_remain)) - 1;
value = first_byte & mask;
++pos;
while (*pos != 0 && n_remain > 0) {
value = (value << 6) + (static_cast<uint8_t>(*pos) & 0x3F);
++pos;
--n_remain;
}
if (n_remain == 0) {
code_points.push_back(value);
}
}
code_points.push_back(0);
return std::make_pair(std::move(code_points), llama_partial_utf8{ value, n_remain });
}
// returns true iff pos points to the end of one of the definitions of a rule
static bool llama_grammar_is_end_of_sequence(const llama_grammar_element * pos) {
switch (pos->type) {
case LLAMA_GRETYPE_END: return true; // NOLINT
case LLAMA_GRETYPE_ALT: return true; // NOLINT
default: return false;
}
}
// returns true iff chr satisfies the char range at pos (regular or inverse range)
// asserts that pos is pointing to a char range element
static std::pair<bool, const llama_grammar_element *> llama_grammar_match_char(
const llama_grammar_element * pos,
const uint32_t chr) {
bool found = false;
bool is_positive_char = pos->type == LLAMA_GRETYPE_CHAR;
GGML_ASSERT(is_positive_char || pos->type == LLAMA_GRETYPE_CHAR_NOT); // NOLINT
do {
if (pos[1].type == LLAMA_GRETYPE_CHAR_RNG_UPPER) {
// inclusive range, e.g. [a-z]
found = found || (pos->value <= chr && chr <= pos[1].value);
pos += 2;
} else {
// exact char match, e.g. [a] or "a"
found = found || pos->value == chr;
pos += 1;
}
} while (pos->type == LLAMA_GRETYPE_CHAR_ALT);
return std::make_pair(found == is_positive_char, pos);
}
// returns true iff some continuation of the given partial UTF-8 sequence could satisfy the char
// range at pos (regular or inverse range)
// asserts that pos is pointing to a char range element
static bool llama_grammar_match_partial_char(
const llama_grammar_element * pos,
const llama_partial_utf8 partial_utf8) {
bool is_positive_char = pos->type == LLAMA_GRETYPE_CHAR;
GGML_ASSERT(is_positive_char || pos->type == LLAMA_GRETYPE_CHAR_NOT);
uint32_t partial_value = partial_utf8.value;
int n_remain = partial_utf8.n_remain;
// invalid sequence or 7-bit char split across 2 bytes (overlong)
if (n_remain < 0 || (n_remain == 1 && partial_value < 2)) {
return false;
}
// range of possible code points this partial UTF-8 sequence could complete to
uint32_t low = partial_value << (n_remain * 6);
uint32_t high = low | ((1 << (n_remain * 6)) - 1);
if (low == 0) {
if (n_remain == 2) {
low = 1 << 11;
} else if (n_remain == 3) {
low = 1 << 16;
}
}
do {
if (pos[1].type == LLAMA_GRETYPE_CHAR_RNG_UPPER) {
// inclusive range, e.g. [a-z]
if (pos->value <= high && low <= pos[1].value) {
return is_positive_char;
}
pos += 2;
} else {
// exact char match, e.g. [a] or "a"
if (low <= pos->value && pos->value <= high) {
return is_positive_char;
}
pos += 1;
}
} while (pos->type == LLAMA_GRETYPE_CHAR_ALT);
return !is_positive_char;
}
// transforms a grammar pushdown stack into N possible stacks, all ending
// at a character range (terminal element)
static void llama_grammar_advance_stack(
const std::vector<std::vector<llama_grammar_element>> & rules,
const std::vector<const llama_grammar_element *> & stack,
std::vector<std::vector<const llama_grammar_element *>> & new_stacks) {
if (stack.empty()) {
new_stacks.emplace_back(stack);
return;
}
const llama_grammar_element * pos = stack.back();
switch (pos->type) {
case LLAMA_GRETYPE_RULE_REF: {
const size_t rule_id = static_cast<size_t>(pos->value);
const llama_grammar_element * subpos = rules[rule_id].data();
do {
// init new stack without the top (pos)
std::vector<const llama_grammar_element *> new_stack(stack.begin(), stack.end() - 1);
if (!llama_grammar_is_end_of_sequence(pos + 1)) {
// if this rule ref is followed by another element, add that to stack
new_stack.push_back(pos + 1);
}
if (!llama_grammar_is_end_of_sequence(subpos)) {
// if alternate is nonempty, add to stack
new_stack.push_back(subpos);
}
llama_grammar_advance_stack(rules, new_stack, new_stacks);
while (!llama_grammar_is_end_of_sequence(subpos)) {
// scan to end of alternate def
subpos++;
}
if (subpos->type == LLAMA_GRETYPE_ALT) {
// there's another alternate def of this rule to process
subpos++;
} else {
break;
}
} while (true);
break;
}
case LLAMA_GRETYPE_CHAR:
case LLAMA_GRETYPE_CHAR_NOT:
new_stacks.emplace_back(stack);
break;
default:
// end of alternate (LLAMA_GRETYPE_END, LLAMA_GRETYPE_ALT) or middle of char range
// (LLAMA_GRETYPE_CHAR_ALT, LLAMA_GRETYPE_CHAR_RNG_UPPER); stack should never be left on
// those
GGML_ASSERT(false);
}
}
// takes a set of possible pushdown stacks on a grammar, which are required to
// be positioned at a character range (see `llama_grammar_advance_stack`), and
// produces the N possible stacks if the given char is accepted at those
// positions
static std::vector<std::vector<const llama_grammar_element *>> llama_grammar_accept(
const std::vector<std::vector<llama_grammar_element>> & rules,
const std::vector<std::vector<const llama_grammar_element *>> & stacks,
const uint32_t chr) {
std::vector<std::vector<const llama_grammar_element *>> new_stacks;
for (const auto & stack : stacks) {
if (stack.empty()) {
continue;
}
auto match = llama_grammar_match_char(stack.back(), chr);
if (match.first) {
const llama_grammar_element * pos = match.second;
// update top of stack to next element, if any
std::vector<const llama_grammar_element *> new_stack(stack.begin(), stack.end() - 1);
if (!llama_grammar_is_end_of_sequence(pos)) {
new_stack.push_back(pos);
}
llama_grammar_advance_stack(rules, new_stack, new_stacks);
}
}
return new_stacks;
}
static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates(
const std::vector<std::vector<llama_grammar_element>> & rules,
const std::vector<std::vector<const llama_grammar_element *>> & stacks,
const std::vector<llama_grammar_candidate> & candidates);
static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates_for_stack(
const std::vector<std::vector<llama_grammar_element>> & rules,
const std::vector<const llama_grammar_element *> & stack,
const std::vector<llama_grammar_candidate> & candidates) {
std::vector<llama_grammar_candidate> rejects;
if (stack.empty()) {
for (auto tok : candidates) {
if (*tok.code_points != 0 || tok.partial_utf8.n_remain != 0) {
rejects.push_back(tok);
}
}
return rejects;
}
const llama_grammar_element * stack_pos = stack.back();
std::vector<llama_grammar_candidate> next_candidates;
for (auto tok : candidates) {
if (*tok.code_points == 0) {
// reached end of full codepoints in token, reject iff it ended in a partial sequence
// that cannot satisfy this position in grammar
if (tok.partial_utf8.n_remain != 0 &&
!llama_grammar_match_partial_char(stack_pos, tok.partial_utf8)) {
rejects.push_back(tok);
}
} else if (llama_grammar_match_char(stack_pos, *tok.code_points).first) {
next_candidates.push_back({ tok.index, tok.code_points + 1, tok.partial_utf8 });
} else {
rejects.push_back(tok);
}
}
const auto * stack_pos_after = llama_grammar_match_char(stack_pos, 0).second;
// update top of stack to next element, if any
std::vector<const llama_grammar_element *> stack_after(stack.begin(), stack.end() - 1);
if (!llama_grammar_is_end_of_sequence(stack_pos_after)) {
stack_after.push_back(stack_pos_after);
}
std::vector<std::vector<const llama_grammar_element *>> next_stacks;
llama_grammar_advance_stack(rules, stack_after, next_stacks);
auto next_rejects = llama_grammar_reject_candidates(rules, next_stacks, next_candidates);
for (auto tok : next_rejects) {
rejects.push_back({ tok.index, tok.code_points - 1, tok.partial_utf8 });
}
return rejects;
}
static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates(
const std::vector<std::vector<llama_grammar_element>> & rules,
const std::vector<std::vector<const llama_grammar_element *>> & stacks,
const std::vector<llama_grammar_candidate> & candidates) {
GGML_ASSERT(!stacks.empty()); // REVIEW
if (candidates.empty()) {
return std::vector<llama_grammar_candidate>();
}
auto rejects = llama_grammar_reject_candidates_for_stack(rules, stacks.front(), candidates);
for (size_t i = 1, size = stacks.size(); i < size; ++i) {
rejects = llama_grammar_reject_candidates_for_stack(rules, stacks[i], rejects);
}
return rejects;
}
//
// grammar - external
//
struct llama_grammar * llama_grammar_init(
const llama_grammar_element ** rules,
size_t n_rules,
size_t start_rule_index) {
const llama_grammar_element * pos;
// copy rule definitions into vectors
std::vector<std::vector<llama_grammar_element>> vec_rules(n_rules);
for (size_t i = 0; i < n_rules; i++) {
for (pos = rules[i]; pos->type != LLAMA_GRETYPE_END; pos++) {
vec_rules[i].push_back(*pos);
}
vec_rules[i].push_back({LLAMA_GRETYPE_END, 0});
}
// loop over alternates of start rule to build initial stacks
std::vector<std::vector<const llama_grammar_element *>> stacks;
pos = rules[start_rule_index];
do {
std::vector<const llama_grammar_element *> stack;
if (!llama_grammar_is_end_of_sequence(pos)) {
// if alternate is nonempty, add to stack
stack.push_back(pos);
}
llama_grammar_advance_stack(vec_rules, stack, stacks);
while (!llama_grammar_is_end_of_sequence(pos)) {
// scan to end of alternate def
pos++;
}
if (pos->type == LLAMA_GRETYPE_ALT) {
// there's another alternate def of this rule to process
pos++;
} else {
break;
}
} while (true);
return new llama_grammar{ std::move(vec_rules), std::move(stacks), {} };
}
void llama_grammar_free(struct llama_grammar * grammar) {
delete grammar;
}
struct llama_grammar * llama_grammar_copy(const struct llama_grammar * grammar) {
llama_grammar * result = new llama_grammar{ grammar->rules, grammar->stacks, grammar->partial_utf8 };
// redirect elements in stacks to point to new rules
for (size_t is = 0; is < result->stacks.size(); is++) {
for (size_t ie = 0; ie < result->stacks[is].size(); ie++) {
for (size_t ir0 = 0; ir0 < grammar->rules.size(); ir0++) {
for (size_t ir1 = 0; ir1 < grammar->rules[ir0].size(); ir1++) {
if (grammar->stacks[is][ie] == &grammar->rules[ir0][ir1]) {
result->stacks[is][ie] = &result->rules[ir0][ir1];
}
}
}
}
}
return result;
}
//
// sampling
//
void llama_set_rng_seed(struct llama_context * ctx, uint32_t seed) {
if (seed == LLAMA_DEFAULT_SEED) {
seed = time(NULL);
}
ctx->rng.seed(seed);
}
void llama_sample_softmax(struct llama_context * ctx, llama_token_data_array * candidates) {
GGML_ASSERT(candidates->size > 0);
const int64_t t_start_sample_us = ggml_time_us();
// Sort the logits in descending order
if (!candidates->sorted) {
std::sort(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
return a.logit > b.logit;
});
candidates->sorted = true;
}
float max_l = candidates->data[0].logit;
float cum_sum = 0.0f;
for (size_t i = 0; i < candidates->size; ++i) {
float p = expf(candidates->data[i].logit - max_l);
candidates->data[i].p = p;
cum_sum += p;
}
for (size_t i = 0; i < candidates->size; ++i) {
candidates->data[i].p /= cum_sum;
}
if (ctx) {
ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
}
}
void llama_sample_top_k(struct llama_context * ctx, llama_token_data_array * candidates, int k, size_t min_keep) {
const int64_t t_start_sample_us = ggml_time_us();
k = std::max(k, (int) min_keep);
k = std::min(k, (int) candidates->size);
// Sort scores in descending order
if (!candidates->sorted) {
auto comp = [](const llama_token_data & a, const llama_token_data & b) {
return a.logit > b.logit;
};
if (k == (int) candidates->size) {
std::sort(candidates->data, candidates->data + candidates->size, comp);
} else {
std::partial_sort(candidates->data, candidates->data + k, candidates->data + candidates->size, comp);
}
candidates->sorted = true;
}
candidates->size = k;
if (ctx) {
ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
}
}
void llama_sample_top_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
if (p >= 1.0f) {
return;
}
llama_sample_softmax(ctx, candidates);
const int64_t t_start_sample_us = ggml_time_us();
// Compute the cumulative probabilities
float cum_sum = 0.0f;
size_t last_idx = candidates->size;
for (size_t i = 0; i < candidates->size; ++i) {
cum_sum += candidates->data[i].p;
// Check if the running sum is at least p or if we have kept at least min_keep tokens
// we set the last index to i+1 to indicate that the current iterate should be included in the set
if (cum_sum >= p && i + 1 >= min_keep) {
last_idx = i + 1;
break;
}
}
// Resize the output vector to keep only the top-p tokens
candidates->size = last_idx;
if (ctx) {
ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
}
}
void llama_sample_tail_free(struct llama_context * ctx, llama_token_data_array * candidates, float z, size_t min_keep) {
if (z >= 1.0f || candidates->size <= 2) {
return;
}
llama_sample_softmax(nullptr, candidates);
const int64_t t_start_sample_us = ggml_time_us();
// Compute the first and second derivatives
std::vector<float> first_derivatives(candidates->size - 1);
std::vector<float> second_derivatives(candidates->size - 2);
for (size_t i = 0; i < first_derivatives.size(); ++i) {
first_derivatives[i] = candidates->data[i].p - candidates->data[i + 1].p;
}
for (size_t i = 0; i < second_derivatives.size(); ++i) {
second_derivatives[i] = first_derivatives[i] - first_derivatives[i + 1];
}
// Calculate absolute value of second derivatives
for (size_t i = 0; i < second_derivatives.size(); ++i) {
second_derivatives[i] = std::abs(second_derivatives[i]);
}
// Normalize the second derivatives
{
const float second_derivatives_sum = std::accumulate(second_derivatives.begin(), second_derivatives.end(), 0.0f);
if (second_derivatives_sum > 1e-6f) {
for (float & value : second_derivatives) {
value /= second_derivatives_sum;
}
} else {
for (float & value : second_derivatives) {
value = 1.0f / second_derivatives.size();
}
}
}
float cum_sum = 0.0f;
size_t last_idx = candidates->size;
for (size_t i = 0; i < second_derivatives.size(); ++i) {
cum_sum += second_derivatives[i];
// Check if the running sum is greater than z or if we have kept at least min_keep tokens
if (cum_sum > z && i >= min_keep) {
last_idx = i;
break;
}
}
// Resize the output vector to keep only the tokens above the tail location
candidates->size = last_idx;
if (ctx) {
ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
}
}
void llama_sample_typical(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
// Reference implementation:
// https://github.com/huggingface/transformers/compare/main...cimeister:typical-sampling:typical-pr
if (p >= 1.0f) {
return;
}
// Compute the softmax of logits and calculate entropy
llama_sample_softmax(nullptr, candidates);
const int64_t t_start_sample_us = ggml_time_us();
float entropy = 0.0f;
for (size_t i = 0; i < candidates->size; ++i) {
entropy += -candidates->data[i].p * logf(candidates->data[i].p);
}
// Compute the absolute difference between negative log probability and entropy for each candidate
std::vector<float> shifted_scores;
for (size_t i = 0; i < candidates->size; ++i) {
float shifted_score = fabsf(-logf(candidates->data[i].p) - entropy);
shifted_scores.push_back(shifted_score);
}
// Sort tokens based on the shifted_scores and their corresponding indices
std::vector<size_t> indices(candidates->size);
std::iota(indices.begin(), indices.end(), 0);
std::sort(indices.begin(), indices.end(), [&](size_t a, size_t b) {
return shifted_scores[a] < shifted_scores[b];
});
// Compute the cumulative probabilities
float cum_sum = 0.0f;
size_t last_idx = indices.size();
for (size_t i = 0; i < indices.size(); ++i) {
size_t idx = indices[i];
cum_sum += candidates->data[idx].p;
// Check if the running sum is greater than typical or if we have kept at least min_keep tokens
if (cum_sum > p && i >= min_keep - 1) {
last_idx = i + 1;
break;
}
}
// Resize the output vector to keep only the locally typical tokens
std::vector<llama_token_data> new_candidates;
for (size_t i = 0; i < last_idx; ++i) {
size_t idx = indices[i];
new_candidates.push_back(candidates->data[idx]);
}
// Replace the data in candidates with the new_candidates data
std::copy(new_candidates.begin(), new_candidates.end(), candidates->data);
candidates->size = new_candidates.size();
if (ctx) {
ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
}
}
void llama_sample_temp(struct llama_context * ctx, llama_token_data_array * candidates_p, float temp) {
const int64_t t_start_sample_us = ggml_time_us();
for (size_t i = 0; i < candidates_p->size; ++i) {
candidates_p->data[i].logit /= temp;
}
if (ctx) {
ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
}
}
void llama_sample_temperature(struct llama_context * ctx, llama_token_data_array * candidates_p, float temp) {
llama_sample_temp(ctx, candidates_p, temp);
}
void llama_sample_repetition_penalty(struct llama_context * ctx, llama_token_data_array * candidates, const llama_token * last_tokens, size_t last_tokens_size, float penalty) {
if (last_tokens_size == 0 || penalty == 1.0f) {
return;
}
const int64_t t_start_sample_us = ggml_time_us();
for (size_t i = 0; i < candidates->size; ++i) {
const auto * token_iter = std::find(last_tokens, last_tokens + last_tokens_size, candidates->data[i].id);
if (token_iter == last_tokens + last_tokens_size) {
continue;
}
// The academic publication that described this technique actually just only divided, but that would cause tokens with negative logits to become more likely, which is obviously wrong.
// This is common fix for this problem, which is to multiply by the penalty instead of dividing.
if (candidates->data[i].logit <= 0) {
candidates->data[i].logit *= penalty;
} else {
candidates->data[i].logit /= penalty;
}
}
candidates->sorted = false;
if (ctx) {
ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
}
}
void llama_sample_frequency_and_presence_penalties(struct llama_context * ctx, llama_token_data_array * candidates, const llama_token * last_tokens_p, size_t last_tokens_size, float alpha_frequency, float alpha_presence) {
if (last_tokens_size == 0 || (alpha_frequency == 0.0f && alpha_presence == 0.0f)) {
return;
}
const int64_t t_start_sample_us = ggml_time_us();
// Create a frequency map to count occurrences of each token in last_tokens
std::unordered_map<llama_token, int> token_count;
for (size_t i = 0; i < last_tokens_size; ++i) {
token_count[last_tokens_p[i]]++;
}
// Apply frequency and presence penalties to the candidates
for (size_t i = 0; i < candidates->size; ++i) {
auto token_iter = token_count.find(candidates->data[i].id);
if (token_iter == token_count.end()) {
continue;
}
int count = token_iter->second;
candidates->data[i].logit -= float(count) * alpha_frequency + float(count > 0) * alpha_presence;
}
candidates->sorted = false;
if (ctx) {
ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
}
}
void llama_sample_grammar(struct llama_context * ctx, llama_token_data_array * candidates, const struct llama_grammar * grammar) {
GGML_ASSERT(ctx);
const int64_t t_start_sample_us = ggml_time_us();
bool allow_eos = false;
for (const auto & stack : grammar->stacks) {
if (stack.empty()) {
allow_eos = true;
break;
}
}
const llama_token eos = llama_token_eos(ctx);
std::vector<std::pair<std::vector<uint32_t>, llama_partial_utf8>> candidates_decoded;
std::vector<llama_grammar_candidate> candidates_grammar;
for (size_t i = 0; i < candidates->size; ++i) {
const llama_token id = candidates->data[i].id;
const std::string piece = llama_token_to_str(ctx, id);
if (id == eos) {
if (!allow_eos) {
candidates->data[i].logit = -INFINITY;
}
} else if (piece.empty() || piece[0] == 0) {
candidates->data[i].logit = -INFINITY;
} else {
candidates_decoded.push_back(decode_utf8(piece.c_str(), grammar->partial_utf8));
candidates_grammar.push_back({ i, candidates_decoded.back().first.data(), candidates_decoded.back().second });
}
}
const auto rejects = llama_grammar_reject_candidates(grammar->rules, grammar->stacks, candidates_grammar);
for (const auto & reject : rejects) {
candidates->data[reject.index].logit = -INFINITY;
}
ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
}
static void llama_log_softmax(float * array, size_t size) {
float max_l = *std::max_element(array, array + size);
float sum = 0.f;
for (size_t i = 0; i < size; ++i) {
float p = expf(array[i] - max_l);
sum += p;
array[i] = p;
}
for (size_t i = 0; i < size; ++i) {
array[i] = logf(array[i] / sum);
}
}
void llama_sample_classifier_free_guidance(
struct llama_context * ctx,
llama_token_data_array * candidates,
struct llama_context * guidance_ctx,
float scale) {
int64_t t_start_sample_us = ggml_time_us();
GGML_ASSERT(ctx);
auto n_vocab = llama_n_vocab(ctx);
GGML_ASSERT(n_vocab == (int)candidates->size);
GGML_ASSERT(!candidates->sorted);
std::vector<float> logits_base;
logits_base.reserve(candidates->size);
for (size_t i = 0; i < candidates->size; ++i) {
logits_base.push_back(candidates->data[i].logit);
}
llama_log_softmax(logits_base.data(), candidates->size);
float* logits_guidance = llama_get_logits(guidance_ctx);
llama_log_softmax(logits_guidance, n_vocab);
for (int i = 0; i < n_vocab; ++i) {
float logit_guidance = logits_guidance[i];
float logit_base = logits_base[i];
candidates->data[i].logit = scale * (logit_base - logit_guidance) + logit_guidance;
}
if (ctx) {
ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
}
}
llama_token llama_sample_token_mirostat(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, int m, float * mu) {
GGML_ASSERT(ctx);
auto N = float(llama_n_vocab(ctx));
int64_t t_start_sample_us;
t_start_sample_us = ggml_time_us();
llama_sample_softmax(nullptr, candidates);
// Estimate s_hat using the most probable m tokens
float s_hat = 0.0;
float sum_ti_bi = 0.0;
float sum_ti_sq = 0.0;
for (size_t i = 0; i < size_t(m - 1) && i < candidates->size - 1; ++i) {
float t_i = logf(float(i + 2) / float(i + 1));
float b_i = logf(candidates->data[i].p / candidates->data[i + 1].p);
sum_ti_bi += t_i * b_i;
sum_ti_sq += t_i * t_i;
}
s_hat = sum_ti_bi / sum_ti_sq;
// Compute k from the estimated s_hat and target surprise value
float epsilon_hat = s_hat - 1;
float k = powf((epsilon_hat * powf(2, *mu)) / (1 - powf(N, -epsilon_hat)), 1 / s_hat);
// Sample the next word X using top-k sampling
llama_sample_top_k(nullptr, candidates, int(k), 1);
if (ctx) {
ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
}
llama_token X = llama_sample_token(ctx, candidates);
t_start_sample_us = ggml_time_us();
// Compute error as the difference between observed surprise and target surprise value
size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
return candidate.id == X;
}));
float observed_surprise = -log2f(candidates->data[X_idx].p);
float e = observed_surprise - tau;
// Update mu using the learning rate and error
*mu = *mu - eta * e;
if (ctx) {
ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
}
return X;
}
llama_token llama_sample_token_mirostat_v2(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, float * mu) {
int64_t t_start_sample_us;
t_start_sample_us = ggml_time_us();
llama_sample_softmax(ctx, candidates);
// Truncate the words with surprise values greater than mu
candidates->size = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
return -log2f(candidate.p) > *mu;
}));
if (candidates->size == 0) {
candidates->size = 1;
}
if (ctx) {
ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
}
// Normalize the probabilities of the remaining words
llama_sample_softmax(ctx, candidates);
// Sample the next word X from the remaining words
llama_token X = llama_sample_token(ctx, candidates);
t_start_sample_us = ggml_time_us();
// Compute error as the difference between observed surprise and target surprise value
size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
return candidate.id == X;
}));
float observed_surprise = -log2f(candidates->data[X_idx].p);
float e = observed_surprise - tau;
// Update mu using the learning rate and error
*mu = *mu - eta * e;
if (ctx) {
ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
}
return X;
}
llama_token llama_sample_token_greedy(struct llama_context * ctx, llama_token_data_array * candidates) {
const int64_t t_start_sample_us = ggml_time_us();
// Find max element
auto * max_iter = std::max_element(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
return a.logit < b.logit;
});
llama_token result = max_iter->id;
if (ctx) {
ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
ctx->n_sample++;
}
return result;
}
llama_token llama_sample_token(struct llama_context * ctx, llama_token_data_array * candidates) {
GGML_ASSERT(ctx);
const int64_t t_start_sample_us = ggml_time_us();
llama_sample_softmax(nullptr, candidates);
std::vector<float> probs;
probs.reserve(candidates->size);
for (size_t i = 0; i < candidates->size; ++i) {
probs.push_back(candidates->data[i].p);
}
std::discrete_distribution<> dist(probs.begin(), probs.end());
auto & rng = ctx->rng;
int idx = dist(rng);
llama_token result = candidates->data[idx].id;
ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
ctx->n_sample++;
return result;
}
void llama_grammar_accept_token(struct llama_context * ctx, struct llama_grammar * grammar, llama_token token) {
const int64_t t_start_sample_us = ggml_time_us();
if (token == llama_token_eos(ctx)) {
for (const auto & stack : grammar->stacks) {
if (stack.empty()) {
return;
}
}
GGML_ASSERT(false);
}
const std::string piece = llama_token_to_str(ctx, token);
// Note terminating 0 in decoded string
const auto decoded = decode_utf8(piece.c_str(), grammar->partial_utf8);
const auto & code_points = decoded.first;
for (auto it = code_points.begin(), end = code_points.end() - 1; it != end; ++it) {
grammar->stacks = llama_grammar_accept(grammar->rules, grammar->stacks, *it);
}
grammar->partial_utf8 = decoded.second;
GGML_ASSERT(!grammar->stacks.empty());
ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
}
//
// Beam search
//
struct llama_beam {
std::vector<llama_token> tokens;
float p; // Cumulative beam probability (renormalized relative to all beams)
bool eob; // Initialize end-of-beam to false. Callback sets this to true.
// Sort beams by probability. In case of ties, prefer beams at eob.
bool operator<(const llama_beam & rhs) const {
return std::make_pair(p, eob) < std::make_pair(rhs.p, rhs.eob);
}
// Shift off first n tokens and discard them.
void shift_tokens(const size_t n) {
if (n) {
std::copy(tokens.begin() + n, tokens.end(), tokens.begin());
tokens.resize(tokens.size() - n);
}
}
llama_beam_view view() const { return {tokens.data(), tokens.size(), p, eob}; }
};
// A struct for calculating logit-related info.
struct llama_logit_info {
const float * const logits;
const int n_vocab;
const float max_l;
const float normalizer;
struct sum_exp {
float max_l;
float operator()(float sum, float l) const { return sum + std::exp(l - max_l); }
};
llama_logit_info(llama_context * ctx)
: logits(llama_get_logits(ctx))
, n_vocab(llama_n_vocab(ctx))
, max_l(*std::max_element(logits, logits + n_vocab))
, normalizer(1.0f / std::accumulate(logits, logits + n_vocab, 0.0f, sum_exp{max_l}))
{ }
llama_token_data get_token_data(const llama_token token_id) const {
constexpr auto p = std::numeric_limits<float>::quiet_NaN(); // never used
return {token_id, logits[token_id], p};
}
// Return top k token_data by logit.
std::vector<llama_token_data> top_k(size_t k) {
std::vector<llama_token_data> min_heap; // min-heap by logit
const llama_token k_min = std::min(static_cast<llama_token>(k), n_vocab);
min_heap.reserve(k_min);
for (llama_token token_id = 0 ; token_id < k_min ; ++token_id) {
min_heap.push_back(get_token_data(token_id));
}
auto comp = [](const llama_token_data & a, const llama_token_data & b) { return a.logit > b.logit; };
std::make_heap(min_heap.begin(), min_heap.end(), comp);
for (llama_token token_id = k_min ; token_id < n_vocab ; ++token_id) {
if (min_heap.front().logit < logits[token_id]) {
std::pop_heap(min_heap.begin(), min_heap.end(), comp);
min_heap.back().id = token_id;
min_heap.back().logit = logits[token_id];
std::push_heap(min_heap.begin(), min_heap.end(), comp);
}
}
return min_heap;
}
float probability_from_logit(float logit) const {
return normalizer * std::exp(logit - max_l);
}
};
struct llama_beam_search_data {
llama_context * ctx;
size_t n_beams;
int n_past;
int n_predict;
int n_threads;
std::vector<llama_beam> beams;
std::vector<llama_beam> next_beams;
// Re-calculated on each loop iteration
size_t common_prefix_length;
// Used to communicate to/from callback on beams state.
std::vector<llama_beam_view> beam_views;
llama_beam_search_data(llama_context * ctx, size_t n_beams, int n_past, int n_predict, int n_threads)
: ctx(ctx)
, n_beams(n_beams)
, n_past(n_past)
, n_predict(n_predict)
, n_threads(n_threads)
, beam_views(n_beams) {
beams.reserve(n_beams);
next_beams.reserve(n_beams);
}
// Collapse beams to a single beam given by index.
void collapse_beams(const size_t beam_idx) {
if (0u < beam_idx) {
std::swap(beams[0], beams[beam_idx]);
}
beams.resize(1);
}
// Min-heaps are used to efficiently collect the top-k elements (k=n_beams).
// The repetative patterns below reflect the 2 stages of heaps:
// * Gather elements until the vector is full, then call std::make_heap() on it.
// * If the heap is full and a new element is found that should be included, pop the
// least element to the back(), replace it with the new, then push it into the heap.
void fill_next_beams_by_top_probabilities(llama_beam & beam) {
// Min-heaps use a greater-than comparator.
const auto comp = [](const llama_beam & a, const llama_beam & b) { return a.p > b.p; };
if (beam.eob) {
// beam is at end-of-sentence, so just copy it to next_beams if its probability is high enough.
if (next_beams.size() < n_beams) {
next_beams.push_back(std::move(beam));
if (next_beams.size() == n_beams) {
std::make_heap(next_beams.begin(), next_beams.end(), comp);
}
} else if (next_beams.front().p < beam.p) {
std::pop_heap(next_beams.begin(), next_beams.end(), comp);
next_beams.back() = std::move(beam);
std::push_heap(next_beams.begin(), next_beams.end(), comp);
}
} else {
// beam is not at end-of-sentence, so branch with next top_k tokens.
if (!beam.tokens.empty()) {
llama_decode(ctx, llama_batch_get_one(beam.tokens.data(), beam.tokens.size(), n_past, 0), n_threads);
}
llama_logit_info logit_info(ctx);
std::vector<llama_token_data> next_tokens = logit_info.top_k(n_beams);
size_t i=0;
if (next_beams.size() < n_beams) {
for (; next_beams.size() < n_beams ; ++i) {
llama_beam next_beam = beam;
next_beam.tokens.push_back(next_tokens[i].id);
next_beam.p *= logit_info.probability_from_logit(next_tokens[i].logit);
next_beams.push_back(std::move(next_beam));
}
std::make_heap(next_beams.begin(), next_beams.end(), comp);
} else {
for (; next_beams.front().p == 0.0f ; ++i) {
std::pop_heap(next_beams.begin(), next_beams.end(), comp);
next_beams.back() = beam;
next_beams.back().tokens.push_back(next_tokens[i].id);
next_beams.back().p *= logit_info.probability_from_logit(next_tokens[i].logit);
std::push_heap(next_beams.begin(), next_beams.end(), comp);
}
}
for (; i < n_beams ; ++i) {
const float next_p = beam.p * logit_info.probability_from_logit(next_tokens[i].logit);
if (next_beams.front().p < next_p) {
std::pop_heap(next_beams.begin(), next_beams.end(), comp);
next_beams.back() = beam;
next_beams.back().tokens.push_back(next_tokens[i].id);
next_beams.back().p = next_p;
std::push_heap(next_beams.begin(), next_beams.end(), comp);
}
}
}
}
// Find common_prefix_length based on beams.
// Requires beams is not empty.
size_t find_common_prefix_length() {
size_t common_prefix_length = beams[0].tokens.size();
for (size_t i = 1 ; i < beams.size() ; ++i) {
common_prefix_length = std::min(common_prefix_length, beams[i].tokens.size());
for (size_t j = 0 ; j < common_prefix_length ; ++j) {
if (beams[0].tokens[j] != beams[i].tokens[j]) {
common_prefix_length = j;
break;
}
}
}
return common_prefix_length;
}
// Construct beams_state to send back to caller via the callback function.
// Side effect: set common_prefix_length = find_common_prefix_length();
llama_beams_state get_beams_state(const bool last_call) {
for (size_t i = 0 ; i < beams.size() ; ++i) {
beam_views[i] = beams[i].view();
}
common_prefix_length = find_common_prefix_length();
return {beam_views.data(), beams.size(), common_prefix_length, last_call};
}
// Loop:
// * while i < n_predict, AND
// * any of the beams have not yet reached end-of-beam (eob), AND
// * the highest probability beam(s) (plural in case of ties) are not at end-of-sentence
// (since all other beam probabilities can only decrease)
void loop(const llama_beam_search_callback_fn_t callback, void * const callback_data) {
beams.push_back({{}, 1.0f, false}); // Start with one empty beam w/ probability = 1.0 and !eob.
const auto not_eob = [](const llama_beam & beam) { return !beam.eob; };
for (int i = 0 ; i < n_predict && std::any_of(beams.begin(),beams.end(),not_eob) &&
!beams[top_beam_index()].eob ; ++i) {
callback(callback_data, get_beams_state(false)); // Sets common_prefix_length
update_beams_from_beam_views(); // Update values (p,eob) that callback may have changed.
if (common_prefix_length) {
llama_decode(ctx, llama_batch_get_one(beams[0].tokens.data(), common_prefix_length, n_past, 0), n_threads);
n_past += common_prefix_length;
}
// Zero-out next_beam probabilities to place them last in following min-heap.
std::for_each(next_beams.begin(), next_beams.end(), [](llama_beam & beam) { beam.p = 0.0f; });
for (llama_beam & beam : beams) {
beam.shift_tokens(common_prefix_length);
fill_next_beams_by_top_probabilities(beam);
}
// next_beams become the beams of next/final iteration. Swap them to re-use memory.
beams.swap(next_beams);
renormalize_beam_probabilities(beams);
}
collapse_beams(top_beam_index());
callback(callback_data, get_beams_state(true));
}
// As beams grow, the cumulative probabilities decrease.
// Renormalize them to avoid floating point underflow.
static void renormalize_beam_probabilities(std::vector<llama_beam> & beams) {
const auto sum_p = [](float sum, llama_beam & beam) { return sum + beam.p; };
const float inv_sum = 1.0f / std::accumulate(beams.begin(), beams.end(), 0.0f, sum_p);
std::for_each(beams.begin(), beams.end(), [=](llama_beam & beam) { beam.p *= inv_sum; });
}
// Assumes beams is non-empty. Uses llama_beam::operator<() for ordering.
size_t top_beam_index() {
return std::max_element(beams.begin(), beams.end()) - beams.begin();
}
// Copy (p,eob) for each beam which may have been changed by the callback.
void update_beams_from_beam_views() {
for (size_t i = 0 ; i < beams.size() ; ++i) {
beams[i].p = beam_views[i].p;
beams[i].eob = beam_views[i].eob;
}
}
};
void llama_beam_search(llama_context * ctx,
llama_beam_search_callback_fn_t callback, void * callback_data,
size_t n_beams, int n_past, int n_predict, int n_threads) {
assert(ctx);
const int64_t t_start_sample_us = ggml_time_us();
llama_beam_search_data beam_search_data(ctx, n_beams, n_past, n_predict, n_threads);
beam_search_data.loop(callback, callback_data);
ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
ctx->n_sample++;
}
//
// quantization
//
template <typename T>
struct no_init {
T value;
no_init() { /* do nothing */ }
};
static void llama_convert_tensor_internal(
struct ggml_tensor * tensor, std::vector<no_init<float>> & output, std::vector<std::thread> & workers,
const size_t nelements, const int nthread
) {
if (output.size() < nelements) {
output.resize(nelements);
}
float * f32_output = (float *) output.data();
ggml_type_traits_t qtype;
if (ggml_is_quantized(tensor->type)) {
qtype = ggml_internal_get_type_traits(tensor->type);
if (qtype.to_float == NULL) {
throw std::runtime_error(format("type %s unsupported for integer quantization: no dequantization available", ggml_type_name(tensor->type)));
}
} else if (tensor->type != GGML_TYPE_F16) {
throw std::runtime_error(format("cannot dequantize/convert tensor type %s", ggml_type_name(tensor->type)));
}
if (nthread < 2) {
if (tensor->type == GGML_TYPE_F16) {
ggml_fp16_to_fp32_row((ggml_fp16_t *)tensor->data, f32_output, nelements);
} else if (ggml_is_quantized(tensor->type)) {
qtype.to_float(tensor->data, f32_output, nelements);
} else {
GGML_ASSERT(false); // unreachable
}
return;
}
auto block_size = tensor->type == GGML_TYPE_F16 ? 1 : (size_t)ggml_blck_size(tensor->type);
auto block_size_bytes = ggml_type_size(tensor->type);
GGML_ASSERT(nelements % block_size == 0);
auto nblocks = nelements / block_size;
auto blocks_per_thread = nblocks / nthread;
auto spare_blocks = nblocks - (blocks_per_thread * nthread); // if blocks aren't divisible by thread count
for (auto tnum = 0, in_buff_offs = 0, out_buff_offs = 0; tnum < nthread; tnum++) {
auto thr_blocks = blocks_per_thread + (tnum == nthread - 1 ? spare_blocks : 0); // num blocks for this thread
auto thr_elems = thr_blocks * block_size; // number of elements for this thread
auto thr_block_bytes = thr_blocks * block_size_bytes; // number of input bytes for this thread
auto compute = [qtype] (ggml_type typ, uint8_t * inbuf, float * outbuf, int nels) {
if (typ == GGML_TYPE_F16) {
ggml_fp16_to_fp32_row((ggml_fp16_t *)inbuf, outbuf, nels);
} else {
qtype.to_float(inbuf, outbuf, nels);
}
};
workers.emplace_back(compute, tensor->type, (uint8_t *) tensor->data + in_buff_offs, f32_output + out_buff_offs, thr_elems);
in_buff_offs += thr_block_bytes;
out_buff_offs += thr_elems;
}
for (auto & w : workers) { w.join(); }
workers.clear();
}
#ifdef GGML_USE_K_QUANTS
static ggml_type get_k_quant_type(
ggml_type new_type, const ggml_tensor * tensor, const llama_model & model, llama_ftype ftype, int * i_attention_wv,
int n_attention_wv, int * i_feed_forward_w2, int n_feed_forward_w2
) {
const std::string name = ggml_get_name(tensor);
// TODO: avoid hardcoded tensor names - use the TN_* constants
const auto tn = LLM_TN(model.arch);
auto use_more_bits = [](int i_layer, int num_layers) -> bool {
return i_layer < num_layers/8 || i_layer >= 7*num_layers/8 || (i_layer - num_layers/8)%3 == 2;
};
if (name == tn(LLM_TENSOR_OUTPUT, "weight")) {
int nx = tensor->ne[0];
if (model.arch == LLM_ARCH_FALCON || nx % QK_K != 0) {
new_type = GGML_TYPE_Q8_0;
}
else if (new_type != GGML_TYPE_Q8_0) {
new_type = GGML_TYPE_Q6_K;
}
} else if (name.find("attn_v.weight") != std::string::npos) {
if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
new_type = *i_attention_wv < 2 ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
}
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) &&
use_more_bits(*i_attention_wv, n_attention_wv)) new_type = GGML_TYPE_Q6_K;
else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && *i_attention_wv < 4) new_type = GGML_TYPE_Q5_K;
else if (QK_K == 64 && (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S) &&
(*i_attention_wv < n_attention_wv/8 || *i_attention_wv >= 7*n_attention_wv/8)) new_type = GGML_TYPE_Q6_K;
if (model.type == MODEL_70B) {
// In the 70B model we have 8 heads sharing the same attn_v weights. As a result, the attn_v.weight tensor is
// 8x smaller compared to attn_q.weight. Hence, we can get a nice boost in quantization accuracy with
// nearly negligible increase in model size by quantizing this tensor with more bits:
if (new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K) new_type = GGML_TYPE_Q5_K;
}
++*i_attention_wv;
} else if (name.find("ffn_down.weight") != std::string::npos) {
if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
new_type = *i_feed_forward_w2 < 2 ? GGML_TYPE_Q5_K
: model.arch != LLM_ARCH_FALCON || use_more_bits(*i_feed_forward_w2, n_feed_forward_w2) ? GGML_TYPE_Q4_K
: GGML_TYPE_Q3_K;
}
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) {
new_type = model.arch == LLM_ARCH_FALCON ? GGML_TYPE_Q4_K : GGML_TYPE_Q5_K;
}
else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) {
if (model.arch == LLM_ARCH_FALCON) {
new_type = *i_feed_forward_w2 < 2 ? GGML_TYPE_Q6_K :
use_more_bits(*i_feed_forward_w2, n_feed_forward_w2) ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
} else {
if (use_more_bits(*i_feed_forward_w2, n_feed_forward_w2)) new_type = GGML_TYPE_Q6_K;
}
}
else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M && use_more_bits(*i_feed_forward_w2, n_feed_forward_w2)) new_type = GGML_TYPE_Q6_K;
else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && model.arch != LLM_ARCH_FALCON && *i_feed_forward_w2 < 4) {
new_type = GGML_TYPE_Q5_K;
}
++*i_feed_forward_w2;
} else if (name.find("attn_output.weight") != std::string::npos) {
if (model.arch != LLM_ARCH_FALCON) {
if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K ) new_type = GGML_TYPE_Q3_K;
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) new_type = GGML_TYPE_Q4_K;
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
} else {
if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q4_K;
}
}
else if (name.find("attn_qkv.weight") != std::string::npos) {
if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q4_K;
else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) new_type = GGML_TYPE_Q5_K;
else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) new_type = GGML_TYPE_Q6_K;
}
else if (name.find("ffn_gate.weight") != std::string::npos || name.find("ffn_up.weight") != std::string::npos) {
if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
}
// This can be used to reduce the size of the Q5_K_S model.
// The associated PPL increase is fully in line with the size reduction
//else {
// if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_S) new_type = GGML_TYPE_Q4_K;
//}
bool convert_incompatible_tensor = false;
if (new_type == GGML_TYPE_Q2_K || new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K ||
new_type == GGML_TYPE_Q5_K || new_type == GGML_TYPE_Q6_K) {
int nx = tensor->ne[0];
int ny = tensor->ne[1];
if (nx % QK_K != 0) {
LLAMA_LOG_WARN("\n\n%s : tensor cols %d x %d are not divisible by %d, required for k-quants\n", __func__, nx, ny, QK_K);
convert_incompatible_tensor = true;
}
}
if (convert_incompatible_tensor) {
if (name == tn(LLM_TENSOR_OUTPUT, "weight")) {
new_type = GGML_TYPE_F16; //fall back to F16 instead of just failing.
LLAMA_LOG_WARN("F16 will be used for this tensor instead.\n");
} else if (name == tn(LLM_TENSOR_TOKEN_EMBD, "weight")) {
new_type = GGML_TYPE_Q4_0; //fall back to Q4_0 instead of just failing.
LLAMA_LOG_WARN("Q4_0 will be used for this tensor instead.\n");
} else {
throw std::runtime_error("Unsupported tensor size encountered\n");
}
}
return new_type;
}
#endif
static void llama_model_quantize_internal(const std::string & fname_inp, const std::string & fname_out, const llama_model_quantize_params * params) {
ggml_type quantized_type;
llama_ftype ftype = params->ftype;
switch (params->ftype) {
case LLAMA_FTYPE_MOSTLY_Q4_0: quantized_type = GGML_TYPE_Q4_0; break;
case LLAMA_FTYPE_MOSTLY_Q4_1: quantized_type = GGML_TYPE_Q4_1; break;
case LLAMA_FTYPE_MOSTLY_Q5_0: quantized_type = GGML_TYPE_Q5_0; break;
case LLAMA_FTYPE_MOSTLY_Q5_1: quantized_type = GGML_TYPE_Q5_1; break;
case LLAMA_FTYPE_MOSTLY_Q8_0: quantized_type = GGML_TYPE_Q8_0; break;
case LLAMA_FTYPE_MOSTLY_F16: quantized_type = GGML_TYPE_F16; break;
case LLAMA_FTYPE_ALL_F32: quantized_type = GGML_TYPE_F32; break;
#ifdef GGML_USE_K_QUANTS
// K-quants
case LLAMA_FTYPE_MOSTLY_Q2_K: quantized_type = GGML_TYPE_Q2_K; break;
case LLAMA_FTYPE_MOSTLY_Q3_K_S:
case LLAMA_FTYPE_MOSTLY_Q3_K_M:
case LLAMA_FTYPE_MOSTLY_Q3_K_L: quantized_type = GGML_TYPE_Q3_K; break;
case LLAMA_FTYPE_MOSTLY_Q4_K_S:
case LLAMA_FTYPE_MOSTLY_Q4_K_M: quantized_type = GGML_TYPE_Q4_K; break;
case LLAMA_FTYPE_MOSTLY_Q5_K_S:
case LLAMA_FTYPE_MOSTLY_Q5_K_M: quantized_type = GGML_TYPE_Q5_K; break;
case LLAMA_FTYPE_MOSTLY_Q6_K: quantized_type = GGML_TYPE_Q6_K; break;
#endif
default: throw std::runtime_error(format("invalid output file type %d\n", ftype));
}
int nthread = params->nthread;
if (nthread <= 0) {
nthread = std::thread::hardware_concurrency();
}
std::unique_ptr<llama_model_loader> ml(new llama_model_loader(fname_inp, /*use_mmap*/ false));
llama_model model;
llm_load_arch(*ml, model);
llm_load_hparams(*ml, model, 0, 0, 0);
if (params->only_copy) {
ftype = model.ftype;
}
const size_t align = GGUF_DEFAULT_ALIGNMENT;
struct gguf_context * ctx_out = gguf_init_empty();
// copy the KV pairs from the input file
gguf_set_kv (ctx_out, ml->ctx_gguf);
gguf_set_val_u32(ctx_out, "general.quantization_version", GGML_QNT_VERSION);
gguf_set_val_u32(ctx_out, "general.file_type", ftype);
#ifdef GGML_USE_K_QUANTS
int n_attention_wv = 0;
int n_feed_forward_w2 = 0;
for (int i = 0; i < ml->n_tensors; ++i) {
struct ggml_tensor * meta = ml->get_tensor_meta(i);
const std::string name = ggml_get_name(meta);
// TODO: avoid hardcoded tensor names - use the TN_* constants
if (name.find("attn_v.weight") != std::string::npos) {
++n_attention_wv;
}
else if (name.find("ffn_down.weight") != std::string::npos) {
++n_feed_forward_w2;
}
}
if (n_attention_wv != n_feed_forward_w2 || (uint32_t)n_attention_wv != model.hparams.n_layer) {
LLAMA_LOG_WARN("%s ============ Strange model: n_attention_wv = %d, n_feed_forward_w2 = %d, hparams.n_layer = %d\n",
__func__, n_attention_wv, n_feed_forward_w2, model.hparams.n_layer);
}
int i_attention_wv = 0;
int i_feed_forward_w2 = 0;
#endif
size_t total_size_org = 0;
size_t total_size_new = 0;
std::vector<int64_t> hist_all(1 << 4, 0);
std::vector<std::thread> workers;
workers.reserve(nthread);
std::mutex mutex;
int idx = 0;
std::vector<no_init<uint8_t>> read_data;
std::vector<no_init<uint8_t>> work;
std::vector<no_init<float>> f32_conv_buf;
// populate the original tensors so we get an initial meta data
for (int i = 0; i < ml->n_tensors; ++i) {
struct ggml_tensor * meta = ml->get_tensor_meta(i);
gguf_add_tensor(ctx_out, meta);
}
std::ofstream fout(fname_out, std::ios::binary);
const size_t meta_size = gguf_get_meta_size(ctx_out);
LLAMA_LOG_INFO("%s: meta size = %zu bytes\n", __func__, meta_size);
// placeholder for the meta data
::zeros(fout, meta_size);
for (int i = 0; i < ml->n_tensors; ++i) {
struct ggml_tensor * tensor = ml->get_tensor_meta(i);
const std::string name = ggml_get_name(tensor);
if (read_data.size() < ggml_nbytes(tensor)) {
read_data.resize(ggml_nbytes(tensor));
}
tensor->data = read_data.data();
ml->load_data_for(tensor);
LLAMA_LOG_INFO("[%4d/%4d] %36s - [%s], type = %6s, ",
++idx, ml->n_tensors,
ggml_get_name(tensor),
llama_format_tensor_shape(tensor).c_str(),
ggml_type_name(tensor->type));
// This used to be a regex, but <regex> has an extreme cost to compile times.
bool quantize = name.rfind("weight") == name.size() - 6; // ends with 'weight'?
// quantize only 2D tensors
quantize &= (tensor->n_dims == 2);
quantize &= params->quantize_output_tensor || name != "output.weight";
quantize &= !params->only_copy;
enum ggml_type new_type;
void * new_data;
size_t new_size;
if (quantize) {
new_type = quantized_type;
#ifdef GGML_USE_K_QUANTS
new_type = get_k_quant_type(
new_type, tensor, model, ftype, &i_attention_wv, n_attention_wv, &i_feed_forward_w2, n_feed_forward_w2
);
#endif
// If we've decided to quantize to the same type the tensor is already
// in then there's nothing to do.
quantize = tensor->type != new_type;
}
if (!quantize) {
new_type = tensor->type;
new_data = tensor->data;
new_size = ggml_nbytes(tensor);
LLAMA_LOG_INFO("size = %8.3f MB\n", ggml_nbytes(tensor)/1024.0/1024.0);
} else {
const size_t nelements = ggml_nelements(tensor);
float * f32_data;
if (tensor->type == GGML_TYPE_F32) {
f32_data = (float *) tensor->data;
} else if (ggml_is_quantized(tensor->type) && !params->allow_requantize) {
throw std::runtime_error(format("requantizing from type %s is disabled", ggml_type_name(tensor->type)));
} else {
llama_convert_tensor_internal(tensor, f32_conv_buf, workers, nelements, nthread);
f32_data = (float *) f32_conv_buf.data();
}
LLAMA_LOG_INFO("quantizing to %s .. ", ggml_type_name(new_type));
fflush(stdout);
if (work.size() < nelements * 4) {
work.resize(nelements * 4); // upper bound on size
}
new_data = work.data();
std::array<int64_t, 1 << 4> hist_cur = {};
static const int chunk_size = 32 * 512;
const int nchunk = (nelements + chunk_size - 1)/chunk_size;
const int nthread_use = nthread > 1 ? std::max(1, std::min(nthread, nchunk)) : 1;
if (nthread_use < 2) {
new_size = ggml_quantize_chunk(new_type, f32_data, new_data, 0, nelements, hist_cur.data());
} else {
size_t counter = 0;
new_size = 0;
auto compute = [&mutex, &counter, &hist_cur, &new_size, new_type, f32_data, new_data, nelements]() {
std::array<int64_t, 1 << 4> local_hist = {};
size_t local_size = 0;
while (true) {
std::unique_lock<std::mutex> lock(mutex);
size_t first = counter; counter += chunk_size;
if (first >= nelements) {
if (local_size > 0) {
for (int j=0; j<int(local_hist.size()); ++j) {
hist_cur[j] += local_hist[j];
}
new_size += local_size;
}
break;
}
lock.unlock();
size_t last = std::min(nelements, first + chunk_size);
local_size += ggml_quantize_chunk(new_type, f32_data, new_data, first, last - first, local_hist.data());
}
};
for (int it = 0; it < nthread_use - 1; ++it) {
workers.emplace_back(compute);
}
compute();
for (auto & w : workers) { w.join(); }
workers.clear();
}
LLAMA_LOG_INFO("size = %8.2f MB -> %8.2f MB | hist: ", ggml_nbytes(tensor)/1024.0/1024.0, new_size/1024.0/1024.0);
int64_t tot_count = 0;
for (size_t i = 0; i < hist_cur.size(); i++) {
hist_all[i] += hist_cur[i];
tot_count += hist_cur[i];
}
if (tot_count > 0) {
for (size_t i = 0; i < hist_cur.size(); i++) {
LLAMA_LOG_INFO("%5.3f ", hist_cur[i] / float(nelements));
}
}
LLAMA_LOG_INFO("\n");
}
total_size_org += ggml_nbytes(tensor);
total_size_new += new_size;
// update the gguf meta data as we go
gguf_set_tensor_type(ctx_out, name.c_str(), new_type);
gguf_set_tensor_data(ctx_out, name.c_str(), new_data, new_size);
// write tensor data + padding
fout.write((const char *) new_data, new_size);
zeros(fout, GGML_PAD(new_size, align) - new_size);
}
// go back to beginning of file and write the updated meta data
{
fout.seekp(0);
std::vector<uint8_t> data(gguf_get_meta_size(ctx_out));
gguf_get_meta_data(ctx_out, data.data());
fout.write((const char *) data.data(), data.size());
}
fout.close();
gguf_free(ctx_out);
LLAMA_LOG_INFO("%s: model size = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0);
LLAMA_LOG_INFO("%s: quant size = %8.2f MB\n", __func__, total_size_new/1024.0/1024.0);
// print histogram for all tensors
{
int64_t sum_all = 0;
for (size_t i = 0; i < hist_all.size(); i++) {
sum_all += hist_all[i];
}
if (sum_all > 0) {
LLAMA_LOG_INFO("%s: hist: ", __func__);
for (size_t i = 0; i < hist_all.size(); i++) {
LLAMA_LOG_INFO("%5.3f ", hist_all[i] / float(sum_all));
}
LLAMA_LOG_INFO("\n");
}
}
}
// TODO: after the GGUF PR, this likely won't work and needs to be updated
static int llama_apply_lora_from_file_internal(
const struct llama_model & model, const char * path_lora, const char * path_base_model, int n_threads
) {
LLAMA_LOG_INFO("%s: applying lora adapter from '%s' - please wait ...\n", __func__, path_lora);
const int64_t t_start_lora_us = ggml_time_us();
auto fin = std::ifstream(path_lora, std::ios::binary);
if (!fin) {
LLAMA_LOG_ERROR("%s: failed to open '%s'\n", __func__, path_lora);
return 1;
}
// verify magic and version
{
uint32_t magic;
fin.read((char *) &magic, sizeof(magic));
uint32_t format_version;
fin.read((char *) &format_version, sizeof(format_version));
if (format_version != 1) {
LLAMA_LOG_ERROR("%s: unsupported file version\n", __func__ );
return 1;
}
}
int32_t lora_r;
int32_t lora_alpha;
fin.read((char *) &lora_r, sizeof(lora_r));
fin.read((char *) &lora_alpha, sizeof(lora_alpha));
float scaling = (float)lora_alpha / (float)lora_r;
LLAMA_LOG_INFO("%s: r = %d, alpha = %d, scaling = %.2f\n", __func__, lora_r, lora_alpha, scaling);
// create a temporary ggml context to store the lora tensors
// todo: calculate size from biggest possible tensor
std::vector<uint8_t> lora_buf(1024ull * 1024ull * 1024ull);
struct ggml_init_params params;
params.mem_size = lora_buf.size();
params.mem_buffer = lora_buf.data();
params.no_alloc = false;
ggml_context * lora_ctx = ggml_init(params);
std::unordered_map<std::string, struct ggml_tensor *> lora_tensors;
// create a name -> tensor map of the model to accelerate lookups
std::unordered_map<std::string, struct ggml_tensor*> model_tensors;
for (const auto & kv : model.tensors_by_name) {
model_tensors.insert(kv);
}
// load base model
std::unique_ptr<llama_model_loader> ml;
ggml_context * base_ctx = NULL;
std::vector<uint8_t> base_buf;
if (path_base_model) {
LLAMA_LOG_INFO("%s: loading base model from '%s'\n", __func__, path_base_model);
ml.reset(new llama_model_loader(path_base_model, /*use_mmap*/ true));
size_t ctx_size;
size_t mmapped_size;
ml->calc_sizes(ctx_size, mmapped_size);
base_buf.resize(ctx_size);
ggml_init_params base_params;
base_params.mem_size = base_buf.size();
base_params.mem_buffer = base_buf.data();
base_params.no_alloc = ml->use_mmap;
base_ctx = ggml_init(base_params);
// maybe this should in llama_model_loader
if (ml->use_mmap) {
ml->mapping.reset(new llama_mmap(&ml->file, /* prefetch */ 0, ggml_is_numa()));
}
}
// read tensors and apply
bool warned = false;
int n_tensors = 0;
std::vector<uint8_t> work_buffer;
while (true) {
int32_t n_dims;
int32_t length;
int32_t ftype;
fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
fin.read(reinterpret_cast<char *>(&length), sizeof(length));
fin.read(reinterpret_cast<char *>(&ftype), sizeof(ftype));
if (fin.eof()) {
break;
}
int32_t ne[2] = { 1, 1 };
for (int i = 0; i < n_dims; ++i) {
fin.read(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
}
std::string name;
{
char buf[1024];
fin.read(buf, length);
name = std::string(buf, length);
}
// check for lora suffix and get the type of tensor
const std::string lora_suffix = ".lora";
size_t pos = name.rfind(lora_suffix);
if (pos == std::string::npos) {
LLAMA_LOG_ERROR("%s: error: '%s' is not a lora tensor\n", __func__, name.c_str());
return 1;
}
std::string lora_type = name.substr(pos + lora_suffix.length());
std::string base_name = name;
base_name.erase(pos);
// LLAMA_LOG_INFO("%s: %s => %s (lora type %s) \n", __func__, name.c_str(),base_name.c_str(), lora_type.c_str());
if (model_tensors.find(base_name) == model_tensors.end()) {
LLAMA_LOG_ERROR("%s: unknown tensor '%s' in lora adapter\n", __func__, name.data());
return 1;
}
// create ggml tensor
ggml_type wtype;
switch (ftype) {
case 0: wtype = GGML_TYPE_F32; break;
case 1: wtype = GGML_TYPE_F16; break;
default:
{
LLAMA_LOG_ERROR("%s: invalid tensor data type '%d'\n",
__func__, ftype);
return false;
}
}
ggml_tensor * lora_tensor;
if (n_dims == 2) {
lora_tensor = ggml_new_tensor_2d(lora_ctx, wtype, ne[0], ne[1]);
}
else {
LLAMA_LOG_ERROR("%s: unsupported tensor dimension %d\n", __func__, n_dims);
return 1;
}
ggml_set_name(lora_tensor, "lora_tensor");
// load tensor data
size_t offset = fin.tellg();
size_t tensor_data_size = ggml_nbytes(lora_tensor);
offset = (offset + 31) & -32;
fin.seekg(offset);
fin.read((char*)lora_tensor->data, tensor_data_size);
lora_tensors[name] = lora_tensor;
// check if we have both A and B tensors and apply
if (lora_tensors.find(base_name + ".loraA") != lora_tensors.end() &&
lora_tensors.find(base_name + ".loraB") != lora_tensors.end()) {
ggml_tensor * dest_t = model_tensors[base_name];
offload_func_t offload_func = llama_nop;
offload_func_t offload_func_force_inplace = llama_nop;
#ifdef GGML_USE_CUBLAS
if (dest_t->backend == GGML_BACKEND_GPU || dest_t->backend == GGML_BACKEND_GPU_SPLIT) {
if (dest_t->type != GGML_TYPE_F16) {
throw std::runtime_error(format(
"%s: error: the simultaneous use of LoRAs and GPU acceleration is only supported for f16 models", __func__));
}
offload_func = ggml_cuda_assign_buffers;
offload_func_force_inplace = ggml_cuda_assign_buffers_force_inplace;
}
#endif // GGML_USE_CUBLAS
ggml_tensor * base_t;
if (ml) {
struct gguf_context * ctx_gguf = ml->ctx_gguf;
// load from base model
if (gguf_find_tensor(ctx_gguf, base_name.c_str()) < 0) {
// TODO: throw
LLAMA_LOG_ERROR("%s: error: tensor '%s' not found in base model\n", __func__, base_name.c_str());
return 1;
}
// TODO: not tested!! maybe not working!
base_t = ml->create_tensor(base_ctx, base_name, { (uint32_t)dest_t->ne[0], (uint32_t)dest_t->ne[1] }, GGML_BACKEND_CPU);
ml->load_data_for(base_t);
} else {
base_t = dest_t;
}
if (ggml_is_quantized(base_t->type)) {
if (!warned) {
LLAMA_LOG_WARN("%s: warning: using a lora adapter with a quantized model may result in poor quality, "
"use a f16 or f32 base model with --lora-base\n", __func__);
warned = true;
}
}
ggml_tensor * loraA = lora_tensors[base_name + ".loraA"];
GGML_ASSERT(loraA->type == GGML_TYPE_F32);
ggml_set_name(loraA, "loraA");
ggml_tensor * loraB = lora_tensors[base_name + ".loraB"];
GGML_ASSERT(loraB->type == GGML_TYPE_F32);
ggml_set_name(loraB, "loraB");
if (base_t->ne[0] != loraA->ne[1] || base_t->ne[1] != loraB->ne[1]) {
LLAMA_LOG_ERROR("%s: incompatible tensor dimensions (%" PRId64 " and %" PRId64 ");"
" are you sure that this adapter is for this model?\n", __func__, base_t->ne[0], loraA->ne[1]);
return 1;
}
// w = w + BA*s
ggml_tensor * BA = ggml_mul_mat(lora_ctx, loraA, loraB);
offload_func(BA);
ggml_set_name(BA, "BA");
if (scaling != 1.0f) {
ggml_tensor * scale_tensor = ggml_new_f32(lora_ctx, scaling);
ggml_set_name(scale_tensor, "scale_tensor");
BA = ggml_scale_inplace(lora_ctx, BA, scale_tensor);
offload_func(BA);
ggml_set_name(BA, "BA_scaled");
}
ggml_tensor * r;
if (base_t == dest_t) {
r = ggml_add_inplace(lora_ctx, dest_t, BA);
offload_func_force_inplace(r);
ggml_set_name(r, "r_add_inplace");
}
else {
r = ggml_add(lora_ctx, base_t, BA);
offload_func(r);
ggml_set_name(r, "r_add");
r = ggml_cpy(lora_ctx, r, dest_t);
offload_func(r);
ggml_set_name(r, "r_cpy");
}
struct ggml_cgraph gf = ggml_build_forward(r);
ggml_graph_compute_helper(work_buffer, &gf, n_threads);
// we won't need these tensors again, reset the context to save memory
ggml_free(lora_ctx);
lora_ctx = ggml_init(params);
lora_tensors.clear();
n_tensors++;
if (n_tensors % 4 == 0) {
LLAMA_LOG_INFO(".");
}
}
}
// TODO: this should be in a destructor, it will leak on failure
ggml_free(lora_ctx);
if (base_ctx) {
ggml_free(base_ctx);
}
const int64_t t_lora_us = ggml_time_us() - t_start_lora_us;
LLAMA_LOG_INFO(" done (%.2f ms)\n", t_lora_us / 1000.0);
return 0;
}
//
// interface implementation
//
struct llama_context_params llama_context_default_params() {
struct llama_context_params result = {
/*.seed =*/ LLAMA_DEFAULT_SEED,
/*.n_ctx =*/ 512,
/*.n_batch =*/ 512,
/*.n_gpu_layers =*/ 0,
/*.main_gpu =*/ 0,
/*.tensor_split =*/ nullptr,
/*.rope_freq_base =*/ 10000.0f,
/*.rope_freq_scale =*/ 1.0f,
/*.progress_callback =*/ nullptr,
/*.progress_callback_user_data =*/ nullptr,
/*.low_vram =*/ false,
/*.mul_mat_q =*/ true,
/*.f16_kv =*/ true,
/*.logits_all =*/ false,
/*.vocab_only =*/ false,
/*.use_mmap =*/ true,
/*.use_mlock =*/ false,
/*.embedding =*/ false,
};
#ifdef GGML_USE_METAL
result.n_gpu_layers = 1;
#endif
return result;
}
struct llama_model_quantize_params llama_model_quantize_default_params() {
struct llama_model_quantize_params result = {
/*.nthread =*/ 0,
/*.ftype =*/ LLAMA_FTYPE_MOSTLY_Q5_1,
/*.allow_requantize =*/ false,
/*.quantize_output_tensor =*/ true,
/*.only_copy =*/ false,
};
return result;
}
int llama_max_devices(void) {
return LLAMA_MAX_DEVICES;
}
bool llama_mmap_supported(void) {
return llama_mmap::SUPPORTED;
}
bool llama_mlock_supported(void) {
return llama_mlock::SUPPORTED;
}
void llama_backend_init(bool numa) {
ggml_time_init();
// needed to initialize f16 tables
{
struct ggml_init_params params = { 0, NULL, false };
struct ggml_context * ctx = ggml_init(params);
ggml_free(ctx);
}
if (numa) {
ggml_numa_init();
}
#ifdef GGML_USE_MPI
ggml_mpi_backend_init();
#endif
}
void llama_backend_free(void) {
#ifdef GGML_USE_MPI
ggml_mpi_backend_free();
#endif
}
int64_t llama_time_us(void) {
return ggml_time_us();
}
struct llama_model * llama_load_model_from_file(
const char * path_model,
struct llama_context_params params) {
ggml_time_init();
llama_model * model = new llama_model;
ggml_type memory_type = params.f16_kv ? GGML_TYPE_F16 : GGML_TYPE_F32;
unsigned cur_percentage = 0;
if (params.progress_callback == NULL) {
params.progress_callback_user_data = &cur_percentage;
params.progress_callback = [](float progress, void * ctx) {
unsigned * cur_percentage_p = (unsigned *) ctx;
unsigned percentage = (unsigned) (100 * progress);
while (percentage > *cur_percentage_p) {
*cur_percentage_p = percentage;
LLAMA_LOG_INFO(".");
if (percentage >= 100) {
LLAMA_LOG_INFO("\n");
}
}
};
}
if (!llama_model_load(path_model, *model, params.n_ctx, params.n_batch, params.n_gpu_layers,
params.main_gpu, params.tensor_split, params.mul_mat_q, params.rope_freq_base, params.rope_freq_scale,
params.low_vram, memory_type, params.use_mmap, params.use_mlock, params.vocab_only,
params.progress_callback, params.progress_callback_user_data)) {
LLAMA_LOG_ERROR("%s: failed to load model\n", __func__);
delete model;
return nullptr;
}
return model;
}
void llama_free_model(struct llama_model * model) {
delete model;
}
struct llama_context * llama_new_context_with_model(
struct llama_model * model,
struct llama_context_params params) {
if (!model) {
return nullptr;
}
llama_context * ctx = new llama_context(*model);
if (params.seed == LLAMA_DEFAULT_SEED) {
params.seed = time(NULL);
}
ctx->rng = std::mt19937(params.seed);
ctx->logits_all = params.logits_all;
ggml_type memory_type = params.f16_kv ? GGML_TYPE_F16 : GGML_TYPE_F32;
// reserve memory for context buffers
if (!params.vocab_only) {
if (!llama_kv_cache_init(ctx->model.hparams, ctx->kv_self, memory_type, params.n_gpu_layers)) {
LLAMA_LOG_ERROR("%s: llama_kv_cache_init() failed for self-attention cache\n", __func__);
llama_free(ctx);
return nullptr;
}
{
const size_t memory_size = ggml_nbytes(ctx->kv_self.k) + ggml_nbytes(ctx->kv_self.v);
LLAMA_LOG_INFO("%s: kv self size = %7.2f MB\n", __func__, memory_size / 1024.0 / 1024.0);
}
const auto & hparams = ctx->model.hparams;
// resized during inference
if (params.logits_all) {
ctx->logits.reserve(hparams.n_ctx*hparams.n_vocab);
} else {
ctx->logits.reserve(hparams.n_vocab);
}
if (params.embedding){
ctx->embedding.resize(hparams.n_embd);
}
{
static const size_t tensor_alignment = 32;
// the compute buffer is used to store the tensor and graph structs, while the allocator buffer is used for the tensor data
ctx->buf_compute.resize(ggml_tensor_overhead()*GGML_MAX_NODES + ggml_graph_overhead());
// create measure allocator
ctx->alloc = ggml_allocr_new_measure(tensor_alignment);
// build worst-case graph
const uint32_t n_tokens = std::min((int) hparams.n_ctx, params.n_batch);
llama_token token = llama_token_bos(ctx); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph
ggml_cgraph * gf = llama_build_graph(*ctx, llama_batch_get_one(&token, n_tokens, hparams.n_ctx - n_tokens, 0));
#ifdef GGML_USE_METAL
if (params.n_gpu_layers > 0) {
ctx->ctx_metal = ggml_metal_init(1);
if (!ctx->ctx_metal) {
LLAMA_LOG_ERROR("%s: ggml_metal_init() failed\n", __func__);
llama_free(ctx);
return NULL;
}
//ggml_metal_graph_find_concurrency(ctx->ctx_metal, gf, false);
//ggml_allocr_set_parse_seq(ctx->alloc, ggml_metal_get_concur_list(ctx->ctx_metal), ggml_metal_if_optimized(ctx->ctx_metal));
}
#endif
// measure memory requirements for the graph
size_t alloc_size = ggml_allocr_alloc_graph(ctx->alloc, gf) + tensor_alignment;
LLAMA_LOG_INFO("%s: compute buffer total size = %7.2f MB\n", __func__, (ctx->buf_compute.size + alloc_size) / 1024.0 / 1024.0);
// recreate allocator with exact memory requirements
ggml_allocr_free(ctx->alloc);
ctx->buf_alloc.resize(alloc_size);
ctx->alloc = ggml_allocr_new(ctx->buf_alloc.data, ctx->buf_alloc.size, tensor_alignment);
#ifdef GGML_USE_METAL
if (ctx->ctx_metal) {
//ggml_allocr_set_parse_seq(ctx->alloc, ggml_metal_get_concur_list(ctx->ctx_metal), ggml_metal_if_optimized(ctx->ctx_metal));
}
#endif
#ifdef GGML_USE_CUBLAS
if (params.low_vram) {
LLAMA_LOG_INFO("%s: not allocating a VRAM scratch buffer due to low VRAM option\n", __func__);
ggml_cuda_set_scratch_size(0); // disable scratch
} else {
ggml_cuda_set_scratch_size(alloc_size);
LLAMA_LOG_INFO("%s: VRAM scratch buffer: %.2f MB\n", __func__, alloc_size / 1024.0 / 1024.0);
}
#endif
}
#ifdef GGML_USE_METAL
if (params.n_gpu_layers > 0) {
// this allocates all Metal resources and memory buffers
void * data_ptr = NULL;
size_t data_size = 0;
if (params.use_mmap) {
data_ptr = ctx->model.mapping->addr;
data_size = ctx->model.mapping->size;
} else {
data_ptr = ggml_get_mem_buffer(ctx->model.ctx);
data_size = ggml_get_mem_size (ctx->model.ctx);
}
const size_t max_size = ggml_get_max_tensor_size(ctx->model.ctx);
LLAMA_LOG_INFO("%s: max tensor size = %8.2f MB\n", __func__, max_size/1024.0/1024.0);
#define LLAMA_METAL_CHECK_BUF(result) \
if (!(result)) { \
LLAMA_LOG_ERROR("%s: failed to add buffer\n", __func__); \
llama_free(ctx); \
return NULL; \
}
LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "data", data_ptr, data_size, max_size));
LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "eval", ctx->buf_compute.data, ctx->buf_compute.size, 0));
LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "kv", ctx->kv_self.buf.data, ctx->kv_self.buf.size, 0));
LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "alloc", ctx->buf_alloc.data, ctx->buf_alloc.size, 0));
#undef LLAMA_METAL_CHECK_BUF
}
#endif
}
#ifdef GGML_USE_MPI
ctx->ctx_mpi = ggml_mpi_init();
if (ggml_mpi_rank(ctx->ctx_mpi) > 0) {
// Enter a blocking eval loop with dummy input, letting rank=0 drive the process
// TODO: needs fix after #3228
GGML_ASSERT(false && "not implemented");
//const std::vector<llama_token> tmp(ctx->model.hparams.n_ctx, llama_token_bos(ctx));
//while (!llama_eval(ctx, tmp.data(), tmp.size(), 0, 0)) {};
llama_backend_free();
exit(1);
}
#endif
return ctx;
}
static struct llama_context * llama_init_from_file(
const char * path_model,
struct llama_context_params params) {
struct llama_model * model = llama_load_model_from_file(path_model, params);
if (!model) {
return nullptr;
}
struct llama_context * ctx = llama_new_context_with_model(model, params);
ctx->model_owner = true;
return ctx;
}
void llama_free(struct llama_context * ctx) {
delete ctx;
}
int llama_n_vocab(const struct llama_context * ctx) {
return llama_model_n_vocab(&ctx->model);
}
int llama_n_ctx(const struct llama_context * ctx) {
return llama_model_n_ctx(&ctx->model);
}
int llama_n_ctx_train(const struct llama_context * ctx) {
return llama_model_n_ctx_train(&ctx->model);
}
int llama_n_embd(const struct llama_context * ctx) {
return llama_model_n_embd(&ctx->model);
}
enum llama_vocab_type llama_vocab_type(const struct llama_context * ctx) {
return ctx->model.vocab.type;
}
int llama_model_n_vocab(const struct llama_model * model) {
return model->vocab.id_to_token.size();
}
int llama_model_n_ctx(const struct llama_model * model) {
return model->hparams.n_ctx;
}
int llama_model_n_ctx_train(const struct llama_model * model) {
return model->hparams.n_ctx_train;
}
int llama_model_n_embd(const struct llama_model * model) {
return model->hparams.n_embd;
}
int llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size) {
return snprintf(buf, buf_size, "%s %s %s",
model->name.c_str(),
llama_model_type_name(model->type),
llama_model_ftype_name(model->ftype).c_str());
}
uint64_t llama_model_size(const struct llama_model * model) {
uint64_t size = 0;
for (const auto & it : model->tensors_by_name) {
size += ggml_nbytes(it.second);
}
return size;
}
uint64_t llama_model_n_params(const struct llama_model * model) {
uint64_t nparams = 0;
for (const auto & it : model->tensors_by_name) {
nparams += ggml_nelements(it.second);
}
return nparams;
}
int llama_model_quantize(
const char * fname_inp,
const char * fname_out,
const llama_model_quantize_params * params) {
try {
llama_model_quantize_internal(fname_inp, fname_out, params);
return 0;
} catch (const std::exception & err) {
LLAMA_LOG_ERROR("%s: failed to quantize: %s\n", __func__, err.what());
return 1;
}
}
int llama_apply_lora_from_file(struct llama_context * ctx, const char * path_lora, const char * path_base_model, int n_threads) {
try {
return llama_apply_lora_from_file_internal(ctx->model, path_lora, path_base_model, n_threads);
} catch (const std::exception & err) {
LLAMA_LOG_ERROR("%s: failed to apply lora adapter: %s\n", __func__, err.what());
return 1;
}
}
int llama_model_apply_lora_from_file(const struct llama_model * model, const char * path_lora, const char * path_base_model, int n_threads) {
try {
return llama_apply_lora_from_file_internal(*model, path_lora, path_base_model, n_threads);
} catch (const std::exception & err) {
LLAMA_LOG_ERROR("%s: failed to apply lora adapter: %s\n", __func__, err.what());
return 1;
}
}
int llama_get_kv_cache_token_count(const struct llama_context * ctx) {
return ctx->kv_self.head;
}
void llama_kv_cache_tokens_rm(struct llama_context * ctx, int32_t c0, int32_t c1) {
llama_kv_cache_tokens_rm(ctx->kv_self, c0, c1);
}
void llama_kv_cache_seq_rm(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1) {
llama_kv_cache_seq_rm(ctx->kv_self, seq_id, p0, p1);
}
void llama_kv_cache_seq_cp(struct llama_context * ctx, llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) {
llama_kv_cache_seq_cp(ctx->kv_self, seq_id_src, seq_id_dst, p0, p1);
}
void llama_kv_cache_seq_keep(struct llama_context * ctx, llama_seq_id seq_id) {
llama_kv_cache_seq_keep(ctx->kv_self, seq_id);
}
void llama_kv_cache_seq_shift(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos delta) {
llama_kv_cache_seq_shift(ctx->kv_self, seq_id, p0, p1, delta);
}
// Returns the *maximum* size of the state
size_t llama_get_state_size(const struct llama_context * ctx) {
// we don't know size of rng until we actually serialize it. so reserve more than enough memory for its serialized state.
// for reference, std::mt19937(1337) serializes to 6701 bytes.
const size_t s_rng_size = sizeof(size_t);
const size_t s_rng = LLAMA_MAX_RNG_STATE;
const size_t s_logits_capacity = sizeof(size_t);
const size_t s_logits_size = sizeof(size_t);
const size_t s_logits = ctx->logits.capacity() * sizeof(float);
const size_t s_embedding_size = sizeof(size_t);
const size_t s_embedding = ctx->embedding.size() * sizeof(float);
const size_t s_kv_size = sizeof(size_t);
const size_t s_kv_ntok = sizeof(int);
const size_t s_kv = ctx->kv_self.buf.size;
const size_t s_total = (
+ s_rng_size
+ s_rng
+ s_logits_capacity
+ s_logits_size
+ s_logits
+ s_embedding_size
+ s_embedding
+ s_kv_size
+ s_kv_ntok
+ s_kv
);
return s_total;
}
// llama_context_data
struct llama_data_context {
virtual void write(const void * src, size_t size) = 0;
virtual size_t get_size_written() = 0;
virtual ~llama_data_context() = default;
};
struct llama_data_buffer_context : llama_data_context {
uint8_t * ptr;
size_t size_written = 0;
llama_data_buffer_context(uint8_t * p) : ptr(p) {}
void write(const void * src, size_t size) override {
memcpy(ptr, src, size);
ptr += size;
size_written += size;
}
size_t get_size_written() override {
return size_written;
}
};
struct llama_data_file_context : llama_data_context {
llama_file * file;
size_t size_written = 0;
llama_data_file_context(llama_file * f) : file(f) {}
void write(const void * src, size_t size) override {
file->write_raw(src, size);
size_written += size;
}
size_t get_size_written() override {
return size_written;
}
};
/** copy state data into either a buffer or file depending on the passed in context
*
* file context:
* llama_file file("/path", "wb");
* llama_data_file_context data_ctx(&file);
* llama_copy_state_data(ctx, &data_ctx);
*
* buffer context:
* std::vector<uint8_t> buf(max_size, 0);
* llama_data_buffer_context data_ctx(&buf.data());
* llama_copy_state_data(ctx, &data_ctx);
*
*/
static void llama_copy_state_data_internal(struct llama_context * ctx, llama_data_context * data_ctx) {
// TODO: does not support multi-sequence states
{
const auto & kv_self = ctx->kv_self;
for (uint32_t i = 0; i < kv_self.head; ++i) {
GGML_ASSERT(kv_self.cells[i].pos == (int32_t) i);
GGML_ASSERT(kv_self.cells[i].seq_id.size() == 1);
GGML_ASSERT(kv_self.cells[i].has_seq_id(0));
}
}
// copy rng
{
std::stringstream rng_ss;
rng_ss << ctx->rng;
const size_t rng_size = rng_ss.str().size();
char rng_buf[LLAMA_MAX_RNG_STATE];
memset(&rng_buf[0], 0, LLAMA_MAX_RNG_STATE);
memcpy(&rng_buf[0], rng_ss.str().data(), rng_ss.str().size());
data_ctx->write(&rng_size, sizeof(rng_size));
data_ctx->write(&rng_buf[0], LLAMA_MAX_RNG_STATE);
}
// copy logits
{
const size_t logits_cap = ctx->logits.capacity();
const size_t logits_size = ctx->logits.size();
data_ctx->write(&logits_cap, sizeof(logits_cap));
data_ctx->write(&logits_size, sizeof(logits_size));
if (logits_size) {
data_ctx->write(ctx->logits.data(), logits_size * sizeof(float));
}
// If there is a gap between the size and the capacity, write padding
size_t padding_size = (logits_cap - logits_size) * sizeof(float);
if (padding_size > 0) {
std::vector<uint8_t> padding(padding_size, 0); // Create a buffer filled with zeros
data_ctx->write(padding.data(), padding_size);
}
}
// copy embeddings
{
const size_t embedding_size = ctx->embedding.size();
data_ctx->write(&embedding_size, sizeof(embedding_size));
if (embedding_size) {
data_ctx->write(ctx->embedding.data(), embedding_size * sizeof(float));
}
}
// copy kv cache
{
const auto & kv_self = ctx->kv_self;
const auto & hparams = ctx->model.hparams;
const int n_layer = hparams.n_layer;
const int n_embd = hparams.n_embd_gqa();
const int n_ctx = hparams.n_ctx;
const size_t kv_size = kv_self.buf.size;
const int kv_ntok = kv_self.head;
data_ctx->write(&kv_size, sizeof(kv_size));
data_ctx->write(&kv_ntok, sizeof(kv_ntok));
if (kv_size) {
const size_t elt_size = ggml_element_size(kv_self.k);
ggml_context * cpy_ctx = ggml_init({ 4096, NULL, /* no_alloc */ true });
ggml_cgraph gf{};
ggml_tensor * kout3d = ggml_new_tensor_3d(cpy_ctx, kv_self.k->type, n_embd, kv_ntok, n_layer);
std::vector<uint8_t> kout3d_data(ggml_nbytes(kout3d), 0);
kout3d->data = kout3d_data.data();
ggml_tensor * vout3d = ggml_new_tensor_3d(cpy_ctx, kv_self.v->type, kv_ntok, n_embd, n_layer);
std::vector<uint8_t> vout3d_data(ggml_nbytes(vout3d), 0);
vout3d->data = vout3d_data.data();
ggml_tensor * k3d = ggml_view_3d(cpy_ctx, kv_self.k,
n_embd, kv_ntok, n_layer,
elt_size*n_embd, elt_size*n_embd*n_ctx, 0);
ggml_tensor * v3d = ggml_view_3d(cpy_ctx, kv_self.v,
kv_ntok, n_embd, n_layer,
elt_size*n_ctx, elt_size*n_ctx*n_embd, 0);
ggml_build_forward_expand(&gf, ggml_cpy(cpy_ctx, k3d, kout3d));
ggml_build_forward_expand(&gf, ggml_cpy(cpy_ctx, v3d, vout3d));
ggml_graph_compute_helper(ctx->work_buffer, &gf, /*n_threads*/ 1);
ggml_free(cpy_ctx);
// our data is now in the kout3d_data and vout3d_data buffers
// write them to file
data_ctx->write(kout3d_data.data(), kout3d_data.size());
data_ctx->write(vout3d_data.data(), vout3d_data.size());
}
}
}
size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dst) {
llama_data_buffer_context data_ctx(dst);
llama_copy_state_data_internal(ctx, &data_ctx);
return data_ctx.get_size_written();
}
// Sets the state reading from the specified source address
size_t llama_set_state_data(struct llama_context * ctx, uint8_t * src) {
uint8_t * inp = src;
// set rng
{
size_t rng_size;
char rng_buf[LLAMA_MAX_RNG_STATE];
memcpy(&rng_size, inp, sizeof(rng_size)); inp += sizeof(rng_size);
memcpy(&rng_buf[0], inp, LLAMA_MAX_RNG_STATE); inp += LLAMA_MAX_RNG_STATE;
std::stringstream rng_ss;
rng_ss.str(std::string(&rng_buf[0], rng_size));
rng_ss >> ctx->rng;
GGML_ASSERT(!rng_ss.fail());
}
// set logits
{
size_t logits_cap;
size_t logits_size;
memcpy(&logits_cap, inp, sizeof(logits_cap)); inp += sizeof(logits_cap);
memcpy(&logits_size, inp, sizeof(logits_size)); inp += sizeof(logits_size);
GGML_ASSERT(ctx->logits.capacity() == logits_cap);
if (logits_size) {
ctx->logits.resize(logits_size);
memcpy(ctx->logits.data(), inp, logits_size * sizeof(float));
}
inp += logits_cap * sizeof(float);
}
// set embeddings
{
size_t embedding_size;
memcpy(&embedding_size, inp, sizeof(embedding_size)); inp += sizeof(embedding_size);
GGML_ASSERT(ctx->embedding.capacity() == embedding_size);
if (embedding_size) {
memcpy(ctx->embedding.data(), inp, embedding_size * sizeof(float));
inp += embedding_size * sizeof(float);
}
}
// set kv cache
{
const auto & kv_self = ctx->kv_self;
const auto & hparams = ctx->model.hparams;
const int n_layer = hparams.n_layer;
const int n_embd = hparams.n_embd_gqa();
const int n_ctx = hparams.n_ctx;
size_t kv_size;
int kv_ntok;
memcpy(&kv_size, inp, sizeof(kv_size)); inp += sizeof(kv_size);
memcpy(&kv_ntok, inp, sizeof(kv_ntok)); inp += sizeof(kv_ntok);
if (kv_size) {
GGML_ASSERT(kv_self.buf.size == kv_size);
const size_t elt_size = ggml_element_size(kv_self.k);
ggml_context * cpy_ctx = ggml_init({ 4096, NULL, /* no_alloc */ true });
ggml_cgraph gf{};
ggml_tensor * kin3d = ggml_new_tensor_3d(cpy_ctx, kv_self.k->type, n_embd, kv_ntok, n_layer);
kin3d->data = (void *) inp;
inp += ggml_nbytes(kin3d);
ggml_tensor * vin3d = ggml_new_tensor_3d(cpy_ctx, kv_self.v->type, kv_ntok, n_embd, n_layer);
vin3d->data = (void *) inp;
inp += ggml_nbytes(vin3d);
ggml_tensor * k3d = ggml_view_3d(cpy_ctx, kv_self.k,
n_embd, kv_ntok, n_layer,
elt_size*n_embd, elt_size*n_embd*n_ctx, 0);
ggml_tensor * v3d = ggml_view_3d(cpy_ctx, kv_self.v,
kv_ntok, n_embd, n_layer,
elt_size*n_ctx, elt_size*n_ctx*n_embd, 0);
ggml_build_forward_expand(&gf, ggml_cpy(cpy_ctx, kin3d, k3d));
ggml_build_forward_expand(&gf, ggml_cpy(cpy_ctx, vin3d, v3d));
ggml_graph_compute_helper(ctx->work_buffer, &gf, /*n_threads*/ 1);
ggml_free(cpy_ctx);
}
ctx->kv_self.head = kv_ntok;
ctx->kv_self.size = kv_size;
}
const size_t nread = inp - src;
const size_t max_size = llama_get_state_size(ctx);
GGML_ASSERT(nread <= max_size);
return nread;
}
static bool llama_load_session_file_internal(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
llama_file file(path_session, "rb");
// sanity checks
{
const uint32_t magic = file.read_u32();
const uint32_t version = file.read_u32();
if (magic != LLAMA_SESSION_MAGIC || version != LLAMA_SESSION_VERSION) {
LLAMA_LOG_ERROR("%s : unknown (magic, version) for session file: %08x, %08x\n", __func__, magic, version);
return false;
}
llama_hparams session_hparams;
file.read_raw(&session_hparams, sizeof(llama_hparams));
if (session_hparams != ctx->model.hparams) {
LLAMA_LOG_INFO("%s : model hparams didn't match from session file!\n", __func__);
return false;
}
}
// load the prompt
{
const uint32_t n_token_count = file.read_u32();
if (n_token_count > n_token_capacity) {
LLAMA_LOG_ERROR("%s : token count in session file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity);
return false;
}
file.read_raw(tokens_out, sizeof(llama_token) * n_token_count);
*n_token_count_out = n_token_count;
}
// restore the context state
{
const size_t n_state_size_cur = file.size - file.tell();
const size_t n_state_size_max = llama_get_state_size(ctx);
if (n_state_size_cur > n_state_size_max) {
LLAMA_LOG_ERROR("%s : the state size in session file is too big! max %zu, got %zu\n", __func__, n_state_size_max, n_state_size_cur);
return false;
}
std::vector<uint8_t> state_data(n_state_size_max);
file.read_raw(state_data.data(), n_state_size_cur);
llama_set_state_data(ctx, state_data.data());
}
return true;
}
bool llama_load_session_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
try {
return llama_load_session_file_internal(ctx, path_session, tokens_out, n_token_capacity, n_token_count_out);
} catch (const std::exception & err) {
LLAMA_LOG_ERROR("error loading session file: %s\n", err.what());
return false;
}
}
bool llama_save_session_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
llama_file file(path_session, "wb");
file.write_u32(LLAMA_SESSION_MAGIC);
file.write_u32(LLAMA_SESSION_VERSION);
file.write_raw(&ctx->model.hparams, sizeof(llama_hparams));
// save the prompt
file.write_u32((uint32_t) n_token_count);
file.write_raw(tokens, sizeof(llama_token) * n_token_count);
// save the context state using stream saving
llama_data_file_context data_ctx(&file);
llama_copy_state_data_internal(ctx, &data_ctx);
return true;
}
int llama_eval(
struct llama_context * ctx,
llama_token * tokens,
int32_t n_tokens,
int n_past,
int n_threads) {
llama_kv_cache_tokens_rm(ctx->kv_self, n_past, -1);
const int ret = llama_decode_internal(*ctx, llama_batch_get_one(tokens, n_tokens, n_past, 0), n_threads);
if (ret != 0) {
if (ret < 0) {
LLAMA_LOG_ERROR("%s: failed to decode, ret = %d\n", __func__, ret);
}
return ret;
}
return ret;
}
int llama_eval_embd(
struct llama_context * ctx,
float * embd,
int32_t n_tokens,
int n_past,
int n_threads) {
llama_kv_cache_tokens_rm(ctx->kv_self, n_past, -1);
llama_batch batch = { n_tokens, nullptr, embd, nullptr, nullptr, nullptr, n_past, 1, 0, };
const int ret = llama_decode_internal(*ctx, batch, n_threads);
if (ret != 0) {
if (ret < 0) {
LLAMA_LOG_ERROR("%s: failed to decode, ret = %d\n", __func__, ret);
}
return ret;
}
return ret;
}
struct llama_batch llama_batch_get_one(
llama_token * tokens,
int32_t n_tokens,
llama_pos pos_0,
llama_seq_id seq_id) {
return {
/*n_tokens =*/ n_tokens,
/*tokens =*/ tokens,
/*embd =*/ nullptr,
/*pos =*/ nullptr,
/*seq_id =*/ nullptr,
/*logits =*/ nullptr,
/*all_pos_0 =*/ pos_0,
/*all_pos_1 =*/ 1,
/*all_seq_id =*/ seq_id,
};
}
struct llama_batch llama_batch_init(int32_t n_tokens, int32_t embd) {
llama_batch batch = { -1, nullptr, nullptr, nullptr, nullptr, nullptr, 0, 0, 0, };
if (embd) {
batch.embd = (float *) malloc(sizeof(float) * n_tokens * embd);
} else {
batch.token = (llama_token *) malloc(sizeof(llama_token) * n_tokens);
}
batch.pos = (llama_pos *) malloc(sizeof(llama_pos) * n_tokens);
batch.seq_id = (llama_seq_id *) malloc(sizeof(llama_seq_id) * n_tokens);
batch.logits = (int8_t *) malloc(sizeof(int8_t) * n_tokens);
return batch;
}
void llama_batch_free(struct llama_batch batch) {
if (batch.token) free(batch.token);
if (batch.embd) free(batch.embd);
if (batch.pos) free(batch.pos);
if (batch.seq_id) free(batch.seq_id);
if (batch.logits) free(batch.logits);
}
int llama_decode(
struct llama_context * ctx,
struct llama_batch batch,
int n_threads) {
const int ret = llama_decode_internal(*ctx, batch, n_threads);
if (ret != 0) {
if (ret < 0) {
LLAMA_LOG_ERROR("%s: failed to decode, ret = %d\n", __func__, ret);
}
return ret;
}
return ret;
}
float * llama_get_logits(struct llama_context * ctx) {
return ctx->logits.data();
}
float * llama_get_embeddings(struct llama_context * ctx) {
return ctx->embedding.data();
}
const char * llama_token_get_text(const struct llama_context * ctx, llama_token token) {
return ctx->model.vocab.id_to_token[token].text.c_str();
}
float llama_token_get_score(const struct llama_context * ctx, llama_token token) {
return ctx->model.vocab.id_to_token[token].score;
}
llama_token_type llama_token_get_type(const struct llama_context * ctx, llama_token token) {
return ctx->model.vocab.id_to_token[token].type;
}
llama_token llama_token_bos(const struct llama_context * ctx) {
return ctx->model.vocab.special_bos_id;
}
llama_token llama_token_eos(const struct llama_context * ctx) {
return ctx->model.vocab.special_eos_id;
}
llama_token llama_token_nl(const struct llama_context * ctx) {
return ctx->model.vocab.linefeed_id;
}
int llama_tokenize(
struct llama_context * ctx,
const char * text,
int text_len,
llama_token * tokens,
int n_max_tokens,
bool add_bos) {
return llama_tokenize_with_model(&ctx->model, text, text_len, tokens, n_max_tokens, add_bos);
}
int llama_tokenize_with_model(
const struct llama_model * model,
const char * text,
int text_len,
llama_token * tokens,
int n_max_tokens,
bool add_bos) {
auto res = llama_tokenize_internal(model->vocab, std::string(text, text_len), add_bos);
if (n_max_tokens < (int) res.size()) {
// LLAMA_LOG_ERROR("%s: too many tokens\n", __func__);
return -((int) res.size());
}
for (size_t i = 0; i < res.size(); i++) {
tokens[i] = res[i];
}
return res.size();
}
int llama_token_to_piece(const struct llama_context * ctx, llama_token token, char * buf, int length) {
return llama_token_to_piece_with_model(&ctx->model, token, buf, length);
}
// does not write null-terminator to buf
int llama_token_to_piece_with_model(const struct llama_model * model, llama_token token, char * buf, int length) {
if (0 <= token && token < llama_model_n_vocab(model)) {
if (llama_is_normal_token(model->vocab, token)) {
std::string result = model->vocab.id_to_token[token].text;
if (llama_vocab_get_type(model->vocab) == LLAMA_VOCAB_TYPE_SPM) {
llama_unescape_whitespace(result);
}
if (length < (int) result.length()) {
return -result.length();
}
memcpy(buf, result.c_str(), result.length());
return result.length();
} else if (llama_is_unknown_token(model->vocab, token)) { // NOLINT
if (length < 3) {
return -3;
}
buf[0] = '\xe2';
buf[1] = '\x96';
buf[2] = '\x85';
return 3;
} else if (llama_is_control_token(model->vocab, token)) {
;
} else if (llama_is_byte_token(model->vocab, token)) {
if (length < 1) {
return -1;
}
buf[0] = llama_token_to_byte(model->vocab, token);
return 1;
}
}
return 0;
}
struct llama_timings llama_get_timings(struct llama_context * ctx) {
struct llama_timings result = {
/*.t_start_ms =*/ 1e-3 * ctx->t_start_us,
/*.t_end_ms =*/ 1.00 * ggml_time_ms(),
/*.t_load_ms =*/ 1e-3 * ctx->t_load_us,
/*.t_sample_ms =*/ 1e-3 * ctx->t_sample_us,
/*.t_p_eval_ms =*/ 1e-3 * ctx->t_p_eval_us,
/*.t_eval_ms =*/ 1e-3 * ctx->t_eval_us,
/*.n_sample =*/ std::max(1, ctx->n_sample),
/*.n_p_eval =*/ std::max(1, ctx->n_p_eval),
/*.n_eval =*/ std::max(1, ctx->n_eval),
};
return result;
}
void llama_print_timings(struct llama_context * ctx) {
const llama_timings timings = llama_get_timings(ctx);
LLAMA_LOG_INFO("\n");
LLAMA_LOG_INFO("%s: load time = %8.2f ms\n", __func__, timings.t_load_ms);
LLAMA_LOG_INFO("%s: sample time = %8.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
__func__, timings.t_sample_ms, timings.n_sample, timings.t_sample_ms / timings.n_sample, 1e3 / timings.t_sample_ms * timings.n_sample);
LLAMA_LOG_INFO("%s: prompt eval time = %8.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n",
__func__, timings.t_p_eval_ms, timings.n_p_eval, timings.t_p_eval_ms / timings.n_p_eval, 1e3 / timings.t_p_eval_ms * timings.n_p_eval);
LLAMA_LOG_INFO("%s: eval time = %8.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
__func__, timings.t_eval_ms, timings.n_eval, timings.t_eval_ms / timings.n_eval, 1e3 / timings.t_eval_ms * timings.n_eval);
LLAMA_LOG_INFO("%s: total time = %8.2f ms\n", __func__, (timings.t_end_ms - timings.t_start_ms));
}
void llama_reset_timings(struct llama_context * ctx) {
ctx->t_start_us = ggml_time_us();
ctx->t_sample_us = ctx->n_sample = 0;
ctx->t_eval_us = ctx->n_eval = 0;
ctx->t_p_eval_us = ctx->n_p_eval = 0;
}
const char * llama_print_system_info(void) {
static std::string s;
s = "";
s += "AVX = " + std::to_string(ggml_cpu_has_avx()) + " | ";
s += "AVX2 = " + std::to_string(ggml_cpu_has_avx2()) + " | ";
s += "AVX512 = " + std::to_string(ggml_cpu_has_avx512()) + " | ";
s += "AVX512_VBMI = " + std::to_string(ggml_cpu_has_avx512_vbmi()) + " | ";
s += "AVX512_VNNI = " + std::to_string(ggml_cpu_has_avx512_vnni()) + " | ";
s += "FMA = " + std::to_string(ggml_cpu_has_fma()) + " | ";
s += "NEON = " + std::to_string(ggml_cpu_has_neon()) + " | ";
s += "ARM_FMA = " + std::to_string(ggml_cpu_has_arm_fma()) + " | ";
s += "F16C = " + std::to_string(ggml_cpu_has_f16c()) + " | ";
s += "FP16_VA = " + std::to_string(ggml_cpu_has_fp16_va()) + " | ";
s += "WASM_SIMD = " + std::to_string(ggml_cpu_has_wasm_simd()) + " | ";
s += "BLAS = " + std::to_string(ggml_cpu_has_blas()) + " | ";
s += "SSE3 = " + std::to_string(ggml_cpu_has_sse3()) + " | ";
s += "SSSE3 = " + std::to_string(ggml_cpu_has_ssse3()) + " | ";
s += "VSX = " + std::to_string(ggml_cpu_has_vsx()) + " | ";
return s.c_str();
}
void llama_dump_timing_info_yaml(FILE * stream, const llama_context * ctx) {
fprintf(stream, "\n");
fprintf(stream, "###########\n");
fprintf(stream, "# Timings #\n");
fprintf(stream, "###########\n");
fprintf(stream, "\n");
fprintf(stream, "mst_eval: %.2f # ms / token during generation\n",
1.0e-3 * ctx->t_eval_us / ctx->n_eval);
fprintf(stream, "mst_p_eval: %.2f # ms / token during prompt processing\n",
1.0e-3 * ctx->t_p_eval_us / ctx->n_p_eval);
fprintf(stream, "mst_sample: %.2f # ms / token during sampling\n",
1.0e-3 * ctx->t_sample_us / ctx->n_sample);
fprintf(stream, "n_eval: %d # number of tokens generated (excluding the first one)\n", ctx->n_eval);
fprintf(stream, "n_p_eval: %d # number of tokens processed in batches at the beginning\n", ctx->n_p_eval);
fprintf(stream, "n_sample: %d # number of sampled tokens\n", ctx->n_sample);
fprintf(stream, "t_eval_us: %" PRId64 " # total microseconds spent generating tokens\n", ctx->t_eval_us);
fprintf(stream, "t_load_us: %" PRId64 " # total microseconds spent loading the model\n", ctx->t_load_us);
fprintf(stream, "t_p_eval_us: %" PRId64 " # total microseconds spent prompt processing\n", ctx->t_p_eval_us);
fprintf(stream, "t_sample_us: %" PRId64 " # total microseconds spent sampling\n", ctx->t_sample_us);
fprintf(stream, "ts_eval: %.2f # tokens / second during generation\n",
1.0e6 * ctx->n_eval / ctx->t_eval_us);
fprintf(stream, "ts_p_eval: %.2f # tokens / second during prompt processing\n",
1.0e6 * ctx->n_p_eval / ctx->t_p_eval_us);
fprintf(stream, "ts_sample: %.2f # tokens / second during sampling\n",
1.0e6 * ctx->n_sample / ctx->t_sample_us);
}
// For internal test use
const std::vector<std::pair<std::string, struct ggml_tensor *>> & llama_internal_get_tensor_map(
struct llama_context * ctx
) {
return ctx->model.tensors_by_name;
}
void llama_log_set(llama_log_callback log_callback, void * user_data) {
g_state.log_callback = log_callback ? log_callback : llama_log_callback_default;
g_state.log_callback_user_data = user_data;
}
static void llama_log_internal_v(llama_log_level level, const char * format, va_list args) {
va_list args_copy;
va_copy(args_copy, args);
char buffer[128];
int len = vsnprintf(buffer, 128, format, args);
if (len < 128) {
g_state.log_callback(level, buffer, g_state.log_callback_user_data);
} else {
char* buffer2 = new char[len+1];
vsnprintf(buffer2, len+1, format, args_copy);
buffer2[len] = 0;
g_state.log_callback(level, buffer2, g_state.log_callback_user_data);
delete[] buffer2;
}
va_end(args_copy);
}
static void llama_log_internal(llama_log_level level, const char * format, ...) {
va_list args;
va_start(args, format);
llama_log_internal_v(level, format, args);
va_end(args);
}
static void llama_log_callback_default(llama_log_level level, const char * text, void * user_data) {
(void) level;
(void) user_data;
fputs(text, stderr);
fflush(stderr);
}