llama.cpp/examples/simple/simple.cpp
Przemysław Pawełczyk cb6c44c5e0
build : do not use _GNU_SOURCE gratuitously (#2035)
* Do not use _GNU_SOURCE gratuitously.

What is needed to build llama.cpp and examples is availability of
stuff defined in The Open Group Base Specifications Issue 6
(https://pubs.opengroup.org/onlinepubs/009695399/) known also as
Single Unix Specification v3 (SUSv3) or POSIX.1-2001 + XSI extensions,
plus some stuff from BSD that is not specified in POSIX.1.

Well, that was true until NUMA support was added recently,
so enable GNU libc extensions for Linux builds to cover that.

Not having feature test macros in source code gives greater flexibility
to those wanting to reuse it in 3rd party app, as they can build it with
FTMs set by Makefile here or other FTMs depending on their needs.

It builds without issues in Alpine (musl libc), Ubuntu (glibc), MSYS2.

* make : enable Darwin extensions for macOS to expose RLIMIT_MEMLOCK

* make : enable BSD extensions for DragonFlyBSD to expose RLIMIT_MEMLOCK

* make : use BSD-specific FTMs to enable alloca on BSDs

* make : fix OpenBSD build by exposing newer POSIX definitions

* cmake : follow recent FTM improvements from Makefile
2023-09-08 15:09:21 +03:00

127 lines
3.4 KiB
C++

#include "build-info.h"
#include "common.h"
#include "llama.h"
#include <cmath>
#include <cstdio>
#include <string>
#include <vector>
int main(int argc, char ** argv) {
gpt_params params;
if (argc == 1 || argv[1][0] == '-') {
printf("usage: %s MODEL_PATH [PROMPT]\n" , argv[0]);
return 1 ;
}
if (argc >= 2) {
params.model = argv[1];
}
if (argc >= 3) {
params.prompt = argv[2];
}
if (params.prompt.empty()) {
params.prompt = "Hello my name is";
}
// init LLM
llama_backend_init(params.numa);
llama_context_params ctx_params = llama_context_default_params();
llama_model * model = llama_load_model_from_file(params.model.c_str(), ctx_params);
if (model == NULL) {
fprintf(stderr , "%s: error: unable to load model\n" , __func__);
return 1;
}
llama_context * ctx = llama_new_context_with_model(model, ctx_params);
// tokenize the prompt
std::vector<llama_token> tokens_list;
tokens_list = ::llama_tokenize(ctx, params.prompt, true);
const int max_context_size = llama_n_ctx(ctx);
const int max_tokens_list_size = max_context_size - 4;
if ((int) tokens_list.size() > max_tokens_list_size) {
fprintf(stderr, "%s: error: prompt too long (%d tokens, max %d)\n", __func__, (int) tokens_list.size(), max_tokens_list_size);
return 1;
}
fprintf(stderr, "\n\n");
for (auto id : tokens_list) {
fprintf(stderr, "%s", llama_token_to_piece(ctx, id).c_str());
}
fflush(stderr);
// main loop
// The LLM keeps a contextual cache memory of previous token evaluation.
// Usually, once this cache is full, it is required to recompute a compressed context based on previous
// tokens (see "infinite text generation via context swapping" in the main example), but in this minimalist
// example, we will just stop the loop once this cache is full or once an end of stream is detected.
const int n_gen = std::min(32, max_context_size);
while (llama_get_kv_cache_token_count(ctx) < n_gen) {
// evaluate the transformer
if (llama_eval(ctx, tokens_list.data(), int(tokens_list.size()), llama_get_kv_cache_token_count(ctx), params.n_threads)) {
fprintf(stderr, "%s : failed to eval\n", __func__);
return 1;
}
tokens_list.clear();
// sample the next token
llama_token new_token_id = 0;
auto logits = llama_get_logits(ctx);
auto n_vocab = llama_n_vocab(ctx);
std::vector<llama_token_data> candidates;
candidates.reserve(n_vocab);
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
candidates.emplace_back(llama_token_data{ token_id, logits[token_id], 0.0f });
}
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
new_token_id = llama_sample_token_greedy(ctx , &candidates_p);
// is it an end of stream ?
if (new_token_id == llama_token_eos(ctx)) {
fprintf(stderr, " [end of text]\n");
break;
}
// print the new token :
printf("%s", llama_token_to_piece(ctx, new_token_id).c_str());
fflush(stdout);
// push this new token for next evaluation
tokens_list.push_back(new_token_id);
}
llama_free(ctx);
llama_free_model(model);
llama_backend_free();
fprintf(stderr, "\n\n");
return 0;
}