mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-12 03:31:46 +00:00
42c76d1358
* Introduce ggml_compute_threadpool - OpenMP functional: check - Vanilla ggml functional: Check - ggml w/threadpool functional: Check - OpenMP no regression: No glaring problems - Vanilla ggml no regression: No glaring problems - ggml w/threadpool no regression: No glaring problems * Minor fixes * fixed use after release bug * fixed a harmless race condition * Fix Android bulid issue * fix more race conditions * fix deadlock for cases where cgraph.n_nodes == 1 and fix --poll case * threadpool: use cpu_get_num_math to set the default number of threadpool threads This way we avoid using E-Cores and Hyperthreaded siblings. * bench: create fresh threadpool for each test For benchmarking it's better to start a fresh pool for each test with the exact number of threads needed for that test. Having larger pools is suboptimal (causes more load, etc). * atomics: always use stdatomics with clang and use relaxed memory order when polling in ggml_barrier This also removes sched_yield() calls from ggml_barrier() to match OpenMP behavior. * threadpool: make polling the default to match openmp behavior All command line args now allow for setting poll to 0 (false). * threadpool: do not wakeup threads in already paused threadpool * fix potential race condition in check_for_work * threadpool: do not create two threadpools if their params are identical * threadpool: reduce pause/resume/wakeup overhead in common cases We now start threadpool in paused state only if we have two. The resume is now implicit (ie new work) which allows for reduced locking and context-switch overhead. * threadpool: add support for hybrid polling poll params (--poll, ...) now specify "polling level", i.e. how aggresively we poll before waiting on cond.var. poll=0 means no polling, 1 means poll for 128K rounds then wait, 2 for 256K rounds, ... The default value of 50 (ie 50x128K rounds) seems like a decent default across modern platforms. We can tune this further as things evolve. * threadpool: reduce the number of barrier required New work is now indicated with an atomic counter that is incremented for each new graph that needs to be computed. This removes the need for extra barrier for clearing the "new_work" and removes the special case for trivial graphs. * threadpool: remove special-casing for disposable threadpools With the efficient hybrid polling there is no need to make disposable pools any different. This simplifies the overall logic and reduces branching. Include n_threads in debug print for disposable threadpool. Declare pause and stop flags as atomic_bool This doesn't actually generate any memory barriers and simply informs the thread sanitizer that these flags can be written & read by different threads without locking. * threadpool: do not clear barrier counters between graphs computes (fixes race with small graphs) This fixes the race condition with very small graphs where the main thread happens to start a new graph while the workers are just about to exit from barriers. * threadpool: use relaxed order for chunk sync Full memory barrier is an overkill for this since each thread works on different chunk * threadpool: remove abort_callback from threadpool state * threadpool: better naming for thread/cpumask releated functions * threadpool: consistent use of int type for n_threads params * threadpool: add support for ggml_threadpool_params_default/init Also removes the need for explicit mask_specified param. all-zero cpumask means use default (usually inherited) cpu affinity mask. * threadpool: move typedef into ggml.h * threadpool: fix apply_priority() function name * threadpool: fix swift wrapper errors due to n_threads int type cleanup * threadpool: enable --cpu-mask and other threadpool related options only if threadpool is enabled * threadpool: replace checks for compute_thread ret code with proper status check * threadpool: simplify threadpool init logic and fix main thread affinity application Most of the init code is now exactly the same between threadpool and openmp. * threadpool: update threadpool resume/pause function names * threadpool: enable openmp by default for now * threadpool: don't forget to free workers state when omp is enabled * threadpool: avoid updating process priority on the platforms that do not require it On Windows we need to change overall process priority class in order to set thread priorities, but on Linux, Mac, etc we do not need to touch the overall process settings. * threadpool: update calling thread prio and affinity only at start/resume This avoids extra syscalls for each graph_compute() * llama-bench: turn threadpool params into vectors, add output headers, etc * llama-bench: add support for cool off between tests --delay This helps for long running tests on platforms that are thermally limited (phones, laptops, etc). --delay (disabled by default) introduces the sleep for N seconds before starting each test. * threadpool: move process priority setting into the apps (bench and cli) This avoids changing the overall process priority on Windows for the apps that use ggml/llama.cpp directy. * threadpool: move all pause/resume logic into ggml * threadpool: futher api cleanup and prep for future refactoring All threadpool related functions and structs use ggml_threadpool prefix. * threadpool: minor indent fixes * threadpool: improve setprioty error message * Update examples/llama-bench/llama-bench.cpp Co-authored-by: slaren <slarengh@gmail.com> * threadpool: fix indent in set_threadpool call * use int32_t for n_thread type in public llama.cpp API * threadpool: use _new and _free instead of _create and _release * fix two more public APIs to use int32_t for n_threads * build: set _GNU_SOURCE for Adroid --------- Co-authored-by: Max Krasnyansky <quic_maxk@quicinc.com> Co-authored-by: fmz <quic_fzaghlou@quic.com> Co-authored-by: Max Krasnyansky <max.krasnyansky@gmail.com> Co-authored-by: slaren <slarengh@gmail.com>
341 lines
13 KiB
C++
341 lines
13 KiB
C++
#include "ggml.h"
|
|
#include "log.h"
|
|
#include "common.h"
|
|
#include "clip.h"
|
|
#include "llava.h"
|
|
#include "llama.h"
|
|
|
|
#include "base64.hpp"
|
|
|
|
#include <cstdio>
|
|
#include <cstdlib>
|
|
#include <vector>
|
|
|
|
static bool eval_tokens(struct llama_context * ctx_llama, std::vector<llama_token> tokens, int n_batch, int * n_past) {
|
|
int N = (int) tokens.size();
|
|
for (int i = 0; i < N; i += n_batch) {
|
|
int n_eval = (int) tokens.size() - i;
|
|
if (n_eval > n_batch) {
|
|
n_eval = n_batch;
|
|
}
|
|
if (llama_decode(ctx_llama, llama_batch_get_one(&tokens[i], n_eval, *n_past, 0))) {
|
|
LOG_TEE("%s : failed to eval. token %d/%d (batch size %d, n_past %d)\n", __func__, i, N, n_batch, *n_past);
|
|
return false;
|
|
}
|
|
*n_past += n_eval;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool eval_id(struct llama_context * ctx_llama, int id, int * n_past) {
|
|
std::vector<llama_token> tokens;
|
|
tokens.push_back(id);
|
|
return eval_tokens(ctx_llama, tokens, 1, n_past);
|
|
}
|
|
|
|
static bool eval_string(struct llama_context * ctx_llama, const char* str, int n_batch, int * n_past, bool add_bos){
|
|
std::string str2 = str;
|
|
std::vector<llama_token> embd_inp = ::llama_tokenize(ctx_llama, str2, add_bos, true);
|
|
eval_tokens(ctx_llama, embd_inp, n_batch, n_past);
|
|
return true;
|
|
}
|
|
|
|
static const char * sample(struct llama_sampling_context * ctx_sampling,
|
|
struct llama_context * ctx_llama,
|
|
int * n_past) {
|
|
const llama_token id = llama_sampling_sample(ctx_sampling, ctx_llama, NULL);
|
|
llama_sampling_accept(ctx_sampling, ctx_llama, id, true);
|
|
static std::string ret;
|
|
if (llama_token_is_eog(llama_get_model(ctx_llama), id)) {
|
|
ret = "</s>";
|
|
} else {
|
|
ret = llama_token_to_piece(ctx_llama, id);
|
|
}
|
|
eval_id(ctx_llama, id, n_past);
|
|
return ret.c_str();
|
|
}
|
|
|
|
static const char* IMG_BASE64_TAG_BEGIN = "<img src=\"data:image/jpeg;base64,";
|
|
static const char* IMG_BASE64_TAG_END = "\">";
|
|
|
|
static void find_image_tag_in_prompt(const std::string& prompt, size_t& begin_out, size_t& end_out) {
|
|
begin_out = prompt.find(IMG_BASE64_TAG_BEGIN);
|
|
end_out = prompt.find(IMG_BASE64_TAG_END, (begin_out == std::string::npos) ? 0UL : begin_out);
|
|
}
|
|
|
|
static bool prompt_contains_image(const std::string& prompt) {
|
|
size_t begin, end;
|
|
find_image_tag_in_prompt(prompt, begin, end);
|
|
return (begin != std::string::npos);
|
|
}
|
|
|
|
// replaces the base64 image tag in the prompt with `replacement`
|
|
static llava_image_embed * llava_image_embed_make_with_prompt_base64(struct clip_ctx * ctx_clip, int n_threads, const std::string& prompt) {
|
|
size_t img_base64_str_start, img_base64_str_end;
|
|
find_image_tag_in_prompt(prompt, img_base64_str_start, img_base64_str_end);
|
|
if (img_base64_str_start == std::string::npos || img_base64_str_end == std::string::npos) {
|
|
LOG_TEE("%s: invalid base64 image tag. must be %s<base64 byte string>%s\n", __func__, IMG_BASE64_TAG_BEGIN, IMG_BASE64_TAG_END);
|
|
return NULL;
|
|
}
|
|
|
|
auto base64_bytes_start = img_base64_str_start + strlen(IMG_BASE64_TAG_BEGIN);
|
|
auto base64_bytes_count = img_base64_str_end - base64_bytes_start;
|
|
auto base64_str = prompt.substr(base64_bytes_start, base64_bytes_count );
|
|
|
|
auto required_bytes = base64::required_encode_size(base64_str.size());
|
|
auto img_bytes = std::vector<unsigned char>(required_bytes);
|
|
base64::decode(base64_str.begin(), base64_str.end(), img_bytes.begin());
|
|
|
|
auto embed = llava_image_embed_make_with_bytes(ctx_clip, n_threads, img_bytes.data(), img_bytes.size());
|
|
if (!embed) {
|
|
LOG_TEE("%s: could not load image from base64 string.\n", __func__);
|
|
return NULL;
|
|
}
|
|
|
|
return embed;
|
|
}
|
|
|
|
static std::string remove_image_from_prompt(const std::string& prompt, const char * replacement = "") {
|
|
size_t begin, end;
|
|
find_image_tag_in_prompt(prompt, begin, end);
|
|
if (begin == std::string::npos || end == std::string::npos) {
|
|
return prompt;
|
|
}
|
|
auto pre = prompt.substr(0, begin);
|
|
auto post = prompt.substr(end + strlen(IMG_BASE64_TAG_END));
|
|
return pre + replacement + post;
|
|
}
|
|
|
|
struct llava_context {
|
|
struct clip_ctx * ctx_clip = NULL;
|
|
struct llama_context * ctx_llama = NULL;
|
|
struct llama_model * model = NULL;
|
|
};
|
|
|
|
static void print_usage(int argc, char ** argv, const gpt_params & params) {
|
|
gpt_params_print_usage(argc, argv, params);
|
|
|
|
LOG_TEE("\n example usage:\n");
|
|
LOG_TEE("\n %s -m <llava-v1.5-7b/ggml-model-q5_k.gguf> --mmproj <llava-v1.5-7b/mmproj-model-f16.gguf> --image <path/to/an/image.jpg> --image <path/to/another/image.jpg> [--temp 0.1] [-p \"describe the image in detail.\"]\n", argv[0]);
|
|
LOG_TEE("\n note: a lower temperature value like 0.1 is recommended for better quality.\n");
|
|
}
|
|
|
|
static struct llava_image_embed * load_image(llava_context * ctx_llava, gpt_params * params, const std::string & fname) {
|
|
|
|
// load and preprocess the image
|
|
llava_image_embed * embed = NULL;
|
|
auto prompt = params->prompt;
|
|
if (prompt_contains_image(prompt)) {
|
|
if (!params->image.empty()) {
|
|
LOG_TEE("using base64 encoded image instead of command line image path\n");
|
|
}
|
|
embed = llava_image_embed_make_with_prompt_base64(ctx_llava->ctx_clip, params->cpuparams.n_threads, prompt);
|
|
if (!embed) {
|
|
LOG_TEE("%s: can't load image from prompt\n", __func__);
|
|
return NULL;
|
|
}
|
|
params->prompt = remove_image_from_prompt(prompt);
|
|
} else {
|
|
embed = llava_image_embed_make_with_filename(ctx_llava->ctx_clip, params->cpuparams.n_threads, fname.c_str());
|
|
if (!embed) {
|
|
fprintf(stderr, "%s: is %s really an image file?\n", __func__, fname.c_str());
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
return embed;
|
|
}
|
|
|
|
static void process_prompt(struct llava_context * ctx_llava, struct llava_image_embed * image_embed, gpt_params * params, const std::string & prompt) {
|
|
int n_past = 0;
|
|
|
|
const int max_tgt_len = params->n_predict < 0 ? 256 : params->n_predict;
|
|
|
|
std::string system_prompt, user_prompt;
|
|
size_t image_pos = prompt.find("<image>");
|
|
if (image_pos != std::string::npos) {
|
|
// new templating mode: Provide the full prompt including system message and use <image> as a placeholder for the image
|
|
system_prompt = prompt.substr(0, image_pos);
|
|
user_prompt = prompt.substr(image_pos + std::string("<image>").length());
|
|
LOG_TEE("system_prompt: %s\n", system_prompt.c_str());
|
|
if (params->verbose_prompt) {
|
|
auto tmp = ::llama_tokenize(ctx_llava->ctx_llama, system_prompt, true, true);
|
|
for (int i = 0; i < (int) tmp.size(); i++) {
|
|
LOG_TEE("%6d -> '%s'\n", tmp[i], llama_token_to_piece(ctx_llava->ctx_llama, tmp[i]).c_str());
|
|
}
|
|
}
|
|
LOG_TEE("user_prompt: %s\n", user_prompt.c_str());
|
|
if (params->verbose_prompt) {
|
|
auto tmp = ::llama_tokenize(ctx_llava->ctx_llama, user_prompt, true, true);
|
|
for (int i = 0; i < (int) tmp.size(); i++) {
|
|
LOG_TEE("%6d -> '%s'\n", tmp[i], llama_token_to_piece(ctx_llava->ctx_llama, tmp[i]).c_str());
|
|
}
|
|
}
|
|
} else {
|
|
// llava-1.5 native mode
|
|
system_prompt = "A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.\nUSER:";
|
|
user_prompt = prompt + "\nASSISTANT:";
|
|
if (params->verbose_prompt) {
|
|
auto tmp = ::llama_tokenize(ctx_llava->ctx_llama, user_prompt, true, true);
|
|
for (int i = 0; i < (int) tmp.size(); i++) {
|
|
LOG_TEE("%6d -> '%s'\n", tmp[i], llama_token_to_piece(ctx_llava->ctx_llama, tmp[i]).c_str());
|
|
}
|
|
}
|
|
}
|
|
|
|
eval_string(ctx_llava->ctx_llama, system_prompt.c_str(), params->n_batch, &n_past, true);
|
|
llava_eval_image_embed(ctx_llava->ctx_llama, image_embed, params->n_batch, &n_past);
|
|
eval_string(ctx_llava->ctx_llama, user_prompt.c_str(), params->n_batch, &n_past, false);
|
|
|
|
// generate the response
|
|
|
|
LOG_TEE("\n");
|
|
|
|
struct llama_sampling_context * ctx_sampling = llama_sampling_init(params->sparams);
|
|
if (!ctx_sampling) {
|
|
fprintf(stderr, "%s: failed to initialize sampling subsystem\n", __func__);
|
|
exit(1);
|
|
}
|
|
|
|
std::string response = "";
|
|
for (int i = 0; i < max_tgt_len; i++) {
|
|
const char * tmp = sample(ctx_sampling, ctx_llava->ctx_llama, &n_past);
|
|
response += tmp;
|
|
if (strcmp(tmp, "</s>") == 0) break;
|
|
if (strstr(tmp, "###")) break; // Yi-VL behavior
|
|
printf("%s", tmp);
|
|
if (strstr(response.c_str(), "<|im_end|>")) break; // Yi-34B llava-1.6 - for some reason those decode not as the correct token (tokenizer works)
|
|
if (strstr(response.c_str(), "<|im_start|>")) break; // Yi-34B llava-1.6
|
|
if (strstr(response.c_str(), "USER:")) break; // mistral llava-1.6
|
|
|
|
fflush(stdout);
|
|
}
|
|
|
|
llama_sampling_free(ctx_sampling);
|
|
printf("\n");
|
|
}
|
|
|
|
static struct llama_model * llava_init(gpt_params * params) {
|
|
llama_backend_init();
|
|
llama_numa_init(params->numa);
|
|
|
|
llama_model_params model_params = llama_model_params_from_gpt_params(*params);
|
|
|
|
llama_model * model = llama_load_model_from_file(params->model.c_str(), model_params);
|
|
if (model == NULL) {
|
|
LOG_TEE("%s: error: unable to load model\n" , __func__);
|
|
return NULL;
|
|
}
|
|
return model;
|
|
}
|
|
|
|
static struct llava_context * llava_init_context(gpt_params * params, llama_model * model) {
|
|
const char * clip_path = params->mmproj.c_str();
|
|
|
|
auto prompt = params->prompt;
|
|
if (prompt.empty()) {
|
|
prompt = "describe the image in detail.";
|
|
}
|
|
|
|
auto ctx_clip = clip_model_load(clip_path, /*verbosity=*/ 1);
|
|
|
|
|
|
llama_context_params ctx_params = llama_context_params_from_gpt_params(*params);
|
|
ctx_params.n_ctx = params->n_ctx < 2048 ? 2048 : params->n_ctx; // we need a longer context size to process image embeddings
|
|
|
|
llama_context * ctx_llama = llama_new_context_with_model(model, ctx_params);
|
|
|
|
if (ctx_llama == NULL) {
|
|
LOG_TEE("%s: error: failed to create the llama_context\n" , __func__);
|
|
return NULL;
|
|
}
|
|
|
|
auto ctx_llava = (struct llava_context *)malloc(sizeof(llava_context));
|
|
|
|
ctx_llava->ctx_llama = ctx_llama;
|
|
ctx_llava->ctx_clip = ctx_clip;
|
|
ctx_llava->model = model;
|
|
return ctx_llava;
|
|
}
|
|
|
|
static void llava_free(struct llava_context * ctx_llava) {
|
|
if (ctx_llava->ctx_clip) {
|
|
clip_free(ctx_llava->ctx_clip);
|
|
ctx_llava->ctx_clip = NULL;
|
|
}
|
|
|
|
llama_free(ctx_llava->ctx_llama);
|
|
llama_free_model(ctx_llava->model);
|
|
llama_backend_free();
|
|
}
|
|
|
|
static void llama_log_callback_logTee(ggml_log_level level, const char * text, void * user_data) {
|
|
(void) level;
|
|
(void) user_data;
|
|
LOG_TEE("%s", text);
|
|
}
|
|
|
|
int main(int argc, char ** argv) {
|
|
ggml_time_init();
|
|
|
|
gpt_params params;
|
|
|
|
if (!gpt_params_parse(argc, argv, params)) {
|
|
print_usage(argc, argv, params);
|
|
return 1;
|
|
}
|
|
|
|
#ifndef LOG_DISABLE_LOGS
|
|
log_set_target(log_filename_generator("llava", "log"));
|
|
LOG_TEE("Log start\n");
|
|
log_dump_cmdline(argc, argv);
|
|
llama_log_set(llama_log_callback_logTee, nullptr);
|
|
#endif // LOG_DISABLE_LOGS
|
|
|
|
if (params.mmproj.empty() || (params.image.empty() && !prompt_contains_image(params.prompt))) {
|
|
print_usage(argc, argv, {});
|
|
return 1;
|
|
}
|
|
auto model = llava_init(¶ms);
|
|
if (model == NULL) {
|
|
fprintf(stderr, "%s: error: failed to init llava model\n", __func__);
|
|
return 1;
|
|
}
|
|
|
|
if (prompt_contains_image(params.prompt)) {
|
|
auto ctx_llava = llava_init_context(¶ms, model);
|
|
|
|
auto image_embed = load_image(ctx_llava, ¶ms, "");
|
|
|
|
// process the prompt
|
|
process_prompt(ctx_llava, image_embed, ¶ms, params.prompt);
|
|
|
|
llama_print_timings(ctx_llava->ctx_llama);
|
|
llava_image_embed_free(image_embed);
|
|
ctx_llava->model = NULL;
|
|
llava_free(ctx_llava);
|
|
} else {
|
|
for (auto & image : params.image) {
|
|
auto ctx_llava = llava_init_context(¶ms, model);
|
|
|
|
auto image_embed = load_image(ctx_llava, ¶ms, image);
|
|
if (!image_embed) {
|
|
std::cerr << "error: failed to load image " << image << ". Terminating\n\n";
|
|
return 1;
|
|
}
|
|
|
|
// process the prompt
|
|
process_prompt(ctx_llava, image_embed, ¶ms, params.prompt);
|
|
|
|
llama_print_timings(ctx_llava->ctx_llama);
|
|
llava_image_embed_free(image_embed);
|
|
ctx_llava->model = NULL;
|
|
llava_free(ctx_llava);
|
|
}
|
|
}
|
|
|
|
llama_free_model(model);
|
|
|
|
return 0;
|
|
}
|