mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-13 12:10:18 +00:00
753 lines
31 KiB
C++
753 lines
31 KiB
C++
// Various helper functions and utilities
|
||
|
||
#pragma once
|
||
|
||
#include "llama.h"
|
||
|
||
#include <queue>
|
||
#include <string>
|
||
#include <vector>
|
||
#include <sstream>
|
||
#include <unordered_map>
|
||
|
||
#ifdef _WIN32
|
||
#define DIRECTORY_SEPARATOR '\\'
|
||
#else
|
||
#define DIRECTORY_SEPARATOR '/'
|
||
#endif // _WIN32
|
||
|
||
#define die(msg) do { fputs("error: " msg "\n", stderr); exit(1); } while (0)
|
||
#define die_fmt(fmt, ...) do { fprintf(stderr, "error: " fmt "\n", __VA_ARGS__); exit(1); } while (0)
|
||
|
||
#define print_build_info() do { \
|
||
fprintf(stderr, "%s: build = %d (%s)\n", __func__, LLAMA_BUILD_NUMBER, LLAMA_COMMIT); \
|
||
fprintf(stderr, "%s: built with %s for %s\n", __func__, LLAMA_COMPILER, LLAMA_BUILD_TARGET); \
|
||
} while(0)
|
||
|
||
#define DEFAULT_MODEL_PATH "models/7B/ggml-model-f16.gguf"
|
||
|
||
struct llama_lora_adapter_info {
|
||
std::string path;
|
||
float scale;
|
||
};
|
||
|
||
struct llama_lora_adapter_container : llama_lora_adapter_info {
|
||
struct llama_lora_adapter * adapter;
|
||
};
|
||
|
||
// build info
|
||
extern int LLAMA_BUILD_NUMBER;
|
||
extern char const * LLAMA_COMMIT;
|
||
extern char const * LLAMA_COMPILER;
|
||
extern char const * LLAMA_BUILD_TARGET;
|
||
|
||
struct llama_control_vector_load_info;
|
||
|
||
//
|
||
// CPU utils
|
||
//
|
||
|
||
struct cpu_params {
|
||
int n_threads = -1;
|
||
bool cpumask[GGML_MAX_N_THREADS] = {false}; // CPU affinity mask.
|
||
bool mask_valid = false; // Default: any CPU
|
||
enum ggml_sched_priority priority = GGML_SCHED_PRIO_NORMAL; // Scheduling prio : (0 - normal, 1 - medium, 2 - high, 3 - realtime)
|
||
bool strict_cpu = false; // Use strict CPU placement
|
||
uint32_t poll = 50; // Polling (busywait) level (0 - no polling, 100 - mostly polling)
|
||
};
|
||
|
||
int32_t cpu_get_num_physical_cores();
|
||
int32_t cpu_get_num_math();
|
||
|
||
//
|
||
// Common params
|
||
//
|
||
|
||
enum llama_example {
|
||
LLAMA_EXAMPLE_COMMON,
|
||
LLAMA_EXAMPLE_SPECULATIVE,
|
||
LLAMA_EXAMPLE_MAIN,
|
||
LLAMA_EXAMPLE_INFILL,
|
||
LLAMA_EXAMPLE_EMBEDDING,
|
||
LLAMA_EXAMPLE_PERPLEXITY,
|
||
LLAMA_EXAMPLE_RETRIEVAL,
|
||
LLAMA_EXAMPLE_PASSKEY,
|
||
LLAMA_EXAMPLE_IMATRIX,
|
||
LLAMA_EXAMPLE_BENCH,
|
||
LLAMA_EXAMPLE_SERVER,
|
||
LLAMA_EXAMPLE_CVECTOR_GENERATOR,
|
||
LLAMA_EXAMPLE_EXPORT_LORA,
|
||
LLAMA_EXAMPLE_LLAVA,
|
||
LLAMA_EXAMPLE_LOOKUP,
|
||
LLAMA_EXAMPLE_PARALLEL,
|
||
|
||
LLAMA_EXAMPLE_COUNT,
|
||
};
|
||
|
||
enum gpt_sampler_type {
|
||
GPT_SAMPLER_TYPE_NONE = 0,
|
||
GPT_SAMPLER_TYPE_TOP_K = 1,
|
||
GPT_SAMPLER_TYPE_TOP_P = 2,
|
||
GPT_SAMPLER_TYPE_MIN_P = 3,
|
||
GPT_SAMPLER_TYPE_TFS_Z = 4,
|
||
GPT_SAMPLER_TYPE_TYPICAL_P = 5,
|
||
GPT_SAMPLER_TYPE_TEMPERATURE = 6,
|
||
};
|
||
|
||
// dimensionality reduction methods, used by cvector-generator
|
||
enum dimre_method {
|
||
DIMRE_METHOD_PCA,
|
||
DIMRE_METHOD_MEAN,
|
||
};
|
||
|
||
// sampler parameters
|
||
struct gpt_sampler_params {
|
||
uint32_t seed = LLAMA_DEFAULT_SEED; // the seed used to initialize llama_sampler
|
||
|
||
int32_t n_prev = 64; // number of previous tokens to remember
|
||
int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens.
|
||
int32_t min_keep = 0; // 0 = disabled, otherwise samplers should return at least min_keep tokens
|
||
int32_t top_k = 40; // <= 0 to use vocab size
|
||
float top_p = 0.95f; // 1.0 = disabled
|
||
float min_p = 0.05f; // 0.0 = disabled
|
||
float tfs_z = 1.00f; // 1.0 = disabled
|
||
float typ_p = 1.00f; // typical_p, 1.0 = disabled
|
||
float temp = 0.80f; // <= 0.0 to sample greedily, 0.0 to not output probabilities
|
||
float dynatemp_range = 0.00f; // 0.0 = disabled
|
||
float dynatemp_exponent = 1.00f; // controls how entropy maps to temperature in dynamic temperature sampler
|
||
int32_t penalty_last_n = 64; // last n tokens to penalize (0 = disable penalty, -1 = context size)
|
||
float penalty_repeat = 1.00f; // 1.0 = disabled
|
||
float penalty_freq = 0.00f; // 0.0 = disabled
|
||
float penalty_present = 0.00f; // 0.0 = disabled
|
||
int32_t mirostat = 0; // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0
|
||
float mirostat_tau = 5.00f; // target entropy
|
||
float mirostat_eta = 0.10f; // learning rate
|
||
bool penalize_nl = false; // consider newlines as a repeatable token
|
||
bool ignore_eos = false;
|
||
bool no_perf = false; // disable performance metrics
|
||
|
||
std::vector<enum gpt_sampler_type> samplers = {
|
||
GPT_SAMPLER_TYPE_TOP_K,
|
||
GPT_SAMPLER_TYPE_TFS_Z,
|
||
GPT_SAMPLER_TYPE_TYPICAL_P,
|
||
GPT_SAMPLER_TYPE_TOP_P,
|
||
GPT_SAMPLER_TYPE_MIN_P,
|
||
GPT_SAMPLER_TYPE_TEMPERATURE
|
||
};
|
||
|
||
std::string grammar; // optional BNF-like grammar to constrain sampling
|
||
std::vector<std::string> grammar_trigger_words; // optional trigger words to enable grammar
|
||
|
||
std::vector<llama_logit_bias> logit_bias; // logit biases to apply
|
||
|
||
// print the parameters into a string
|
||
std::string print() const;
|
||
};
|
||
|
||
struct gpt_params {
|
||
int32_t n_predict = -1; // new tokens to predict
|
||
int32_t n_ctx = 0; // context size
|
||
int32_t n_batch = 2048; // logical batch size for prompt processing (must be >=32 to use BLAS)
|
||
int32_t n_ubatch = 512; // physical batch size for prompt processing (must be >=32 to use BLAS)
|
||
int32_t n_keep = 0; // number of tokens to keep from initial prompt
|
||
int32_t n_draft = 5; // number of tokens to draft during speculative decoding
|
||
int32_t n_chunks = -1; // max number of chunks to process (-1 = unlimited)
|
||
int32_t n_parallel = 1; // number of parallel sequences to decode
|
||
int32_t n_sequences = 1; // number of sequences to decode
|
||
float p_split = 0.1f; // speculative decoding split probability
|
||
int32_t n_gpu_layers = -1; // number of layers to store in VRAM (-1 - use default)
|
||
int32_t n_gpu_layers_draft = -1; // number of layers to store in VRAM for the draft model (-1 - use default)
|
||
int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
|
||
float tensor_split[128] = {0}; // how split tensors should be distributed across GPUs
|
||
int32_t grp_attn_n = 1; // group-attention factor
|
||
int32_t grp_attn_w = 512; // group-attention width
|
||
int32_t n_print = -1; // print token count every n tokens (-1 = disabled)
|
||
float rope_freq_base = 0.0f; // RoPE base frequency
|
||
float rope_freq_scale = 0.0f; // RoPE frequency scaling factor
|
||
float yarn_ext_factor = -1.0f; // YaRN extrapolation mix factor
|
||
float yarn_attn_factor = 1.0f; // YaRN magnitude scaling factor
|
||
float yarn_beta_fast = 32.0f; // YaRN low correction dim
|
||
float yarn_beta_slow = 1.0f; // YaRN high correction dim
|
||
int32_t yarn_orig_ctx = 0; // YaRN original context length
|
||
float defrag_thold = -1.0f; // KV cache defragmentation threshold
|
||
|
||
struct cpu_params cpuparams;
|
||
struct cpu_params cpuparams_batch;
|
||
struct cpu_params draft_cpuparams;
|
||
struct cpu_params draft_cpuparams_batch;
|
||
|
||
ggml_backend_sched_eval_callback cb_eval = nullptr;
|
||
void * cb_eval_user_data = nullptr;
|
||
|
||
ggml_numa_strategy numa = GGML_NUMA_STRATEGY_DISABLED;
|
||
|
||
enum llama_split_mode split_mode = LLAMA_SPLIT_MODE_LAYER; // how to split the model across GPUs
|
||
enum llama_rope_scaling_type rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED;
|
||
enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_UNSPECIFIED; // pooling type for embeddings
|
||
enum llama_attention_type attention_type = LLAMA_ATTENTION_TYPE_UNSPECIFIED; // attention type for embeddings
|
||
|
||
struct gpt_sampler_params sparams;
|
||
|
||
std::string model = ""; // model path // NOLINT
|
||
std::string model_draft = ""; // draft model for speculative decoding // NOLINT
|
||
std::string model_alias = "unknown"; // model alias // NOLINT
|
||
std::string model_url = ""; // model url to download // NOLINT
|
||
std::string hf_token = ""; // HF token // NOLINT
|
||
std::string hf_repo = ""; // HF repo // NOLINT
|
||
std::string hf_file = ""; // HF file // NOLINT
|
||
std::string prompt = ""; // NOLINT
|
||
std::string prompt_file = ""; // store the external prompt file name // NOLINT
|
||
std::string path_prompt_cache = ""; // path to file for saving/loading prompt eval state // NOLINT
|
||
std::string input_prefix = ""; // string to prefix user inputs with // NOLINT
|
||
std::string input_suffix = ""; // string to suffix user inputs with // NOLINT
|
||
std::string logdir = ""; // directory in which to save YAML log files // NOLINT
|
||
std::string lookup_cache_static = ""; // path of static ngram cache file for lookup decoding // NOLINT
|
||
std::string lookup_cache_dynamic = ""; // path of dynamic ngram cache file for lookup decoding // NOLINT
|
||
std::string logits_file = ""; // file for saving *all* logits // NOLINT
|
||
std::string rpc_servers = ""; // comma separated list of RPC servers // NOLINT
|
||
|
||
std::vector<std::string> in_files; // all input files
|
||
std::vector<std::string> antiprompt; // strings upon which more user input is prompted (a.k.a. reverse prompts)
|
||
std::vector<llama_model_kv_override> kv_overrides;
|
||
|
||
bool lora_init_without_apply = false; // only load lora to memory, but do not apply it to ctx (user can manually apply lora later using llama_lora_adapter_apply)
|
||
std::vector<llama_lora_adapter_info> lora_adapters; // lora adapter path with user defined scale
|
||
|
||
std::vector<llama_control_vector_load_info> control_vectors; // control vector with user defined scale
|
||
|
||
int32_t verbosity = 0;
|
||
int32_t control_vector_layer_start = -1; // layer range for control vector
|
||
int32_t control_vector_layer_end = -1; // layer range for control vector
|
||
|
||
int32_t ppl_stride = 0; // stride for perplexity calculations. If left at 0, the pre-existing approach will be used.
|
||
int32_t ppl_output_type = 0; // = 0 -> ppl output is as usual, = 1 -> ppl output is num_tokens, ppl, one per line
|
||
// (which is more convenient to use for plotting)
|
||
//
|
||
bool hellaswag = false; // compute HellaSwag score over random tasks from datafile supplied in prompt
|
||
size_t hellaswag_tasks = 400; // number of tasks to use when computing the HellaSwag score
|
||
|
||
bool winogrande = false; // compute Winogrande score over random tasks from datafile supplied in prompt
|
||
size_t winogrande_tasks = 0; // number of tasks to use when computing the Winogrande score. If 0, all tasks will be computed
|
||
|
||
bool multiple_choice = false; // compute TruthfulQA score over random tasks from datafile supplied in prompt
|
||
size_t multiple_choice_tasks = 0; // number of tasks to use when computing the TruthfulQA score. If 0, all tasks will be computed
|
||
|
||
bool kl_divergence = false; // compute KL divergence
|
||
|
||
bool usage = false; // print usage
|
||
bool use_color = false; // use color to distinguish generations and inputs
|
||
bool special = false; // enable special token output
|
||
bool interactive = false; // interactive mode
|
||
bool interactive_first = false; // wait for user input immediately
|
||
bool conversation = false; // conversation mode (does not print special tokens and suffix/prefix)
|
||
bool prompt_cache_all = false; // save user input and generations to prompt cache
|
||
bool prompt_cache_ro = false; // open the prompt cache read-only and do not update it
|
||
|
||
bool escape = true; // escape "\n", "\r", "\t", "\'", "\"", and "\\"
|
||
bool multiline_input = false; // reverse the usage of `\`
|
||
bool simple_io = false; // improves compatibility with subprocesses and limited consoles
|
||
bool cont_batching = true; // insert new sequences for decoding on-the-fly
|
||
bool flash_attn = false; // flash attention
|
||
bool no_perf = false; // disable performance metrics
|
||
bool ctx_shift = true; // context shift on inifinite text generation
|
||
|
||
bool input_prefix_bos = false; // prefix BOS to user inputs, preceding input_prefix
|
||
bool logits_all = false; // return logits for all tokens in the batch
|
||
bool use_mmap = true; // use mmap for faster loads
|
||
bool use_mlock = false; // use mlock to keep model in memory
|
||
bool verbose_prompt = false; // print prompt tokens before generation
|
||
bool display_prompt = true; // print prompt before generation
|
||
bool dump_kv_cache = false; // dump the KV cache contents for debugging purposes
|
||
bool no_kv_offload = false; // disable KV offloading
|
||
bool warmup = true; // warmup run
|
||
bool check_tensors = false; // validate tensor data
|
||
|
||
std::string cache_type_k = "f16"; // KV cache data type for the K
|
||
std::string cache_type_v = "f16"; // KV cache data type for the V
|
||
|
||
// multimodal models (see examples/llava)
|
||
std::string mmproj = ""; // path to multimodal projector // NOLINT
|
||
std::vector<std::string> image; // path to image file(s)
|
||
|
||
// embedding
|
||
bool embedding = false; // get only sentence embedding
|
||
int32_t embd_normalize = 2; // normalisation for embendings (-1=none, 0=max absolute int16, 1=taxicab, 2=euclidean, >2=p-norm)
|
||
std::string embd_out = ""; // empty = default, "array" = [[],[]...], "json" = openai style, "json+" = same "json" + cosine similarity matrix
|
||
std::string embd_sep = "\n"; // separator of embendings
|
||
|
||
// server params
|
||
int32_t port = 8080; // server listens on this network port
|
||
int32_t timeout_read = 600; // http read timeout in seconds
|
||
int32_t timeout_write = timeout_read; // http write timeout in seconds
|
||
int n_threads_http = -1; // number of threads to process HTTP requests (TODO: support threadpool)
|
||
|
||
std::string hostname = "127.0.0.1";
|
||
std::string public_path = ""; // NOLINT
|
||
std::string chat_template = ""; // NOLINT
|
||
std::string system_prompt = ""; // NOLINT
|
||
bool enable_chat_template = true;
|
||
|
||
std::vector<std::string> api_keys;
|
||
|
||
std::string ssl_file_key = ""; // NOLINT
|
||
std::string ssl_file_cert = ""; // NOLINT
|
||
|
||
bool endpoint_slots = true;
|
||
bool endpoint_metrics = false;
|
||
|
||
bool log_json = false;
|
||
|
||
std::string slot_save_path;
|
||
|
||
float slot_prompt_similarity = 0.5f;
|
||
|
||
// batched-bench params
|
||
bool is_pp_shared = false;
|
||
|
||
std::vector<int32_t> n_pp;
|
||
std::vector<int32_t> n_tg;
|
||
std::vector<int32_t> n_pl;
|
||
|
||
// retrieval params
|
||
std::vector<std::string> context_files; // context files to embed
|
||
|
||
int32_t chunk_size = 64; // chunk size for context embedding
|
||
|
||
std::string chunk_separator = "\n"; // chunk separator for context embedding
|
||
|
||
// passkey params
|
||
int32_t n_junk = 250; // number of times to repeat the junk text
|
||
int32_t i_pos = -1; // position of the passkey in the junk text
|
||
|
||
// imatrix params
|
||
std::string out_file = "imatrix.dat"; // save the resulting imatrix to this file
|
||
|
||
int32_t n_out_freq = 10; // output the imatrix every n_out_freq iterations
|
||
int32_t n_save_freq = 0; // save the imatrix every n_save_freq iterations
|
||
int32_t i_chunk = 0; // start processing from this chunk
|
||
|
||
bool process_output = false; // collect data for the output tensor
|
||
bool compute_ppl = true; // whether to compute perplexity
|
||
|
||
// cvector-generator params
|
||
int n_pca_batch = 100;
|
||
int n_pca_iterations = 1000;
|
||
dimre_method cvector_dimre_method = DIMRE_METHOD_PCA;
|
||
std::string cvector_outfile = "control_vector.gguf";
|
||
std::string cvector_positive_file = "examples/cvector-generator/positive.txt";
|
||
std::string cvector_negative_file = "examples/cvector-generator/negative.txt";
|
||
|
||
bool spm_infill = false; // suffix/prefix/middle pattern for infill
|
||
|
||
std::string lora_outfile = "ggml-lora-merged-f16.gguf";
|
||
|
||
// batched-bench params
|
||
bool batched_bench_output_jsonl = false;
|
||
};
|
||
|
||
// call once at the start of a program if it uses libcommon
|
||
// initializes the logging system and prints info about the build
|
||
void gpt_init();
|
||
|
||
std::string gpt_params_get_system_info(const gpt_params & params);
|
||
|
||
bool parse_cpu_range(const std::string& range, bool(&boolmask)[GGML_MAX_N_THREADS]);
|
||
bool parse_cpu_mask(const std::string& mask, bool(&boolmask)[GGML_MAX_N_THREADS]);
|
||
void postprocess_cpu_params(cpu_params& cpuparams, const cpu_params* role_model = nullptr);
|
||
bool set_process_priority(enum ggml_sched_priority prio);
|
||
|
||
//
|
||
// String utils
|
||
//
|
||
|
||
std::vector<std::string> string_split(std::string input, char separator);
|
||
|
||
std::string string_strip(const std::string & str);
|
||
std::string string_get_sortable_timestamp();
|
||
|
||
void string_replace_all(std::string & s, const std::string & search, const std::string & replace);
|
||
|
||
template<class T>
|
||
static std::vector<T> string_split(const std::string & str, char delim) {
|
||
std::vector<T> values;
|
||
std::istringstream str_stream(str);
|
||
std::string token;
|
||
while (std::getline(str_stream, token, delim)) {
|
||
T value;
|
||
std::istringstream token_stream(token);
|
||
token_stream >> value;
|
||
values.push_back(value);
|
||
}
|
||
return values;
|
||
}
|
||
|
||
bool string_parse_kv_override(const char * data, std::vector<llama_model_kv_override> & overrides);
|
||
void string_process_escapes(std::string & input);
|
||
|
||
std::string string_from(bool value);
|
||
std::string string_from(const std::vector<int> & values);
|
||
std::string string_from(const struct llama_context * ctx, const std::vector<llama_token> & tokens);
|
||
std::string string_from(const struct llama_context * ctx, const struct llama_batch & batch);
|
||
|
||
//
|
||
// Filesystem utils
|
||
//
|
||
|
||
bool fs_validate_filename(const std::string & filename);
|
||
bool fs_create_directory_with_parents(const std::string & path);
|
||
|
||
std::string fs_get_cache_directory();
|
||
std::string fs_get_cache_file(const std::string & filename);
|
||
|
||
//
|
||
// Model utils
|
||
//
|
||
|
||
struct llama_init_result {
|
||
struct llama_model * model = nullptr;
|
||
struct llama_context * context = nullptr;
|
||
std::vector<llama_lora_adapter_container> lora_adapters;
|
||
};
|
||
|
||
struct llama_init_result llama_init_from_gpt_params(gpt_params & params);
|
||
|
||
struct llama_model_params llama_model_params_from_gpt_params (const gpt_params & params);
|
||
struct llama_context_params llama_context_params_from_gpt_params (const gpt_params & params);
|
||
struct ggml_threadpool_params ggml_threadpool_params_from_cpu_params(const cpu_params & params);
|
||
|
||
struct llama_model * llama_load_model_from_url(const char * model_url, const char * path_model, const char * hf_token, const struct llama_model_params & params);
|
||
struct llama_model * llama_load_model_from_hf(const char * repo, const char * file, const char * path_model, const char * hf_token, const struct llama_model_params & params);
|
||
|
||
// clear LoRA adapters from context, then apply new list of adapters
|
||
void llama_lora_adapters_apply(struct llama_context * ctx, std::vector<llama_lora_adapter_container> & lora_adapters);
|
||
|
||
// Batch utils
|
||
|
||
void llama_batch_clear(struct llama_batch & batch);
|
||
|
||
void llama_batch_add(
|
||
struct llama_batch & batch,
|
||
llama_token id,
|
||
llama_pos pos,
|
||
const std::vector<llama_seq_id> & seq_ids,
|
||
bool logits);
|
||
|
||
//
|
||
// Vocab utils
|
||
//
|
||
|
||
// tokenizes a string into a vector of tokens
|
||
// should work similar to Python's `tokenizer.encode`
|
||
std::vector<llama_token> llama_tokenize(
|
||
const struct llama_context * ctx,
|
||
const std::string & text,
|
||
bool add_special,
|
||
bool parse_special = false);
|
||
|
||
std::vector<llama_token> llama_tokenize(
|
||
const struct llama_model * model,
|
||
const std::string & text,
|
||
bool add_special,
|
||
bool parse_special = false);
|
||
|
||
// tokenizes a token into a piece, optionally renders special/control tokens
|
||
// should work similar to Python's `tokenizer.id_to_piece`
|
||
std::string llama_token_to_piece(
|
||
const struct llama_context * ctx,
|
||
llama_token token,
|
||
bool special = true);
|
||
|
||
// detokenizes a vector of tokens into a string
|
||
// should work similar to Python's `tokenizer.decode`
|
||
// optionally renders special/control tokens
|
||
std::string llama_detokenize(
|
||
llama_context * ctx,
|
||
const std::vector<llama_token> & tokens,
|
||
bool special = true);
|
||
|
||
//
|
||
// Chat template utils
|
||
//
|
||
|
||
// same with llama_chat_message, but uses std::string
|
||
struct llama_chat_msg {
|
||
std::string role;
|
||
std::string content;
|
||
};
|
||
|
||
// Check if the template supplied via "--chat-template" is supported or not. Returns true if it's valid
|
||
bool llama_chat_verify_template(const std::string & tmpl);
|
||
|
||
// CPP wrapper for llama_chat_apply_template
|
||
// If the built-in template is not supported, we default to chatml
|
||
// If the custom "tmpl" is not supported, we throw an error
|
||
std::string llama_chat_apply_template(const struct llama_model * model,
|
||
const std::string & tmpl,
|
||
const std::vector<llama_chat_msg> & chat,
|
||
bool add_ass);
|
||
|
||
// Format single message, while taking into account the position of that message in chat history
|
||
std::string llama_chat_format_single(const struct llama_model * model,
|
||
const std::string & tmpl,
|
||
const std::vector<llama_chat_msg> & past_msg,
|
||
const llama_chat_msg & new_msg,
|
||
bool add_ass);
|
||
|
||
// Returns an example of formatted chat
|
||
std::string llama_chat_format_example(const struct llama_model * model,
|
||
const std::string & tmpl);
|
||
|
||
//
|
||
// KV cache utils
|
||
//
|
||
|
||
// Dump the KV cache view with the number of sequences per cell.
|
||
void llama_kv_cache_dump_view(const llama_kv_cache_view & view, int row_size = 80);
|
||
|
||
// Dump the KV cache view showing individual sequences in each cell (long output).
|
||
void llama_kv_cache_dump_view_seqs(const llama_kv_cache_view & view, int row_size = 40);
|
||
|
||
//
|
||
// Embedding utils
|
||
//
|
||
|
||
void llama_embd_normalize(const float * inp, float * out, int n, int embd_norm = 2);
|
||
|
||
float llama_embd_similarity_cos(const float * embd1, const float * embd2, int n);
|
||
|
||
//
|
||
// Control vector utils
|
||
//
|
||
|
||
struct llama_control_vector_data {
|
||
int n_embd;
|
||
|
||
// stores data for layers [1, n_layer] where n_layer = data.size() / n_embd
|
||
std::vector<float> data;
|
||
};
|
||
|
||
struct llama_control_vector_load_info {
|
||
float strength;
|
||
|
||
std::string fname;
|
||
};
|
||
|
||
// Load control vectors, scale each by strength, and add them together.
|
||
// On error, returns {-1, empty}
|
||
llama_control_vector_data llama_control_vector_load(const std::vector<llama_control_vector_load_info> & load_infos);
|
||
|
||
//
|
||
// Antiprompt utils
|
||
//
|
||
|
||
class llama_antiprompts {
|
||
public:
|
||
|
||
struct llama_antiprompt {
|
||
std::string value;
|
||
bool is_grammar_trigger;
|
||
};
|
||
|
||
std::vector<std::string> stop_words;
|
||
std::vector<std::string> grammar_trigger_words;
|
||
|
||
private:
|
||
// The Aho–Corasick algorithm allows efficient string matching with multiple patterns.
|
||
// See https://en.wikipedia.org/wiki/Aho%E2%80%93Corasick_algorithm
|
||
struct TrieNode {
|
||
std::unordered_map<char, TrieNode> children;
|
||
TrieNode* fail = nullptr;
|
||
int output = -1;
|
||
size_t depth = 0;
|
||
|
||
void clear() {
|
||
children.clear();
|
||
fail = nullptr;
|
||
output = -1;
|
||
depth = 0;
|
||
}
|
||
};
|
||
|
||
TrieNode root;
|
||
std::vector<llama_antiprompt> antiprompts;
|
||
std::unordered_map<llama_token, size_t> stop_tokens; // Single token antiprompts (and their index in antiprompts), if any.
|
||
|
||
void build_trie() {
|
||
// root = std::unique_ptr<TrieNode>(new TrieNode());
|
||
for (size_t i = 0; i < antiprompts.size(); ++i) {
|
||
TrieNode* node = &root;
|
||
const auto & pattern = antiprompts[i].value;
|
||
for (size_t j = 0; j < pattern.length(); ++j) {
|
||
char c = pattern[j];
|
||
auto & child = node->children[c];
|
||
if (child.depth == 0) {
|
||
child.depth = j + 1;
|
||
}
|
||
node = &child;
|
||
}
|
||
node->output = i;
|
||
}
|
||
}
|
||
|
||
void build_failure_and_dict_links() {
|
||
std::queue<TrieNode*> q;
|
||
for (auto& child : root.children) {
|
||
child.second.fail = &root;
|
||
q.push(&child.second);
|
||
}
|
||
|
||
while (!q.empty()) {
|
||
auto node = q.front();
|
||
q.pop();
|
||
|
||
for (auto & pair : node->children) {
|
||
auto & c = pair.first;
|
||
auto & child = pair.second;
|
||
auto f = node->fail;
|
||
|
||
while (f != &root && f->children.find(c) == f->children.end()) {
|
||
f = f->fail;
|
||
}
|
||
|
||
child.fail = (f == &root && f->children.find(c) == f->children.end())
|
||
? &root : &f->children[c];
|
||
|
||
if (child.fail->output != -1) {
|
||
child.output = child.fail->output;
|
||
}
|
||
|
||
q.push(&child);
|
||
}
|
||
}
|
||
}
|
||
|
||
public:
|
||
|
||
bool empty() const {
|
||
return antiprompts.empty() && stop_tokens.empty();
|
||
}
|
||
void clear() {
|
||
root.clear();
|
||
antiprompts.clear();
|
||
stop_tokens.clear();
|
||
}
|
||
|
||
void build(const llama_context * ctx, const std::vector<std::string> & stop_words, const std::vector<std::string> & grammar_trigger_words) {
|
||
build(
|
||
[&](const std::string & text) {
|
||
return llama_tokenize(ctx, text, /* special= */ true);
|
||
},
|
||
stop_words,
|
||
grammar_trigger_words
|
||
);
|
||
}
|
||
|
||
void build(const std::function<std::vector<llama_token>(const std::string)> & tokenizer, const std::vector<std::string> & stop_words, const std::vector<std::string> & grammar_trigger_words) {
|
||
clear();
|
||
this->stop_words = stop_words;
|
||
this->grammar_trigger_words = grammar_trigger_words;
|
||
|
||
for (const std::string & stop_word : stop_words) {
|
||
antiprompts.push_back({stop_word, /* is_grammar_trigger= */ false});
|
||
}
|
||
for (const std::string & trigger : grammar_trigger_words) {
|
||
antiprompts.push_back({trigger, /* is_grammar_trigger= */ true});
|
||
}
|
||
|
||
for (size_t i = 0, n = antiprompts.size(); i < n; i++) {
|
||
const auto & antiprompt = antiprompts[i];
|
||
std::vector<llama_token> tokens = tokenizer(antiprompt.value);
|
||
if (tokens.size() == 1) {
|
||
stop_tokens[tokens[0]] = i;
|
||
}
|
||
}
|
||
|
||
build_trie();
|
||
build_failure_and_dict_links();
|
||
}
|
||
|
||
struct MatchResult {
|
||
size_t pos;
|
||
std::string pattern;
|
||
bool is_partial;
|
||
size_t matchLength;
|
||
bool is_grammar_trigger;
|
||
|
||
bool operator==(const MatchResult & other) const {
|
||
return pos == other.pos && pattern == other.pattern && is_partial == other.is_partial && matchLength == other.matchLength && is_grammar_trigger == other.is_grammar_trigger;
|
||
}
|
||
operator std::string() const {
|
||
return "{pos=" + std::to_string(pos) + ", pattern=" + pattern + ", is_partial=" + std::to_string(is_partial) + ", matchLength=" + std::to_string(matchLength) + ", is_grammar_trigger=" + std::to_string(is_grammar_trigger) + "}";
|
||
}
|
||
};
|
||
|
||
MatchResult findSingleTokenMatch(llama_token token) const {
|
||
auto it = stop_tokens.find(token);
|
||
if (it != stop_tokens.end()) {
|
||
const auto & antiprompt = antiprompts[it->second];
|
||
return {0, antiprompt.value, false, antiprompt.value.length(), antiprompt.is_grammar_trigger};
|
||
}
|
||
return {std::string::npos, "", false, 0, false};
|
||
}
|
||
|
||
MatchResult findFirstMatch(const std::string& text, size_t offset = 0) {
|
||
TrieNode* current = &root;
|
||
MatchResult partialMatch{std::string::npos, "", true, 0, false};
|
||
|
||
for (size_t i = offset; i < text.length(); ++i) {
|
||
char c = text[i];
|
||
while (current != &root && current->children.find(c) == current->children.end()) {
|
||
current = current->fail;
|
||
}
|
||
auto it = current->children.find(c);
|
||
if (it != current->children.end()) {
|
||
current = &it->second;
|
||
}
|
||
if (current->output != -1) {
|
||
const auto & antiprompt = antiprompts[current->output];
|
||
return {
|
||
i - antiprompt.value.length() + 1,
|
||
antiprompt.value,
|
||
false,
|
||
antiprompt.value.length(),
|
||
antiprompt.is_grammar_trigger,
|
||
};
|
||
}
|
||
// Update partial match if we're at a deeper node
|
||
if (current->depth > partialMatch.matchLength) {
|
||
partialMatch.pos = i - current->depth + 1;
|
||
partialMatch.pattern = ""; // We don't know which pattern it partially matches
|
||
partialMatch.matchLength = current->depth;
|
||
partialMatch.is_grammar_trigger = false;
|
||
}
|
||
}
|
||
|
||
// If we've found a partial match and haven't returned a full match, return the partial match
|
||
if (partialMatch.pos != std::string::npos) {
|
||
return partialMatch;
|
||
}
|
||
|
||
return {std::string::npos, "", false, 0, false};
|
||
}
|
||
};
|
||
|
||
//
|
||
// Split utils
|
||
//
|
||
|
||
static const char * const LLM_KV_SPLIT_NO = "split.no";
|
||
static const char * const LLM_KV_SPLIT_COUNT = "split.count";
|
||
static const char * const LLM_KV_SPLIT_TENSORS_COUNT = "split.tensors.count";
|
||
|
||
//
|
||
// YAML utils
|
||
//
|
||
|
||
void yaml_dump_vector_float (FILE * stream, const char * prop_name, const std::vector<float> & data);
|
||
void yaml_dump_vector_int (FILE * stream, const char * prop_name, const std::vector<int> & data);
|
||
void yaml_dump_string_multiline(FILE * stream, const char * prop_name, const char * data);
|
||
|
||
void yaml_dump_non_result_info(
|
||
FILE * stream, const gpt_params & params, const llama_context * lctx,
|
||
const std::string & timestamp, const std::vector<int> & prompt_tokens, const char * model_desc);
|