mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-03 23:34:35 +00:00
4c676c85e5
* llama : refactor session file management * llama : saving and restoring state checks for overflow The size of the buffers should now be given to the functions working with them, otherwise a truncated file could cause out of bound reads. * llama : stream from session file instead of copying into a big buffer Loading session files should no longer cause a memory usage spike. * llama : llama_state_get_size returns the actual size instead of max This is a breaking change, but makes that function *much* easier to keep up to date, and it also makes it reflect the behavior of llama_state_seq_get_size. * llama : share code between whole and seq_id-specific state saving Both session file types now use a more similar format. * llama : no longer store all hparams in session files Instead, the model arch name is stored. The layer count and the embedding dimensions of the KV cache are still verified when loading. Storing all the hparams is not necessary. * llama : fix uint64_t format type * llama : various integer type cast and format string fixes Some platforms use "%lu" and others "%llu" for uint64_t. Not sure how to handle that, so casting to size_t when displaying errors. * llama : remove _context suffix for llama_data_context * llama : fix session file loading llama_state_get_size cannot be used to get the max size anymore. * llama : more graceful error handling of invalid session files * llama : remove LLAMA_MAX_RNG_STATE It's no longer necessary to limit the size of the RNG state, because the max size of session files is not estimated anymore. * llama : cast seq_id in comparison with unsigned n_seq_max
254 lines
8.3 KiB
C++
254 lines
8.3 KiB
C++
#include "common.h"
|
|
#include "llama.h"
|
|
|
|
#include <vector>
|
|
#include <cstdio>
|
|
#include <chrono>
|
|
|
|
int main(int argc, char ** argv) {
|
|
gpt_params params;
|
|
|
|
params.prompt = "The quick brown fox";
|
|
|
|
if (!gpt_params_parse(argc, argv, params)) {
|
|
gpt_params_print_usage(argc, argv, params);
|
|
return 1;
|
|
}
|
|
|
|
print_build_info();
|
|
|
|
if (params.n_predict < 0) {
|
|
params.n_predict = 16;
|
|
}
|
|
|
|
auto n_past = 0;
|
|
|
|
std::string result0;
|
|
std::string result1;
|
|
std::string result2;
|
|
|
|
// init
|
|
llama_model * model;
|
|
llama_context * ctx;
|
|
|
|
std::tie(model, ctx) = llama_init_from_gpt_params(params);
|
|
if (model == nullptr || ctx == nullptr) {
|
|
fprintf(stderr, "%s : failed to init\n", __func__);
|
|
return 1;
|
|
}
|
|
|
|
// tokenize prompt
|
|
auto tokens = llama_tokenize(ctx, params.prompt, true);
|
|
|
|
// evaluate prompt
|
|
llama_decode(ctx, llama_batch_get_one(tokens.data(), tokens.size(), n_past, 0));
|
|
n_past += tokens.size();
|
|
|
|
// save state (rng, logits, embedding and kv_cache) to file
|
|
{
|
|
std::vector<uint8_t> state_mem(llama_state_get_size(ctx));
|
|
const size_t written = llama_state_get_data(ctx, state_mem.data(), state_mem.size());
|
|
|
|
FILE *fp_write = fopen("dump_state.bin", "wb");
|
|
fwrite(state_mem.data(), 1, written, fp_write);
|
|
fclose(fp_write);
|
|
|
|
fprintf(stderr, "%s : serialized state into %zd out of a maximum of %zd bytes\n", __func__, written, state_mem.size());
|
|
}
|
|
|
|
// save state (last tokens)
|
|
const auto n_past_saved = n_past;
|
|
|
|
// first run
|
|
printf("\nfirst run: %s", params.prompt.c_str());
|
|
|
|
for (auto i = 0; i < params.n_predict; i++) {
|
|
auto * logits = llama_get_logits(ctx);
|
|
auto n_vocab = llama_n_vocab(model);
|
|
|
|
std::vector<llama_token_data> candidates;
|
|
candidates.reserve(n_vocab);
|
|
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
|
|
candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
|
|
}
|
|
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
|
|
auto next_token = llama_sample_token(ctx, &candidates_p);
|
|
auto next_token_str = llama_token_to_piece(ctx, next_token);
|
|
|
|
printf("%s", next_token_str.c_str());
|
|
result0 += next_token_str;
|
|
|
|
if (llama_decode(ctx, llama_batch_get_one(&next_token, 1, n_past, 0))) {
|
|
fprintf(stderr, "\n%s : failed to evaluate\n", __func__);
|
|
llama_free(ctx);
|
|
llama_free_model(model);
|
|
return 1;
|
|
}
|
|
n_past += 1;
|
|
}
|
|
|
|
printf("\n\n");
|
|
|
|
// free old context
|
|
llama_free(ctx);
|
|
|
|
// make new context
|
|
auto * ctx2 = llama_new_context_with_model(model, llama_context_params_from_gpt_params(params));
|
|
|
|
printf("\nsecond run: %s", params.prompt.c_str());
|
|
|
|
// load state (rng, logits, embedding and kv_cache) from file
|
|
{
|
|
std::vector<uint8_t> state_mem;
|
|
|
|
FILE * fp_read = fopen("dump_state.bin", "rb");
|
|
fseek(fp_read, 0, SEEK_END);
|
|
state_mem.resize(ftell(fp_read));
|
|
fseek(fp_read, 0, SEEK_SET);
|
|
const size_t read = fread(state_mem.data(), 1, state_mem.size(), fp_read);
|
|
fclose(fp_read);
|
|
|
|
if (read != llama_state_set_data(ctx2, state_mem.data(), state_mem.size())) {
|
|
fprintf(stderr, "\n%s : failed to read state\n", __func__);
|
|
llama_free(ctx2);
|
|
llama_free_model(model);
|
|
return 1;
|
|
}
|
|
|
|
fprintf(stderr, "%s : deserialized state from %zd out of a maximum of %zd bytes\n", __func__, read, state_mem.size());
|
|
}
|
|
|
|
// restore state (last tokens)
|
|
n_past = n_past_saved;
|
|
|
|
// second run
|
|
for (auto i = 0; i < params.n_predict; i++) {
|
|
auto * logits = llama_get_logits(ctx2);
|
|
auto n_vocab = llama_n_vocab(model);
|
|
std::vector<llama_token_data> candidates;
|
|
candidates.reserve(n_vocab);
|
|
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
|
|
candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
|
|
}
|
|
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
|
|
auto next_token = llama_sample_token(ctx2, &candidates_p);
|
|
auto next_token_str = llama_token_to_piece(ctx2, next_token);
|
|
|
|
printf("%s", next_token_str.c_str());
|
|
result1 += next_token_str;
|
|
|
|
if (llama_decode(ctx2, llama_batch_get_one(&next_token, 1, n_past, 0))) {
|
|
fprintf(stderr, "\n%s : failed to evaluate\n", __func__);
|
|
llama_free(ctx2);
|
|
llama_free_model(model);
|
|
return 1;
|
|
}
|
|
n_past += 1;
|
|
}
|
|
|
|
printf("\n\n");
|
|
|
|
llama_free(ctx2);
|
|
|
|
if (result0 != result1) {
|
|
fprintf(stderr, "\n%s : error : the 2 generations are different\n", __func__);
|
|
return 1;
|
|
}
|
|
|
|
// make new context
|
|
auto* ctx3 = llama_new_context_with_model(model, llama_context_params_from_gpt_params(params));
|
|
|
|
printf("\nsingle seq run: %s", params.prompt.c_str());
|
|
|
|
// load state (rng, logits, embedding and kv_cache) from file
|
|
{
|
|
std::vector<uint8_t> state_mem;
|
|
|
|
FILE * fp_read = fopen("dump_state.bin", "rb");
|
|
fseek(fp_read, 0, SEEK_END);
|
|
state_mem.resize(ftell(fp_read));
|
|
fseek(fp_read, 0, SEEK_SET);
|
|
const size_t read = fread(state_mem.data(), 1, state_mem.size(), fp_read);
|
|
fclose(fp_read);
|
|
|
|
if (read != llama_state_set_data(ctx3, state_mem.data(), state_mem.size())) {
|
|
fprintf(stderr, "\n%s : failed to read state\n", __func__);
|
|
llama_free(ctx3);
|
|
llama_free_model(model);
|
|
return 1;
|
|
}
|
|
|
|
fprintf(stderr, "%s : deserialized state from %zd out of a maximum of %zd bytes\n", __func__, read, state_mem.size());
|
|
}
|
|
|
|
// restore state (last tokens)
|
|
n_past = n_past_saved;
|
|
|
|
// save seq 0 and load into seq 1
|
|
{
|
|
// save kv of seq 0
|
|
std::vector<uint8_t> seq_store(llama_state_seq_get_size(ctx3, 0));
|
|
const size_t ncopy = llama_state_seq_get_data(ctx3, seq_store.data(), seq_store.size(), 0);
|
|
if (ncopy != seq_store.size()) {
|
|
fprintf(stderr, "\n%s : seq copy data length %zd does not match expected length %zd\n", __func__, ncopy, seq_store.size());
|
|
llama_free(ctx3);
|
|
llama_free_model(model);
|
|
return 1;
|
|
}
|
|
fprintf(stderr, "%s : seq 0 copied, %zd bytes\n", __func__, ncopy);
|
|
|
|
// erase whole kv
|
|
llama_kv_cache_clear(ctx3);
|
|
fprintf(stderr, "%s : kv cache cleared\n", __func__);
|
|
|
|
// restore kv into seq 1
|
|
const size_t nset = llama_state_seq_set_data(ctx3, seq_store.data(), seq_store.size(), 1);
|
|
if (nset != seq_store.size()) {
|
|
fprintf(stderr, "\n%s : seq set data length %zd does not match expected length %zd\n", __func__, nset, seq_store.size());
|
|
llama_free(ctx3);
|
|
llama_free_model(model);
|
|
return 1;
|
|
}
|
|
fprintf(stderr, "%s : seq 1 restored, %zd bytes\n", __func__, nset);
|
|
}
|
|
|
|
// third run with seq 1 instead of 0
|
|
for (auto i = 0; i < params.n_predict; i++) {
|
|
auto * logits = llama_get_logits(ctx3);
|
|
auto n_vocab = llama_n_vocab(model);
|
|
std::vector<llama_token_data> candidates;
|
|
candidates.reserve(n_vocab);
|
|
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
|
|
candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
|
|
}
|
|
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
|
|
auto next_token = llama_sample_token(ctx3, &candidates_p);
|
|
auto next_token_str = llama_token_to_piece(ctx3, next_token);
|
|
|
|
printf("%s", next_token_str.c_str());
|
|
result2 += next_token_str;
|
|
|
|
if (llama_decode(ctx3, llama_batch_get_one(&next_token, 1, n_past, 1))) {
|
|
fprintf(stderr, "\n%s : failed to evaluate\n", __func__);
|
|
llama_free(ctx3);
|
|
llama_free_model(model);
|
|
return 1;
|
|
}
|
|
n_past += 1;
|
|
}
|
|
|
|
printf("\n");
|
|
|
|
llama_free(ctx3);
|
|
llama_free_model(model);
|
|
|
|
if (result0 != result2) {
|
|
fprintf(stderr, "\n%s : error : the seq restore generation is different\n", __func__);
|
|
return 1;
|
|
}
|
|
|
|
fprintf(stderr, "\n%s : success\n", __func__);
|
|
|
|
return 0;
|
|
}
|