mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-11-14 06:49:54 +00:00
b8ad1b66b2
* server: allow json array in prompt or content We accept an array of strings and numbers representing tokens, in addition to the current string valued prompt or content. This allows direct token input, so that any special tokens can be processed and used at the frontend during the construction of the json data, before sending to the server. And the server does not need to know or parse special tokens from textual input. With this, we can use EOS and BOS used in llama-2-chat models. * server: use tokenizePrompt(json) and default "" if empty prompt * server: fix prompt check * server: tokenize endpoint no longer adds BOS
1494 lines
52 KiB
C++
1494 lines
52 KiB
C++
#include "common.h"
|
|
#include "llama.h"
|
|
#include "build-info.h"
|
|
#include "grammar-parser.h"
|
|
|
|
#ifndef NDEBUG
|
|
// crash the server in debug mode, otherwise send an http 500 error
|
|
#define CPPHTTPLIB_NO_EXCEPTIONS 1
|
|
#endif
|
|
|
|
#include "httplib.h"
|
|
#include "json.hpp"
|
|
|
|
// auto generated files (update with ./deps.sh)
|
|
#include "index.html.hpp"
|
|
#include "index.js.hpp"
|
|
#include "completion.js.hpp"
|
|
#include "json-schema-to-grammar.mjs.hpp"
|
|
|
|
#ifndef SERVER_VERBOSE
|
|
#define SERVER_VERBOSE 1
|
|
#endif
|
|
|
|
using namespace httplib;
|
|
using json = nlohmann::json;
|
|
|
|
struct server_params
|
|
{
|
|
std::string hostname = "127.0.0.1";
|
|
std::string public_path = "examples/server/public";
|
|
int32_t port = 8080;
|
|
int32_t read_timeout = 600;
|
|
int32_t write_timeout = 600;
|
|
};
|
|
|
|
// completion token output with probabilities
|
|
struct completion_token_output
|
|
{
|
|
struct token_prob
|
|
{
|
|
llama_token tok;
|
|
float prob;
|
|
};
|
|
|
|
std::vector<token_prob> probs;
|
|
llama_token tok;
|
|
};
|
|
|
|
static size_t common_part(const std::vector<llama_token> &a, const std::vector<llama_token> &b)
|
|
{
|
|
size_t i;
|
|
for (i = 0; i < a.size() && i < b.size() && a[i] == b[i]; i++)
|
|
{
|
|
}
|
|
return i;
|
|
}
|
|
|
|
enum stop_type
|
|
{
|
|
STOP_FULL,
|
|
STOP_PARTIAL,
|
|
};
|
|
|
|
static bool ends_with(const std::string &str, const std::string &suffix)
|
|
{
|
|
return str.size() >= suffix.size() &&
|
|
0 == str.compare(str.size() - suffix.size(), suffix.size(), suffix);
|
|
}
|
|
|
|
static size_t find_partial_stop_string(const std::string &stop,
|
|
const std::string &text)
|
|
{
|
|
if (!text.empty() && !stop.empty())
|
|
{
|
|
const char text_last_char = text.back();
|
|
for (int64_t char_index = stop.size() - 1; char_index >= 0; char_index--)
|
|
{
|
|
if (stop[char_index] == text_last_char)
|
|
{
|
|
const std::string current_partial = stop.substr(0, char_index + 1);
|
|
if (ends_with(text, current_partial))
|
|
{
|
|
return text.size() - char_index - 1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return std::string::npos;
|
|
}
|
|
|
|
template <class Iter>
|
|
static std::string tokens_to_str(llama_context *ctx, Iter begin, Iter end)
|
|
{
|
|
std::string ret;
|
|
for (; begin != end; ++begin)
|
|
{
|
|
ret += llama_token_to_str(ctx, *begin);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static void server_log(const char *level, const char *function, int line,
|
|
const char *message, const nlohmann::ordered_json &extra)
|
|
{
|
|
nlohmann::ordered_json log{
|
|
{"timestamp", time(nullptr)},
|
|
{"level", level},
|
|
{"function", function},
|
|
{"line", line},
|
|
{"message", message},
|
|
};
|
|
|
|
if (!extra.empty())
|
|
{
|
|
log.merge_patch(extra);
|
|
}
|
|
|
|
const std::string str = log.dump(-1, ' ', false, json::error_handler_t::replace);
|
|
fprintf(stdout, "%.*s\n", (int)str.size(), str.data());
|
|
fflush(stdout);
|
|
}
|
|
|
|
// format incomplete utf-8 multibyte character for output
|
|
static std::string tokens_to_output_formatted_string(const llama_context *ctx, const llama_token token)
|
|
{
|
|
std::string out = token == -1 ? "" : llama_token_to_str(ctx, token);
|
|
// if first bit is 1, meaning it's a partial character
|
|
if (out.size() > 0 && (out[0] & 0x80) == 0x80)
|
|
{
|
|
std::stringstream ss;
|
|
ss << std::hex << (out[0] & 0xff);
|
|
std::string res(ss.str());
|
|
out = "byte: \\x" + res;
|
|
}
|
|
return out;
|
|
}
|
|
|
|
// convert a vector of completion_token_output to json
|
|
static json probs_vector_to_json(const llama_context *ctx, const std::vector<completion_token_output> probs)
|
|
{
|
|
json out = json::array();
|
|
for (const auto &prob : probs)
|
|
{
|
|
json probs_for_token = json::array();
|
|
for (const auto &p : prob.probs)
|
|
{
|
|
std::string tok_str = tokens_to_output_formatted_string(ctx, p.tok);
|
|
probs_for_token.push_back(json{
|
|
{"tok_str", tok_str},
|
|
{"prob", p.prob},
|
|
});
|
|
}
|
|
std::string tok_str = tokens_to_output_formatted_string(ctx, prob.tok);
|
|
out.push_back(json{
|
|
{"content", tok_str},
|
|
{"probs", probs_for_token},
|
|
});
|
|
}
|
|
return out;
|
|
}
|
|
|
|
static bool server_verbose = false;
|
|
|
|
#if SERVER_VERBOSE != 1
|
|
#define LOG_VERBOSE(MSG, ...)
|
|
#else
|
|
#define LOG_VERBOSE(MSG, ...) \
|
|
do \
|
|
{ \
|
|
if (server_verbose) \
|
|
{ \
|
|
server_log("VERBOSE", __func__, __LINE__, MSG, __VA_ARGS__); \
|
|
} \
|
|
} while (0)
|
|
#endif
|
|
|
|
#define LOG_ERROR(MSG, ...) server_log("ERROR", __func__, __LINE__, MSG, __VA_ARGS__)
|
|
#define LOG_WARNING(MSG, ...) server_log("WARNING", __func__, __LINE__, MSG, __VA_ARGS__)
|
|
#define LOG_INFO(MSG, ...) server_log("INFO", __func__, __LINE__, MSG, __VA_ARGS__)
|
|
|
|
struct llama_server_context
|
|
{
|
|
bool stream = false;
|
|
bool has_next_token = false;
|
|
std::string generated_text;
|
|
std::vector<completion_token_output> generated_token_probs;
|
|
|
|
size_t num_prompt_tokens = 0;
|
|
size_t num_tokens_predicted = 0;
|
|
size_t n_past = 0;
|
|
size_t n_remain = 0;
|
|
|
|
json prompt;
|
|
std::vector<llama_token> embd;
|
|
std::vector<llama_token> last_n_tokens;
|
|
|
|
llama_model *model = nullptr;
|
|
llama_context *ctx = nullptr;
|
|
gpt_params params;
|
|
|
|
grammar_parser::parse_state parsed_grammar;
|
|
llama_grammar *grammar = nullptr;
|
|
|
|
bool truncated = false;
|
|
bool stopped_eos = false;
|
|
bool stopped_word = false;
|
|
bool stopped_limit = false;
|
|
std::string stopping_word;
|
|
int32_t multibyte_pending = 0;
|
|
|
|
std::mutex mutex;
|
|
|
|
std::unique_lock<std::mutex> lock()
|
|
{
|
|
return std::unique_lock<std::mutex>(mutex);
|
|
}
|
|
|
|
~llama_server_context()
|
|
{
|
|
if (ctx)
|
|
{
|
|
llama_free(ctx);
|
|
ctx = nullptr;
|
|
}
|
|
if (model)
|
|
{
|
|
llama_free_model(model);
|
|
model = nullptr;
|
|
}
|
|
}
|
|
|
|
void rewind()
|
|
{
|
|
params.antiprompt.clear();
|
|
params.grammar.clear();
|
|
num_prompt_tokens = 0;
|
|
num_tokens_predicted = 0;
|
|
generated_text = "";
|
|
generated_text.reserve(params.n_ctx);
|
|
generated_token_probs.clear();
|
|
truncated = false;
|
|
stopped_eos = false;
|
|
stopped_word = false;
|
|
stopped_limit = false;
|
|
stopping_word = "";
|
|
multibyte_pending = 0;
|
|
n_remain = 0;
|
|
n_past = 0;
|
|
|
|
if (grammar != nullptr) {
|
|
llama_grammar_free(grammar);
|
|
grammar = nullptr;
|
|
}
|
|
}
|
|
|
|
bool loadModel(const gpt_params ¶ms_)
|
|
{
|
|
params = params_;
|
|
std::tie(model, ctx) = llama_init_from_gpt_params(params);
|
|
if (model == nullptr)
|
|
{
|
|
LOG_ERROR("unable to load model", {{"model", params_.model}});
|
|
return false;
|
|
}
|
|
|
|
last_n_tokens.resize(params.n_ctx);
|
|
std::fill(last_n_tokens.begin(), last_n_tokens.end(), 0);
|
|
return true;
|
|
}
|
|
|
|
std::vector<llama_token> tokenize(json json_prompt, bool add_bos)
|
|
{
|
|
// If `add_bos` is true, we only add BOS, when json_prompt is a string,
|
|
// or the first element of the json_prompt array is a string.
|
|
std::vector<llama_token> prompt_tokens;
|
|
|
|
if (json_prompt.is_array())
|
|
{
|
|
bool first = true;
|
|
for (const auto& p : json_prompt)
|
|
{
|
|
if (p.is_string())
|
|
{
|
|
auto s = p.template get<std::string>();
|
|
std::vector<llama_token> p;
|
|
if (first)
|
|
{
|
|
s.insert(0, 1, ' '); // add a space if it's the first
|
|
p = ::llama_tokenize(ctx, s, add_bos);
|
|
first = false;
|
|
}
|
|
else
|
|
{
|
|
p = ::llama_tokenize(ctx, s, false);
|
|
}
|
|
prompt_tokens.insert(prompt_tokens.end(), p.begin(), p.end());
|
|
}
|
|
else
|
|
{
|
|
if (first)
|
|
{
|
|
first = false;
|
|
}
|
|
prompt_tokens.push_back(p.template get<llama_token>());
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
auto s = json_prompt.template get<std::string>();
|
|
s.insert(0, 1, ' '); // always add a first space
|
|
prompt_tokens = ::llama_tokenize(ctx, s, add_bos);
|
|
}
|
|
|
|
return prompt_tokens;
|
|
}
|
|
|
|
bool loadGrammar()
|
|
{
|
|
if (!params.grammar.empty()) {
|
|
parsed_grammar = grammar_parser::parse(params.grammar.c_str());
|
|
// will be empty (default) if there are parse errors
|
|
if (parsed_grammar.rules.empty()) {
|
|
LOG_ERROR("grammar parse error", {{"grammar", params.grammar}});
|
|
return false;
|
|
}
|
|
grammar_parser::print_grammar(stderr, parsed_grammar);
|
|
|
|
{
|
|
auto it = params.logit_bias.find(llama_token_eos(ctx));
|
|
if (it != params.logit_bias.end() && it->second == -INFINITY) {
|
|
LOG_WARNING("EOS token is disabled, which will cause most grammars to fail", {});
|
|
}
|
|
}
|
|
|
|
std::vector<const llama_grammar_element *> grammar_rules(parsed_grammar.c_rules());
|
|
grammar = llama_grammar_init(
|
|
grammar_rules.data(), grammar_rules.size(), parsed_grammar.symbol_ids.at("root"));
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void loadPrompt()
|
|
{
|
|
auto prompt_tokens = tokenize(prompt, true); // always add BOS
|
|
|
|
num_prompt_tokens = prompt_tokens.size();
|
|
|
|
if (params.n_keep < 0)
|
|
{
|
|
params.n_keep = (int)num_prompt_tokens;
|
|
}
|
|
params.n_keep = std::min(params.n_ctx - 4, params.n_keep);
|
|
|
|
// if input prompt is too big, truncate like normal
|
|
if (num_prompt_tokens >= (size_t)params.n_ctx)
|
|
{
|
|
const int n_left = (params.n_ctx - params.n_keep) / 2;
|
|
std::vector<llama_token> new_tokens(prompt_tokens.begin(), prompt_tokens.begin() + params.n_keep);
|
|
const int erased_blocks = (num_prompt_tokens - params.n_keep - n_left - 1) / n_left;
|
|
new_tokens.insert(new_tokens.end(), prompt_tokens.begin() + params.n_keep + erased_blocks * n_left, prompt_tokens.end());
|
|
std::copy(prompt_tokens.end() - params.n_ctx, prompt_tokens.end(), last_n_tokens.begin());
|
|
|
|
LOG_VERBOSE("input truncated", {
|
|
{"n_ctx", params.n_ctx},
|
|
{"n_keep", params.n_keep},
|
|
{"n_left", n_left},
|
|
{"new_tokens", tokens_to_str(ctx, new_tokens.cbegin(), new_tokens.cend())},
|
|
});
|
|
|
|
truncated = true;
|
|
prompt_tokens = new_tokens;
|
|
}
|
|
else
|
|
{
|
|
const size_t ps = num_prompt_tokens;
|
|
std::fill(last_n_tokens.begin(), last_n_tokens.end() - ps, 0);
|
|
std::copy(prompt_tokens.begin(), prompt_tokens.end(), last_n_tokens.end() - ps);
|
|
}
|
|
|
|
// compare the evaluated prompt with the new prompt
|
|
n_past = common_part(embd, prompt_tokens);
|
|
embd = prompt_tokens;
|
|
if (n_past == num_prompt_tokens)
|
|
{
|
|
// we have to evaluate at least 1 token to generate logits.
|
|
n_past--;
|
|
}
|
|
|
|
LOG_VERBOSE("prompt ingested", {
|
|
{"n_past", n_past},
|
|
{"cached", tokens_to_str(ctx, embd.cbegin(), embd.cbegin() + n_past)},
|
|
{"to_eval", tokens_to_str(ctx, embd.cbegin() + n_past, embd.cend())},
|
|
});
|
|
|
|
has_next_token = true;
|
|
}
|
|
|
|
void beginCompletion()
|
|
{
|
|
// number of tokens to keep when resetting context
|
|
n_remain = params.n_predict;
|
|
llama_set_rng_seed(ctx, params.seed);
|
|
}
|
|
|
|
completion_token_output nextToken()
|
|
{
|
|
completion_token_output result;
|
|
result.tok = -1;
|
|
|
|
if (embd.size() >= (size_t)params.n_ctx)
|
|
{
|
|
// Reset context
|
|
const int n_left = (params.n_ctx - params.n_keep) / 2;
|
|
|
|
std::vector<llama_token> new_tokens(embd.begin(), embd.begin() + params.n_keep);
|
|
new_tokens.insert(new_tokens.end(), embd.end() - n_left, embd.end());
|
|
embd = new_tokens;
|
|
n_past = params.n_keep;
|
|
truncated = true;
|
|
LOG_VERBOSE("input truncated", {
|
|
{"n_ctx", params.n_ctx},
|
|
{"n_keep", params.n_keep},
|
|
{"n_left", n_left},
|
|
{"new_tokens", tokens_to_str(ctx, new_tokens.cbegin(), new_tokens.cend())},
|
|
});
|
|
}
|
|
|
|
while (n_past < embd.size())
|
|
{
|
|
int n_eval = (int)embd.size() - n_past;
|
|
if (n_eval > params.n_batch)
|
|
{
|
|
n_eval = params.n_batch;
|
|
}
|
|
if (llama_eval(ctx, &embd[n_past], n_eval, n_past, params.n_threads))
|
|
{
|
|
LOG_ERROR("failed to eval", {
|
|
{"n_eval", n_eval},
|
|
{"n_past", n_past},
|
|
{"n_threads", params.n_threads},
|
|
{"embd", tokens_to_str(ctx, embd.cbegin() + n_past, embd.cend())},
|
|
});
|
|
has_next_token = false;
|
|
return result;
|
|
}
|
|
n_past += n_eval;
|
|
}
|
|
|
|
if (params.n_predict == 0)
|
|
{
|
|
has_next_token = false;
|
|
result.tok = llama_token_eos(ctx);
|
|
return result;
|
|
}
|
|
|
|
// out of user input, sample next token
|
|
const float temp = params.temp;
|
|
const int32_t top_k = params.top_k <= 0 ? llama_n_vocab(ctx) : params.top_k;
|
|
const float top_p = params.top_p;
|
|
const float tfs_z = params.tfs_z;
|
|
const float typical_p = params.typical_p;
|
|
const int32_t repeat_last_n = params.repeat_last_n < 0 ? params.n_ctx : params.repeat_last_n;
|
|
const float repeat_penalty = params.repeat_penalty;
|
|
const float alpha_presence = params.presence_penalty;
|
|
const float alpha_frequency = params.frequency_penalty;
|
|
const int mirostat = params.mirostat;
|
|
const float mirostat_tau = params.mirostat_tau;
|
|
const float mirostat_eta = params.mirostat_eta;
|
|
const bool penalize_nl = params.penalize_nl;
|
|
const int32_t n_probs = params.n_probs;
|
|
|
|
{
|
|
auto *logits = llama_get_logits(ctx);
|
|
auto n_vocab = llama_n_vocab(ctx);
|
|
|
|
// Apply params.logit_bias map
|
|
for (const auto &it : params.logit_bias)
|
|
{
|
|
logits[it.first] += it.second;
|
|
}
|
|
|
|
std::vector<llama_token_data> candidates;
|
|
candidates.reserve(n_vocab);
|
|
for (llama_token token_id = 0; token_id < n_vocab; token_id++)
|
|
{
|
|
candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
|
|
}
|
|
|
|
llama_token_data_array candidates_p = {candidates.data(), candidates.size(), false};
|
|
|
|
// Apply penalties
|
|
float nl_logit = logits[llama_token_nl(ctx)];
|
|
auto last_n_repeat = std::min(std::min((int)last_n_tokens.size(), repeat_last_n), params.n_ctx);
|
|
llama_sample_repetition_penalty(ctx, &candidates_p,
|
|
last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
|
|
last_n_repeat, repeat_penalty);
|
|
llama_sample_frequency_and_presence_penalties(ctx, &candidates_p,
|
|
last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
|
|
last_n_repeat, alpha_frequency, alpha_presence);
|
|
if (!penalize_nl)
|
|
{
|
|
logits[llama_token_nl(ctx)] = nl_logit;
|
|
}
|
|
|
|
if (grammar != nullptr) {
|
|
llama_sample_grammar(ctx, &candidates_p, grammar);
|
|
}
|
|
|
|
if (temp <= 0)
|
|
{
|
|
// Greedy sampling
|
|
result.tok = llama_sample_token_greedy(ctx, &candidates_p);
|
|
if (n_probs > 0)
|
|
{
|
|
llama_sample_softmax(ctx, &candidates_p);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (mirostat == 1)
|
|
{
|
|
static float mirostat_mu = 2.0f * mirostat_tau;
|
|
const int mirostat_m = 100;
|
|
llama_sample_temperature(ctx, &candidates_p, temp);
|
|
result.tok = llama_sample_token_mirostat(ctx, &candidates_p, mirostat_tau, mirostat_eta, mirostat_m, &mirostat_mu);
|
|
}
|
|
else if (mirostat == 2)
|
|
{
|
|
static float mirostat_mu = 2.0f * mirostat_tau;
|
|
llama_sample_temperature(ctx, &candidates_p, temp);
|
|
result.tok = llama_sample_token_mirostat_v2(ctx, &candidates_p, mirostat_tau, mirostat_eta, &mirostat_mu);
|
|
}
|
|
else
|
|
{
|
|
// Temperature sampling
|
|
size_t min_keep = std::max(1, n_probs);
|
|
llama_sample_top_k(ctx, &candidates_p, top_k, min_keep);
|
|
llama_sample_tail_free(ctx, &candidates_p, tfs_z, min_keep);
|
|
llama_sample_typical(ctx, &candidates_p, typical_p, min_keep);
|
|
llama_sample_top_p(ctx, &candidates_p, top_p, min_keep);
|
|
llama_sample_temperature(ctx, &candidates_p, temp);
|
|
result.tok = llama_sample_token(ctx, &candidates_p);
|
|
}
|
|
}
|
|
|
|
if (grammar != nullptr) {
|
|
llama_grammar_accept_token(ctx, grammar, result.tok);
|
|
}
|
|
|
|
for (size_t i = 0; i < std::min(candidates_p.size, (size_t)n_probs); ++i)
|
|
{
|
|
result.probs.push_back({candidates_p.data[i].id, candidates_p.data[i].p});
|
|
}
|
|
|
|
last_n_tokens.erase(last_n_tokens.begin());
|
|
last_n_tokens.push_back(result.tok);
|
|
num_tokens_predicted++;
|
|
}
|
|
|
|
// add it to the context
|
|
embd.push_back(result.tok);
|
|
// decrement remaining sampling budget
|
|
--n_remain;
|
|
|
|
if (!embd.empty() && embd.back() == llama_token_eos(ctx))
|
|
{
|
|
// stopping_word = llama_token_to_str(ctx, embd.back());
|
|
has_next_token = false;
|
|
stopped_eos = true;
|
|
LOG_VERBOSE("eos token found", {});
|
|
return result;
|
|
}
|
|
|
|
has_next_token = params.n_predict == -1 || n_remain != 0;
|
|
return result;
|
|
}
|
|
|
|
size_t findStoppingStrings(const std::string &text, const size_t last_token_size,
|
|
const stop_type type)
|
|
{
|
|
size_t stop_pos = std::string::npos;
|
|
for (const std::string &word : params.antiprompt)
|
|
{
|
|
size_t pos;
|
|
if (type == STOP_FULL)
|
|
{
|
|
const size_t tmp = word.size() + last_token_size;
|
|
const size_t from_pos = text.size() > tmp ? text.size() - tmp : 0;
|
|
pos = text.find(word, from_pos);
|
|
}
|
|
else
|
|
{
|
|
pos = find_partial_stop_string(word, text);
|
|
}
|
|
if (pos != std::string::npos &&
|
|
(stop_pos == std::string::npos || pos < stop_pos))
|
|
{
|
|
if (type == STOP_FULL)
|
|
{
|
|
stopping_word = word;
|
|
stopped_word = true;
|
|
has_next_token = false;
|
|
}
|
|
stop_pos = pos;
|
|
}
|
|
}
|
|
return stop_pos;
|
|
}
|
|
|
|
completion_token_output doCompletion()
|
|
{
|
|
const completion_token_output token_with_probs = nextToken();
|
|
|
|
const std::string token_text = token_with_probs.tok == -1 ? "" : llama_token_to_str(ctx, token_with_probs.tok);
|
|
generated_text += token_text;
|
|
|
|
if (params.n_probs > 0)
|
|
{
|
|
generated_token_probs.push_back(token_with_probs);
|
|
}
|
|
|
|
if (multibyte_pending > 0)
|
|
{
|
|
multibyte_pending -= token_text.size();
|
|
}
|
|
else if (token_text.size() == 1)
|
|
{
|
|
const char c = token_text[0];
|
|
// 2-byte characters: 110xxxxx 10xxxxxx
|
|
if ((c & 0xE0) == 0xC0)
|
|
{
|
|
multibyte_pending = 1;
|
|
// 3-byte characters: 1110xxxx 10xxxxxx 10xxxxxx
|
|
}
|
|
else if ((c & 0xF0) == 0xE0)
|
|
{
|
|
multibyte_pending = 2;
|
|
// 4-byte characters: 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
|
|
}
|
|
else if ((c & 0xF8) == 0xF0)
|
|
{
|
|
multibyte_pending = 3;
|
|
}
|
|
else
|
|
{
|
|
multibyte_pending = 0;
|
|
}
|
|
}
|
|
|
|
if (multibyte_pending > 0 && !has_next_token)
|
|
{
|
|
has_next_token = true;
|
|
n_remain++;
|
|
}
|
|
|
|
if (!has_next_token && n_remain == 0)
|
|
{
|
|
stopped_limit = true;
|
|
}
|
|
|
|
LOG_VERBOSE("next token", {
|
|
{"token", token_with_probs.tok},
|
|
{"token_text", tokens_to_output_formatted_string(ctx, token_with_probs.tok)},
|
|
{"has_next_token", has_next_token},
|
|
{"n_remain", n_remain},
|
|
{"num_tokens_predicted", num_tokens_predicted},
|
|
{"stopped_eos", stopped_eos},
|
|
{"stopped_word", stopped_word},
|
|
{"stopped_limit", stopped_limit},
|
|
{"stopping_word", stopping_word},
|
|
});
|
|
|
|
return token_with_probs;
|
|
}
|
|
|
|
std::vector<float> getEmbedding()
|
|
{
|
|
static const int n_embd = llama_n_embd(ctx);
|
|
if (!params.embedding)
|
|
{
|
|
LOG_WARNING("embedding disabled", {
|
|
{"params.embedding", params.embedding},
|
|
});
|
|
return std::vector<float>(n_embd, 0.0f);
|
|
}
|
|
const float *data = llama_get_embeddings(ctx);
|
|
std::vector<float> embedding(data, data + n_embd);
|
|
return embedding;
|
|
}
|
|
};
|
|
|
|
static void server_print_usage(const char *argv0, const gpt_params ¶ms,
|
|
const server_params &sparams)
|
|
{
|
|
fprintf(stdout, "usage: %s [options]\n", argv0);
|
|
fprintf(stdout, "\n");
|
|
fprintf(stdout, "options:\n");
|
|
fprintf(stdout, " -h, --help show this help message and exit\n");
|
|
fprintf(stdout, " -v, --verbose verbose output (default: %s)\n", server_verbose ? "enabled" : "disabled");
|
|
fprintf(stdout, " -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads);
|
|
fprintf(stdout, " -c N, --ctx-size N size of the prompt context (default: %d)\n", params.n_ctx);
|
|
fprintf(stdout, " --rope-freq-base N RoPE base frequency (default: %.1f)\n", params.rope_freq_base);
|
|
fprintf(stdout, " --rope-freq-scale N RoPE frequency scaling factor (default: %g)\n", params.rope_freq_scale);
|
|
fprintf(stdout, " -b N, --batch-size N batch size for prompt processing (default: %d)\n", params.n_batch);
|
|
fprintf(stdout, " --memory-f32 use f32 instead of f16 for memory key+value (default: disabled)\n");
|
|
fprintf(stdout, " not recommended: doubles context memory required and no measurable increase in quality\n");
|
|
if (llama_mlock_supported())
|
|
{
|
|
fprintf(stdout, " --mlock force system to keep model in RAM rather than swapping or compressing\n");
|
|
}
|
|
if (llama_mmap_supported())
|
|
{
|
|
fprintf(stdout, " --no-mmap do not memory-map model (slower load but may reduce pageouts if not using mlock)\n");
|
|
}
|
|
fprintf(stdout, " --numa attempt optimizations that help on some NUMA systems\n");
|
|
#ifdef LLAMA_SUPPORTS_GPU_OFFLOAD
|
|
fprintf(stdout, " -ngl N, --n-gpu-layers N\n");
|
|
fprintf(stdout, " number of layers to store in VRAM\n");
|
|
fprintf(stdout, " -ts SPLIT --tensor-split SPLIT\n");
|
|
fprintf(stdout, " how to split tensors across multiple GPUs, comma-separated list of proportions, e.g. 3,1\n");
|
|
fprintf(stdout, " -mg i, --main-gpu i the GPU to use for scratch and small tensors\n");
|
|
fprintf(stdout, " -lv, --low-vram don't allocate VRAM scratch buffer\n");
|
|
fprintf(stdout, " -nommq, --no-mul-mat-q\n");
|
|
fprintf(stdout, " use cuBLAS instead of custom mul_mat_q CUDA kernels.\n");
|
|
fprintf(stdout, " Not recommended since this is both slower and uses more VRAM.\n");
|
|
#endif
|
|
fprintf(stdout, " -m FNAME, --model FNAME\n");
|
|
fprintf(stdout, " model path (default: %s)\n", params.model.c_str());
|
|
fprintf(stdout, " -a ALIAS, --alias ALIAS\n");
|
|
fprintf(stdout, " set an alias for the model, will be added as `model` field in completion response\n");
|
|
fprintf(stdout, " --lora FNAME apply LoRA adapter (implies --no-mmap)\n");
|
|
fprintf(stdout, " --lora-base FNAME optional model to use as a base for the layers modified by the LoRA adapter\n");
|
|
fprintf(stdout, " --host ip address to listen (default (default: %s)\n", sparams.hostname.c_str());
|
|
fprintf(stdout, " --port PORT port to listen (default (default: %d)\n", sparams.port);
|
|
fprintf(stdout, " --path PUBLIC_PATH path from which to serve static files (default %s)\n", sparams.public_path.c_str());
|
|
fprintf(stdout, " -to N, --timeout N server read/write timeout in seconds (default: %d)\n", sparams.read_timeout);
|
|
fprintf(stdout, " --embedding enable embedding vector output (default: %s)\n", params.embedding ? "enabled" : "disabled");
|
|
fprintf(stdout, "\n");
|
|
}
|
|
|
|
static void server_params_parse(int argc, char **argv, server_params &sparams,
|
|
gpt_params ¶ms)
|
|
{
|
|
gpt_params default_params;
|
|
server_params default_sparams;
|
|
std::string arg;
|
|
bool invalid_param = false;
|
|
|
|
for (int i = 1; i < argc; i++)
|
|
{
|
|
arg = argv[i];
|
|
if (arg == "--port")
|
|
{
|
|
if (++i >= argc)
|
|
{
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
sparams.port = std::stoi(argv[i]);
|
|
}
|
|
else if (arg == "--host")
|
|
{
|
|
if (++i >= argc)
|
|
{
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
sparams.hostname = argv[i];
|
|
}
|
|
else if (arg == "--path")
|
|
{
|
|
if (++i >= argc)
|
|
{
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
sparams.public_path = argv[i];
|
|
}
|
|
else if (arg == "--timeout" || arg == "-to")
|
|
{
|
|
if (++i >= argc)
|
|
{
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
sparams.read_timeout = std::stoi(argv[i]);
|
|
sparams.write_timeout = std::stoi(argv[i]);
|
|
}
|
|
else if (arg == "-m" || arg == "--model")
|
|
{
|
|
if (++i >= argc)
|
|
{
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
params.model = argv[i];
|
|
}
|
|
else if (arg == "-a" || arg == "--alias")
|
|
{
|
|
if (++i >= argc)
|
|
{
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
params.model_alias = argv[i];
|
|
}
|
|
else if (arg == "-h" || arg == "--help")
|
|
{
|
|
server_print_usage(argv[0], default_params, default_sparams);
|
|
exit(0);
|
|
}
|
|
else if (arg == "-c" || arg == "--ctx-size" || arg == "--ctx_size")
|
|
{
|
|
if (++i >= argc)
|
|
{
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
params.n_ctx = std::stoi(argv[i]);
|
|
}
|
|
else if (arg == "--rope-freq-base")
|
|
{
|
|
if (++i >= argc)
|
|
{
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
params.rope_freq_base = std::stof(argv[i]);
|
|
}
|
|
else if (arg == "--rope-freq-scale")
|
|
{
|
|
if (++i >= argc)
|
|
{
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
params.rope_freq_scale = std::stof(argv[i]);
|
|
}
|
|
else if (arg == "--memory-f32" || arg == "--memory_f32")
|
|
{
|
|
params.memory_f16 = false;
|
|
}
|
|
else if (arg == "--threads" || arg == "-t")
|
|
{
|
|
if (++i >= argc)
|
|
{
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
params.n_threads = std::stoi(argv[i]);
|
|
}
|
|
else if (arg == "-b" || arg == "--batch-size")
|
|
{
|
|
if (++i >= argc)
|
|
{
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
params.n_batch = std::stoi(argv[i]);
|
|
params.n_batch = std::min(512, params.n_batch);
|
|
}
|
|
else if (arg == "--gpu-layers" || arg == "-ngl" || arg == "--n-gpu-layers")
|
|
{
|
|
if (++i >= argc)
|
|
{
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
#ifdef LLAMA_SUPPORTS_GPU_OFFLOAD
|
|
params.n_gpu_layers = std::stoi(argv[i]);
|
|
#else
|
|
LOG_WARNING("Not compiled with GPU offload support, --n-gpu-layers option will be ignored. "
|
|
"See main README.md for information on enabling GPU BLAS support",
|
|
{{"n_gpu_layers", params.n_gpu_layers}});
|
|
#endif
|
|
}
|
|
else if (arg == "--tensor-split" || arg == "-ts")
|
|
{
|
|
if (++i >= argc)
|
|
{
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
#ifdef GGML_USE_CUBLAS
|
|
std::string arg_next = argv[i];
|
|
|
|
// split string by , and /
|
|
const std::regex regex{R"([,/]+)"};
|
|
std::sregex_token_iterator it{arg_next.begin(), arg_next.end(), regex, -1};
|
|
std::vector<std::string> split_arg{it, {}};
|
|
GGML_ASSERT(split_arg.size() <= LLAMA_MAX_DEVICES);
|
|
|
|
for (size_t i_device = 0; i_device < LLAMA_MAX_DEVICES; ++i_device)
|
|
{
|
|
if (i_device < split_arg.size())
|
|
{
|
|
params.tensor_split[i_device] = std::stof(split_arg[i_device]);
|
|
}
|
|
else
|
|
{
|
|
params.tensor_split[i_device] = 0.0f;
|
|
}
|
|
}
|
|
#else
|
|
LOG_WARNING("llama.cpp was compiled without cuBLAS. It is not possible to set a tensor split.\n", {});
|
|
#endif // GGML_USE_CUBLAS
|
|
}
|
|
else if (arg == "--low-vram" || arg == "-lv")
|
|
{
|
|
#ifdef GGML_USE_CUBLAS
|
|
params.low_vram = true;
|
|
#else
|
|
LOG_WARNING("warning: llama.cpp was compiled without cuBLAS. It is not possible to set lower vram usage.\n", {});
|
|
#endif // GGML_USE_CUBLAS
|
|
}
|
|
else if (arg == "--no-mul-mat-q" || arg == "-nommq")
|
|
{
|
|
#ifdef GGML_USE_CUBLAS
|
|
params.mul_mat_q = false;
|
|
#else
|
|
LOG_WARNING("warning: llama.cpp was compiled without cuBLAS. Disabling mul_mat_q kernels has no effect.\n", {});
|
|
#endif // GGML_USE_CUBLAS
|
|
}
|
|
else if (arg == "--main-gpu" || arg == "-mg")
|
|
{
|
|
if (++i >= argc)
|
|
{
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
#ifdef GGML_USE_CUBLAS
|
|
params.main_gpu = std::stoi(argv[i]);
|
|
#else
|
|
LOG_WARNING("llama.cpp was compiled without cuBLAS. It is not possible to set a main GPU.", {});
|
|
#endif
|
|
}
|
|
else if (arg == "--lora")
|
|
{
|
|
if (++i >= argc)
|
|
{
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
params.lora_adapter = argv[i];
|
|
params.use_mmap = false;
|
|
}
|
|
else if (arg == "--lora-base")
|
|
{
|
|
if (++i >= argc)
|
|
{
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
params.lora_base = argv[i];
|
|
}
|
|
else if (arg == "-v" || arg == "--verbose")
|
|
{
|
|
#if SERVER_VERBOSE != 1
|
|
LOG_WARNING("server.cpp is not built with verbose logging.", {});
|
|
#else
|
|
server_verbose = true;
|
|
#endif
|
|
}
|
|
else if (arg == "--mlock")
|
|
{
|
|
params.use_mlock = true;
|
|
}
|
|
else if (arg == "--no-mmap")
|
|
{
|
|
params.use_mmap = false;
|
|
}
|
|
else if (arg == "--numa")
|
|
{
|
|
params.numa = true;
|
|
}
|
|
else if (arg == "--embedding")
|
|
{
|
|
params.embedding = true;
|
|
}
|
|
else
|
|
{
|
|
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
|
|
server_print_usage(argv[0], default_params, default_sparams);
|
|
exit(1);
|
|
}
|
|
}
|
|
|
|
if (invalid_param)
|
|
{
|
|
fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
|
|
server_print_usage(argv[0], default_params, default_sparams);
|
|
exit(1);
|
|
}
|
|
}
|
|
|
|
static json format_generation_settings(llama_server_context &llama)
|
|
{
|
|
const auto eos_bias = llama.params.logit_bias.find(llama_token_eos(llama.ctx));
|
|
const bool ignore_eos = eos_bias != llama.params.logit_bias.end() &&
|
|
eos_bias->second < 0.0f && std::isinf(eos_bias->second);
|
|
|
|
return json{
|
|
{"n_ctx", llama.params.n_ctx},
|
|
{"model", llama.params.model_alias},
|
|
{"seed", llama.params.seed},
|
|
{"temp", llama.params.temp},
|
|
{"top_k", llama.params.top_k},
|
|
{"top_p", llama.params.top_p},
|
|
{"tfs_z", llama.params.tfs_z},
|
|
{"typical_p", llama.params.typical_p},
|
|
{"repeat_last_n", llama.params.repeat_last_n},
|
|
{"repeat_penalty", llama.params.repeat_penalty},
|
|
{"presence_penalty", llama.params.presence_penalty},
|
|
{"frequency_penalty", llama.params.frequency_penalty},
|
|
{"mirostat", llama.params.mirostat},
|
|
{"mirostat_tau", llama.params.mirostat_tau},
|
|
{"mirostat_eta", llama.params.mirostat_eta},
|
|
{"penalize_nl", llama.params.penalize_nl},
|
|
{"stop", llama.params.antiprompt},
|
|
{"n_predict", llama.params.n_predict},
|
|
{"n_keep", llama.params.n_keep},
|
|
{"ignore_eos", ignore_eos},
|
|
{"stream", llama.stream},
|
|
{"logit_bias", llama.params.logit_bias},
|
|
{"n_probs", llama.params.n_probs},
|
|
{"grammar", llama.params.grammar},
|
|
};
|
|
}
|
|
|
|
static json format_embedding_response(llama_server_context &llama)
|
|
{
|
|
return json{
|
|
{"embedding", llama.getEmbedding()},
|
|
};
|
|
}
|
|
|
|
static json format_timings(llama_server_context &llama)
|
|
{
|
|
const auto timings = llama_get_timings(llama.ctx);
|
|
|
|
assert(timings.n_eval == llama.num_tokens_predicted);
|
|
|
|
return json{
|
|
{"prompt_n", timings.n_p_eval},
|
|
{"prompt_ms", timings.t_p_eval_ms},
|
|
{"prompt_per_token_ms", timings.t_p_eval_ms / timings.n_p_eval},
|
|
{"prompt_per_second", 1e3 / timings.t_p_eval_ms * timings.n_p_eval},
|
|
|
|
{"predicted_n", timings.n_eval},
|
|
{"predicted_ms", timings.t_eval_ms},
|
|
{"predicted_per_token_ms", timings.t_eval_ms / timings.n_eval},
|
|
{"predicted_per_second", 1e3 / timings.t_eval_ms * timings.n_eval},
|
|
};
|
|
}
|
|
|
|
static json format_final_response(llama_server_context &llama, const std::string &content, const std::vector<completion_token_output> &probs)
|
|
{
|
|
|
|
json res = json{
|
|
{"content", content},
|
|
{"stop", true},
|
|
{"model", llama.params.model_alias},
|
|
{"tokens_predicted", llama.num_tokens_predicted},
|
|
{"tokens_evaluated", llama.num_prompt_tokens},
|
|
{"generation_settings", format_generation_settings(llama)},
|
|
{"prompt", llama.prompt},
|
|
{"truncated", llama.truncated},
|
|
{"stopped_eos", llama.stopped_eos},
|
|
{"stopped_word", llama.stopped_word},
|
|
{"stopped_limit", llama.stopped_limit},
|
|
{"stopping_word", llama.stopping_word},
|
|
{"tokens_cached", llama.n_past},
|
|
{"timings", format_timings(llama)},
|
|
};
|
|
|
|
if (llama.params.n_probs > 0)
|
|
{
|
|
res["completion_probabilities"] = probs_vector_to_json(llama.ctx, probs);
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
static json format_partial_response(llama_server_context &llama, const std::string &content, const std::vector<completion_token_output> &probs)
|
|
{
|
|
json res = json{
|
|
{"content", content},
|
|
{"stop", false},
|
|
};
|
|
|
|
if (llama.params.n_probs > 0)
|
|
{
|
|
res["completion_probabilities"] = probs_vector_to_json(llama.ctx, probs);
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
static json format_tokenizer_response(const std::vector<llama_token> &tokens)
|
|
{
|
|
return json{
|
|
{"tokens", tokens}};
|
|
}
|
|
|
|
template <typename T>
|
|
static T json_value(const json &body, const std::string &key, const T &default_value)
|
|
{
|
|
// Fallback null to default value
|
|
return body.contains(key) && !body.at(key).is_null()
|
|
? body.value(key, default_value)
|
|
: default_value;
|
|
}
|
|
|
|
static void parse_options_completion(const json &body, llama_server_context &llama)
|
|
{
|
|
gpt_params default_params;
|
|
|
|
llama.stream = json_value(body, "stream", false);
|
|
llama.params.n_predict = json_value(body, "n_predict", default_params.n_predict);
|
|
llama.params.top_k = json_value(body, "top_k", default_params.top_k);
|
|
llama.params.top_p = json_value(body, "top_p", default_params.top_p);
|
|
llama.params.tfs_z = json_value(body, "tfs_z", default_params.tfs_z);
|
|
llama.params.typical_p = json_value(body, "typical_p", default_params.typical_p);
|
|
llama.params.repeat_last_n = json_value(body, "repeat_last_n", default_params.repeat_last_n);
|
|
llama.params.temp = json_value(body, "temperature", default_params.temp);
|
|
llama.params.repeat_penalty = json_value(body, "repeat_penalty", default_params.repeat_penalty);
|
|
llama.params.presence_penalty = json_value(body, "presence_penalty", default_params.presence_penalty);
|
|
llama.params.frequency_penalty = json_value(body, "frequency_penalty", default_params.frequency_penalty);
|
|
llama.params.mirostat = json_value(body, "mirostat", default_params.mirostat);
|
|
llama.params.mirostat_tau = json_value(body, "mirostat_tau", default_params.mirostat_tau);
|
|
llama.params.mirostat_eta = json_value(body, "mirostat_eta", default_params.mirostat_eta);
|
|
llama.params.penalize_nl = json_value(body, "penalize_nl", default_params.penalize_nl);
|
|
llama.params.n_keep = json_value(body, "n_keep", default_params.n_keep);
|
|
llama.params.seed = json_value(body, "seed", default_params.seed);
|
|
llama.params.grammar = json_value(body, "grammar", default_params.grammar);
|
|
llama.params.n_probs = json_value(body, "n_probs", default_params.n_probs);
|
|
|
|
if (body.count("prompt") != 0)
|
|
{
|
|
llama.prompt = body["prompt"];
|
|
}
|
|
else
|
|
{
|
|
llama.prompt = "";
|
|
}
|
|
|
|
llama.params.logit_bias.clear();
|
|
if (json_value(body, "ignore_eos", false))
|
|
{
|
|
llama.params.logit_bias[llama_token_eos(llama.ctx)] = -INFINITY;
|
|
}
|
|
|
|
const auto &logit_bias = body.find("logit_bias");
|
|
if (logit_bias != body.end() && logit_bias->is_array())
|
|
{
|
|
const int n_vocab = llama_n_vocab(llama.ctx);
|
|
for (const auto &el : *logit_bias)
|
|
{
|
|
if (el.is_array() && el.size() == 2 && el[0].is_number_integer())
|
|
{
|
|
llama_token tok = el[0].get<llama_token>();
|
|
if (tok >= 0 && tok < n_vocab)
|
|
{
|
|
if (el[1].is_number())
|
|
{
|
|
llama.params.logit_bias[tok] = el[1].get<float>();
|
|
}
|
|
else if (el[1].is_boolean() && !el[1].get<bool>())
|
|
{
|
|
llama.params.logit_bias[tok] = -INFINITY;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
llama.params.antiprompt.clear();
|
|
const auto &stop = body.find("stop");
|
|
if (stop != body.end() && stop->is_array())
|
|
{
|
|
for (const auto &word : *stop)
|
|
{
|
|
if (!word.empty())
|
|
{
|
|
llama.params.antiprompt.push_back(word);
|
|
}
|
|
}
|
|
}
|
|
|
|
LOG_VERBOSE("completion parameters parsed", format_generation_settings(llama));
|
|
}
|
|
|
|
static void log_server_request(const Request &req, const Response &res)
|
|
{
|
|
LOG_INFO("request", {
|
|
{"remote_addr", req.remote_addr},
|
|
{"remote_port", req.remote_port},
|
|
{"status", res.status},
|
|
{"method", req.method},
|
|
{"path", req.path},
|
|
{"params", req.params},
|
|
});
|
|
|
|
LOG_VERBOSE("request", {
|
|
{"request", req.body},
|
|
{"response", res.body},
|
|
});
|
|
}
|
|
|
|
int main(int argc, char **argv)
|
|
{
|
|
// own arguments required by this example
|
|
gpt_params params;
|
|
server_params sparams;
|
|
|
|
// struct that contains llama context and inference
|
|
llama_server_context llama;
|
|
|
|
server_params_parse(argc, argv, sparams, params);
|
|
|
|
if (params.model_alias == "unknown")
|
|
{
|
|
params.model_alias = params.model;
|
|
}
|
|
|
|
llama_backend_init(params.numa);
|
|
|
|
LOG_INFO("build info", {{"build", BUILD_NUMBER},
|
|
{"commit", BUILD_COMMIT}});
|
|
LOG_INFO("system info", {
|
|
{"n_threads", params.n_threads},
|
|
{"total_threads", std::thread::hardware_concurrency()},
|
|
{"system_info", llama_print_system_info()},
|
|
});
|
|
|
|
// load the model
|
|
if (!llama.loadModel(params))
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
Server svr;
|
|
|
|
svr.set_default_headers({{"Server", "llama.cpp"},
|
|
{"Access-Control-Allow-Origin", "*"},
|
|
{"Access-Control-Allow-Headers", "content-type"}});
|
|
|
|
// this is only called if no index.html is found in the public --path
|
|
svr.Get("/", [](const Request &, Response &res)
|
|
{
|
|
res.set_content(reinterpret_cast<const char*>(&index_html), index_html_len, "text/html");
|
|
return false; });
|
|
|
|
// this is only called if no index.js is found in the public --path
|
|
svr.Get("/index.js", [](const Request &, Response &res)
|
|
{
|
|
res.set_content(reinterpret_cast<const char *>(&index_js), index_js_len, "text/javascript");
|
|
return false; });
|
|
|
|
// this is only called if no index.html is found in the public --path
|
|
svr.Get("/completion.js", [](const Request &, Response &res)
|
|
{
|
|
res.set_content(reinterpret_cast<const char*>(&completion_js), completion_js_len, "application/javascript");
|
|
return false; });
|
|
|
|
// this is only called if no index.html is found in the public --path
|
|
svr.Get("/json-schema-to-grammar.mjs", [](const Request &, Response &res)
|
|
{
|
|
res.set_content(reinterpret_cast<const char*>(&json_schema_to_grammar_mjs), json_schema_to_grammar_mjs_len, "application/javascript");
|
|
return false; });
|
|
|
|
svr.Post("/completion", [&llama](const Request &req, Response &res)
|
|
{
|
|
auto lock = llama.lock();
|
|
|
|
llama.rewind();
|
|
|
|
llama_reset_timings(llama.ctx);
|
|
|
|
parse_options_completion(json::parse(req.body), llama);
|
|
|
|
if (!llama.loadGrammar())
|
|
{
|
|
res.status = 400;
|
|
return;
|
|
}
|
|
|
|
llama.loadPrompt();
|
|
llama.beginCompletion();
|
|
|
|
if (!llama.stream) {
|
|
size_t stop_pos = std::string::npos;
|
|
|
|
while (llama.has_next_token) {
|
|
const completion_token_output token_with_probs = llama.doCompletion();
|
|
const std::string token_text = token_with_probs.tok == -1 ? "" : llama_token_to_str(llama.ctx, token_with_probs.tok);
|
|
|
|
stop_pos = llama.findStoppingStrings(llama.generated_text,
|
|
token_text.size(), STOP_FULL);
|
|
}
|
|
|
|
if (stop_pos == std::string::npos) {
|
|
stop_pos = llama.findStoppingStrings(llama.generated_text, 0, STOP_PARTIAL);
|
|
}
|
|
if (stop_pos != std::string::npos) {
|
|
llama.generated_text.erase(llama.generated_text.begin() + stop_pos,
|
|
llama.generated_text.end());
|
|
}
|
|
|
|
const json data = format_final_response(llama, llama.generated_text, llama.generated_token_probs);
|
|
|
|
llama_print_timings(llama.ctx);
|
|
|
|
res.set_content(data.dump(-1, ' ', false, json::error_handler_t::replace),
|
|
"application/json");
|
|
} else {
|
|
const auto chunked_content_provider = [&](size_t, DataSink & sink) {
|
|
size_t sent_count = 0;
|
|
size_t sent_token_probs_index = 0;
|
|
|
|
while (llama.has_next_token) {
|
|
const completion_token_output token_with_probs = llama.doCompletion();
|
|
const std::string token_text = token_with_probs.tok == -1 ? "" : llama_token_to_str(llama.ctx, token_with_probs.tok);
|
|
if (llama.multibyte_pending > 0) {
|
|
continue;
|
|
}
|
|
|
|
size_t pos = std::min(sent_count, llama.generated_text.size());
|
|
|
|
const std::string str_test = llama.generated_text.substr(pos);
|
|
size_t stop_pos =
|
|
llama.findStoppingStrings(str_test, token_text.size(), STOP_FULL);
|
|
if (stop_pos != std::string::npos) {
|
|
llama.generated_text.erase(
|
|
llama.generated_text.begin() + pos + stop_pos,
|
|
llama.generated_text.end());
|
|
pos = std::min(sent_count, llama.generated_text.size());
|
|
} else {
|
|
stop_pos = llama.findStoppingStrings(str_test, token_text.size(),
|
|
STOP_PARTIAL);
|
|
}
|
|
|
|
const std::string to_send = llama.generated_text.substr(pos, stop_pos);
|
|
sent_count += to_send.size();
|
|
|
|
std::vector<completion_token_output> probs_output = {};
|
|
|
|
if (llama.params.n_probs > 0) {
|
|
const std::vector<llama_token> to_send_toks = llama_tokenize(llama.ctx, to_send, false);
|
|
size_t probs_pos = std::min(sent_token_probs_index, llama.generated_token_probs.size());
|
|
size_t probs_stop_pos = std::min(sent_token_probs_index + to_send_toks.size(), llama.generated_token_probs.size());
|
|
if (probs_pos < probs_stop_pos) {
|
|
probs_output = std::vector<completion_token_output>(llama.generated_token_probs.begin() + probs_pos, llama.generated_token_probs.begin() + probs_stop_pos);
|
|
}
|
|
sent_token_probs_index = probs_stop_pos;
|
|
}
|
|
|
|
const json data = llama.has_next_token
|
|
? format_partial_response(llama, to_send, probs_output)
|
|
// Generation is done, send extra information.
|
|
: format_final_response(llama, to_send, llama.generated_token_probs);
|
|
|
|
const std::string str =
|
|
"data: " +
|
|
data.dump(-1, ' ', false, json::error_handler_t::replace) +
|
|
"\n\n";
|
|
|
|
LOG_VERBOSE("data stream", {
|
|
{ "to_send", str }
|
|
});
|
|
|
|
if (!sink.write(str.data(), str.size())) {
|
|
LOG_VERBOSE("stream closed", {});
|
|
llama_print_timings(llama.ctx);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
llama_print_timings(llama.ctx);
|
|
sink.done();
|
|
return true;
|
|
};
|
|
const auto on_complete = [&](bool) {
|
|
llama.mutex.unlock();
|
|
};
|
|
lock.release();
|
|
res.set_chunked_content_provider("text/event-stream", chunked_content_provider, on_complete);
|
|
} });
|
|
|
|
svr.Get("/model.json", [&llama](const Request &, Response &res)
|
|
{
|
|
const json data = format_generation_settings(llama);
|
|
return res.set_content(data.dump(), "application/json"); });
|
|
|
|
svr.Options(R"(/.*)", [](const Request &, Response &res)
|
|
{ return res.set_content("", "application/json"); });
|
|
|
|
svr.Post("/tokenize", [&llama](const Request &req, Response &res)
|
|
{
|
|
auto lock = llama.lock();
|
|
|
|
const json body = json::parse(req.body);
|
|
std::vector<llama_token> tokens;
|
|
if (body.count("content") != 0)
|
|
{
|
|
tokens = llama.tokenize(body["content"], false);
|
|
}
|
|
const json data = format_tokenizer_response(tokens);
|
|
return res.set_content(data.dump(), "application/json"); });
|
|
|
|
svr.Post("/embedding", [&llama](const Request &req, Response &res)
|
|
{
|
|
auto lock = llama.lock();
|
|
|
|
const json body = json::parse(req.body);
|
|
|
|
llama.rewind();
|
|
llama_reset_timings(llama.ctx);
|
|
if (body.count("content") != 0)
|
|
{
|
|
llama.prompt = body["content"];
|
|
}
|
|
else
|
|
{
|
|
llama.prompt = "";
|
|
}
|
|
llama.params.n_predict = 0;
|
|
llama.loadPrompt();
|
|
llama.beginCompletion();
|
|
llama.doCompletion();
|
|
|
|
const json data = format_embedding_response(llama);
|
|
return res.set_content(data.dump(), "application/json"); });
|
|
|
|
svr.set_logger(log_server_request);
|
|
|
|
svr.set_exception_handler([](const Request &, Response &res, std::exception_ptr ep)
|
|
{
|
|
const auto * fmt = "500 Internal Server Error\n%s";
|
|
char buf[BUFSIZ];
|
|
try {
|
|
std::rethrow_exception(std::move(ep));
|
|
} catch (std::exception & e) {
|
|
snprintf(buf, sizeof(buf), fmt, e.what());
|
|
} catch (...) {
|
|
snprintf(buf, sizeof(buf), fmt, "Unknown Exception");
|
|
}
|
|
res.set_content(buf, "text/plain");
|
|
res.status = 500; });
|
|
|
|
svr.set_error_handler([](const Request &, Response &res)
|
|
{
|
|
if (res.status == 400) {
|
|
res.set_content("Invalid request", "text/plain");
|
|
} else if (res.status != 500) {
|
|
res.set_content("File Not Found", "text/plain");
|
|
res.status = 404;
|
|
} });
|
|
|
|
// set timeouts and change hostname and port
|
|
svr.set_read_timeout(sparams.read_timeout);
|
|
svr.set_write_timeout(sparams.write_timeout);
|
|
|
|
if (!svr.bind_to_port(sparams.hostname, sparams.port))
|
|
{
|
|
fprintf(stderr, "\ncouldn't bind to server socket: hostname=%s port=%d\n\n", sparams.hostname.c_str(), sparams.port);
|
|
return 1;
|
|
}
|
|
|
|
// Set the base directory for serving static files
|
|
svr.set_base_dir(sparams.public_path);
|
|
|
|
// to make it ctrl+clickable:
|
|
fprintf(stdout, "\nllama server listening at http://%s:%d\n\n", sparams.hostname.c_str(), sparams.port);
|
|
|
|
LOG_INFO("HTTP server listening", {
|
|
{"hostname", sparams.hostname},
|
|
{"port", sparams.port},
|
|
});
|
|
|
|
if (!svr.listen_after_bind())
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
if (llama.grammar != nullptr) {
|
|
llama_grammar_free(llama.grammar);
|
|
}
|
|
llama_backend_free();
|
|
|
|
return 0;
|
|
}
|