mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-12 19:50:17 +00:00
0d2ec43833
* feat(gguf-py): Add Granite model and params to gguf-py Branch: GraniteLM Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat(convert_hf_to_gguf): Add registration and param setup for Granite Branch: GraniteLM Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat(llama.cpp): Add config parsing for Granite multiplier params Branch: GraniteLM Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat(llama.cpp): First pass at full port of granite deviations from llama Something is still not working right since the results are mostly terrible, but on occasion it's producing relevant results at this point, so _something_ is working. Branch: GraniteLM Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix(llama.cpp): Determine granite language 3b instruct by vocab size Branch: GraniteLM Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix(convert_hf_to_gguf): Use LlamaModel as base for GraniteModel The defaults in LlamaModel are needed for Granite as well Branch: GraniteLM Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix(llama.cpp): Switch Granite param names to use _scale for consistency Other scalar multipliers are called *_scale, so this provides a more consistent naming convention. Branch: GraniteLM Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix(convert_hf_to_gguf/gguf-py): _multiplier -> _scale The transformers names with _multiplier will now be converted to the _scale equivalent during conversion. Branch: GraniteLM Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix(llama.cpp): Use separate switch clause for granite in llm_load_hparams Branch: GraniteLM Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> --------- Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
4331 lines
193 KiB
Python
Executable File
4331 lines
193 KiB
Python
Executable File
#!/usr/bin/env python3
|
||
# -*- coding: utf-8 -*-
|
||
|
||
from __future__ import annotations
|
||
|
||
import ast
|
||
import logging
|
||
import argparse
|
||
import contextlib
|
||
import json
|
||
import os
|
||
import re
|
||
import sys
|
||
from enum import IntEnum
|
||
from pathlib import Path
|
||
from hashlib import sha256
|
||
from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Literal, Sequence, TypeVar, cast
|
||
|
||
import math
|
||
import numpy as np
|
||
import torch
|
||
|
||
if TYPE_CHECKING:
|
||
from torch import Tensor
|
||
|
||
if 'NO_LOCAL_GGUF' not in os.environ:
|
||
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
|
||
import gguf
|
||
|
||
logger = logging.getLogger("hf-to-gguf")
|
||
|
||
|
||
###### MODEL DEFINITIONS ######
|
||
|
||
class SentencePieceTokenTypes(IntEnum):
|
||
NORMAL = 1
|
||
UNKNOWN = 2
|
||
CONTROL = 3
|
||
USER_DEFINED = 4
|
||
UNUSED = 5
|
||
BYTE = 6
|
||
|
||
|
||
AnyModel = TypeVar("AnyModel", bound="type[Model]")
|
||
|
||
|
||
class Model:
|
||
_model_classes: dict[str, type[Model]] = {}
|
||
|
||
dir_model: Path
|
||
ftype: gguf.LlamaFileType
|
||
fname_out: Path
|
||
is_big_endian: bool
|
||
endianess: gguf.GGUFEndian
|
||
use_temp_file: bool
|
||
lazy: bool
|
||
part_names: list[str]
|
||
is_safetensors: bool
|
||
hparams: dict[str, Any]
|
||
block_count: int
|
||
tensor_map: gguf.TensorNameMap
|
||
tensor_names: set[str] | None
|
||
gguf_writer: gguf.GGUFWriter
|
||
model_name: str | None
|
||
metadata_override: Path | None
|
||
dir_model_card: Path
|
||
is_lora: bool
|
||
|
||
# subclasses should define this!
|
||
model_arch: gguf.MODEL_ARCH
|
||
|
||
def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, is_big_endian: bool = False,
|
||
use_temp_file: bool = False, eager: bool = False,
|
||
metadata_override: Path | None = None, model_name: str | None = None,
|
||
split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False, small_first_shard: bool = False, is_lora: bool = False):
|
||
if type(self) is Model:
|
||
raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
|
||
|
||
self.dir_model = dir_model
|
||
self.ftype = ftype
|
||
self.fname_out = fname_out
|
||
self.is_big_endian = is_big_endian
|
||
self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
|
||
self.use_temp_file = use_temp_file
|
||
self.lazy = not eager
|
||
self.part_names = Model.get_model_part_names(self.dir_model, "model", ".safetensors")
|
||
self.is_safetensors = len(self.part_names) > 0
|
||
if not self.is_safetensors:
|
||
self.part_names = Model.get_model_part_names(self.dir_model, "pytorch_model", ".bin")
|
||
self.hparams = Model.load_hparams(self.dir_model)
|
||
self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"])
|
||
self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
|
||
self.tensor_names = None
|
||
self.metadata_override = metadata_override
|
||
self.model_name = model_name
|
||
self.dir_model_card = dir_model # overridden in convert_lora_to_gguf.py
|
||
self.is_lora = is_lora # true if model is used inside convert_lora_to_gguf.py
|
||
|
||
# Apply heuristics to figure out typical tensor encoding based on first layer tensor encoding type
|
||
if self.ftype == gguf.LlamaFileType.GUESSED:
|
||
# NOTE: can't use field "torch_dtype" in config.json, because some finetunes lie.
|
||
_, first_tensor = next(self.get_tensors())
|
||
if first_tensor.dtype == torch.float16:
|
||
logger.info(f"choosing --outtype f16 from first tensor type ({first_tensor.dtype})")
|
||
self.ftype = gguf.LlamaFileType.MOSTLY_F16
|
||
else:
|
||
logger.info(f"choosing --outtype bf16 from first tensor type ({first_tensor.dtype})")
|
||
self.ftype = gguf.LlamaFileType.MOSTLY_BF16
|
||
|
||
# Configure GGUF Writer
|
||
self.gguf_writer = gguf.GGUFWriter(path=None, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file,
|
||
split_max_tensors=split_max_tensors, split_max_size=split_max_size, dry_run=dry_run, small_first_shard=small_first_shard)
|
||
|
||
@classmethod
|
||
def __init_subclass__(cls):
|
||
# can't use an abstract property, because overriding it without type errors
|
||
# would require using decorated functions instead of simply defining the property
|
||
if "model_arch" not in cls.__dict__:
|
||
raise TypeError(f"Missing property 'model_arch' for {cls.__name__!r}")
|
||
|
||
def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
|
||
key = next((k for k in keys if k in self.hparams), None)
|
||
if key is not None:
|
||
return self.hparams[key]
|
||
if optional:
|
||
return None
|
||
raise KeyError(f"could not find any of: {keys}")
|
||
|
||
def set_vocab(self):
|
||
self._set_vocab_gpt2()
|
||
|
||
def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
|
||
tensor_names_from_parts: set[str] = set()
|
||
|
||
index_name = "model.safetensors" if self.is_safetensors else "pytorch_model.bin"
|
||
index_name += ".index.json"
|
||
index_file = self.dir_model / index_name
|
||
|
||
if index_file.is_file():
|
||
self.tensor_names = set()
|
||
logger.info(f"gguf: loading model weight map from '{index_name}'")
|
||
with open(index_file, "r", encoding="utf-8") as f:
|
||
index: dict[str, Any] = json.load(f)
|
||
weight_map = index.get("weight_map")
|
||
if weight_map is None or not isinstance(weight_map, dict):
|
||
raise ValueError(f"Can't load 'weight_map' from {index_name!r}")
|
||
self.tensor_names.update(weight_map.keys())
|
||
else:
|
||
self.tensor_names = tensor_names_from_parts
|
||
weight_map = {}
|
||
|
||
for part_name in self.part_names:
|
||
logger.info(f"gguf: loading model part '{part_name}'")
|
||
ctx: ContextManager[Any]
|
||
if self.is_safetensors:
|
||
from safetensors import safe_open
|
||
ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
|
||
else:
|
||
ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
|
||
|
||
with ctx as model_part:
|
||
tensor_names_from_parts.update(model_part.keys())
|
||
|
||
for name in model_part.keys():
|
||
if self.is_safetensors:
|
||
if self.lazy:
|
||
data = model_part.get_slice(name)
|
||
data = LazyTorchTensor.from_safetensors_slice(data)
|
||
else:
|
||
data = model_part.get_tensor(name)
|
||
else:
|
||
data = model_part[name]
|
||
if self.lazy:
|
||
data = LazyTorchTensor.from_eager(data)
|
||
yield name, data
|
||
|
||
# verify tensor name presence and identify potentially missing files
|
||
if len(tensor_names_from_parts.symmetric_difference(self.tensor_names)) > 0:
|
||
missing = sorted(self.tensor_names.difference(tensor_names_from_parts))
|
||
extra = sorted(tensor_names_from_parts.difference(self.tensor_names))
|
||
missing_files = sorted(set(weight_map[n] for n in missing if n in weight_map))
|
||
if len(extra) == 0 and len(missing_files) > 0:
|
||
raise ValueError(f"Missing or incomplete model files: {missing_files}")
|
||
else:
|
||
raise ValueError("Mismatch between weight map and model parts for tensor names:\n"
|
||
f"Missing tensors: {missing}\n"
|
||
f"Extra tensors: {extra}")
|
||
|
||
def format_tensor_name(self, key: gguf.MODEL_TENSOR, bid: int | None = None, suffix: str = ".weight") -> str:
|
||
if key not in gguf.MODEL_TENSORS[self.model_arch]:
|
||
raise ValueError(f"Missing {key!r} for MODEL_TENSORS of {self.model_arch!r}")
|
||
name: str = gguf.TENSOR_NAMES[key]
|
||
if "{bid}" in name:
|
||
assert bid is not None
|
||
name = name.format(bid=bid)
|
||
return name + suffix
|
||
|
||
def match_model_tensor_name(self, name: str, key: gguf.MODEL_TENSOR, bid: int | None, suffix: str = ".weight") -> bool:
|
||
if key not in gguf.MODEL_TENSORS[self.model_arch]:
|
||
return False
|
||
key_name: str = gguf.TENSOR_NAMES[key]
|
||
if "{bid}" in key_name:
|
||
if bid is None:
|
||
return False
|
||
key_name = key_name.format(bid=bid)
|
||
else:
|
||
if bid is not None:
|
||
return False
|
||
return name == (key_name + suffix)
|
||
|
||
def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
|
||
new_name = self.tensor_map.get_name(key=name, try_suffixes=try_suffixes)
|
||
if new_name is None:
|
||
raise ValueError(f"Can not map tensor {name!r}")
|
||
return new_name
|
||
|
||
def set_gguf_parameters(self):
|
||
self.gguf_writer.add_block_count(self.block_count)
|
||
|
||
if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx"], optional=True)) is not None:
|
||
self.gguf_writer.add_context_length(n_ctx)
|
||
logger.info(f"gguf: context length = {n_ctx}")
|
||
|
||
n_embd = self.find_hparam(["hidden_size", "n_embd"])
|
||
self.gguf_writer.add_embedding_length(n_embd)
|
||
logger.info(f"gguf: embedding length = {n_embd}")
|
||
|
||
if (n_ff := self.find_hparam(["intermediate_size", "n_inner"], optional=True)) is not None:
|
||
self.gguf_writer.add_feed_forward_length(n_ff)
|
||
logger.info(f"gguf: feed forward length = {n_ff}")
|
||
|
||
n_head = self.find_hparam(["num_attention_heads", "n_head"])
|
||
self.gguf_writer.add_head_count(n_head)
|
||
logger.info(f"gguf: head count = {n_head}")
|
||
|
||
if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None:
|
||
self.gguf_writer.add_head_count_kv(n_head_kv)
|
||
logger.info(f"gguf: key-value head count = {n_head_kv}")
|
||
|
||
if (rope_theta := self.hparams.get("rope_theta")) is not None:
|
||
self.gguf_writer.add_rope_freq_base(rope_theta)
|
||
logger.info(f"gguf: rope theta = {rope_theta}")
|
||
if (f_rms_eps := self.hparams.get("rms_norm_eps")) is not None:
|
||
self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
|
||
logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
|
||
if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
|
||
self.gguf_writer.add_layer_norm_eps(f_norm_eps)
|
||
logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
|
||
if (n_experts := self.hparams.get("num_local_experts")) is not None:
|
||
self.gguf_writer.add_expert_count(n_experts)
|
||
logger.info(f"gguf: expert count = {n_experts}")
|
||
if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
|
||
self.gguf_writer.add_expert_used_count(n_experts_used)
|
||
logger.info(f"gguf: experts used count = {n_experts_used}")
|
||
|
||
if (head_dim := self.hparams.get("head_dim")) is not None:
|
||
self.gguf_writer.add_key_length(head_dim)
|
||
self.gguf_writer.add_value_length(head_dim)
|
||
|
||
self.gguf_writer.add_file_type(self.ftype)
|
||
logger.info(f"gguf: file type = {self.ftype}")
|
||
|
||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||
del bid # unused
|
||
|
||
return [(self.map_tensor_name(name), data_torch)]
|
||
|
||
def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
|
||
del name, new_name, bid, n_dims # unused
|
||
|
||
return False
|
||
|
||
def prepare_tensors(self):
|
||
max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")
|
||
|
||
for name, data_torch in self.get_tensors():
|
||
# we don't need these
|
||
if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
|
||
continue
|
||
|
||
old_dtype = data_torch.dtype
|
||
|
||
# convert any unsupported data types to float32
|
||
if data_torch.dtype not in (torch.float16, torch.float32):
|
||
data_torch = data_torch.to(torch.float32)
|
||
|
||
# use the first number-like part of the tensor name as the block id
|
||
bid = None
|
||
for part in name.split("."):
|
||
if part.isdecimal():
|
||
bid = int(part)
|
||
break
|
||
|
||
for new_name, data in ((n, d.squeeze().numpy()) for n, d in self.modify_tensors(data_torch, name, bid)):
|
||
data: np.ndarray # type hint
|
||
n_dims = len(data.shape)
|
||
data_qtype: gguf.GGMLQuantizationType | bool = self.tensor_force_quant(name, new_name, bid, n_dims)
|
||
|
||
# Most of the codebase that takes in 1D tensors or norms only handles F32 tensors
|
||
if n_dims <= 1 or new_name.endswith("_norm.weight"):
|
||
data_qtype = gguf.GGMLQuantizationType.F32
|
||
|
||
# Conditions should closely match those in llama_model_quantize_internal in llama.cpp
|
||
# Some tensor types are always in float32
|
||
if data_qtype is False and (
|
||
any(
|
||
self.match_model_tensor_name(new_name, key, bid)
|
||
for key in (
|
||
gguf.MODEL_TENSOR.FFN_GATE_INP,
|
||
gguf.MODEL_TENSOR.POS_EMBD,
|
||
gguf.MODEL_TENSOR.TOKEN_TYPES,
|
||
gguf.MODEL_TENSOR.SSM_CONV1D,
|
||
gguf.MODEL_TENSOR.TIME_MIX_FIRST,
|
||
gguf.MODEL_TENSOR.TIME_MIX_W1,
|
||
gguf.MODEL_TENSOR.TIME_MIX_W2,
|
||
gguf.MODEL_TENSOR.TIME_MIX_DECAY_W1,
|
||
gguf.MODEL_TENSOR.TIME_MIX_DECAY_W2,
|
||
)
|
||
)
|
||
or not new_name.endswith(".weight")
|
||
):
|
||
data_qtype = gguf.GGMLQuantizationType.F32
|
||
|
||
if data_qtype is False and any(
|
||
self.match_model_tensor_name(new_name, key, bid)
|
||
for key in (
|
||
gguf.MODEL_TENSOR.TOKEN_EMBD,
|
||
gguf.MODEL_TENSOR.OUTPUT,
|
||
)
|
||
):
|
||
if self.ftype in (
|
||
gguf.LlamaFileType.MOSTLY_TQ1_0,
|
||
gguf.LlamaFileType.MOSTLY_TQ2_0,
|
||
):
|
||
# TODO: use Q4_K and Q6_K
|
||
data_qtype = gguf.GGMLQuantizationType.F16
|
||
|
||
# No override (data_qtype is False), or wants to be quantized (data_qtype is True)
|
||
if isinstance(data_qtype, bool):
|
||
if self.ftype == gguf.LlamaFileType.ALL_F32:
|
||
data_qtype = gguf.GGMLQuantizationType.F32
|
||
elif self.ftype == gguf.LlamaFileType.MOSTLY_F16:
|
||
data_qtype = gguf.GGMLQuantizationType.F16
|
||
elif self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
|
||
data_qtype = gguf.GGMLQuantizationType.BF16
|
||
elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0:
|
||
data_qtype = gguf.GGMLQuantizationType.Q8_0
|
||
elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ1_0:
|
||
data_qtype = gguf.GGMLQuantizationType.TQ1_0
|
||
elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ2_0:
|
||
data_qtype = gguf.GGMLQuantizationType.TQ2_0
|
||
else:
|
||
raise ValueError(f"Unknown file type: {self.ftype.name}")
|
||
|
||
try:
|
||
data = gguf.quants.quantize(data, data_qtype)
|
||
except gguf.QuantError as e:
|
||
logger.warning("%s, %s", e, "falling back to F16")
|
||
data_qtype = gguf.GGMLQuantizationType.F16
|
||
data = gguf.quants.quantize(data, data_qtype)
|
||
|
||
shape = gguf.quant_shape_from_byte_shape(data.shape, data_qtype) if data.dtype == np.uint8 else data.shape
|
||
|
||
# reverse shape to make it similar to the internal ggml dimension order
|
||
shape_str = f"{{{', '.join(str(n) for n in reversed(shape))}}}"
|
||
|
||
# n_dims is implicit in the shape
|
||
logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
|
||
|
||
self.gguf_writer.add_tensor(new_name, data, raw_dtype=data_qtype)
|
||
|
||
def set_type(self):
|
||
self.gguf_writer.add_type(gguf.GGUFType.MODEL)
|
||
|
||
def prepare_metadata(self, vocab_only: bool):
|
||
|
||
total_params, shared_params, expert_params, expert_count = self.gguf_writer.get_total_parameter_count()
|
||
|
||
self.metadata = gguf.Metadata.load(self.metadata_override, self.dir_model_card, self.model_name, total_params)
|
||
|
||
# Fallback to model directory name if metadata name is still missing
|
||
if self.metadata.name is None:
|
||
self.metadata.name = self.dir_model.name
|
||
|
||
# Generate parameter weight class (useful for leader boards) if not yet determined
|
||
if self.metadata.size_label is None and total_params > 0:
|
||
self.metadata.size_label = gguf.size_label(total_params, shared_params, expert_params, expert_count)
|
||
|
||
# Extract the encoding scheme from the file type name. e.g. 'gguf.LlamaFileType.MOSTLY_Q8_0' --> 'Q8_0'
|
||
output_type: str = self.ftype.name.partition("_")[2]
|
||
|
||
# Filename Output
|
||
if self.fname_out.is_dir():
|
||
# Generate default filename based on model specification and available metadata
|
||
if not vocab_only:
|
||
fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, self.metadata.size_label, output_type, model_type="LoRA" if total_params < 0 else None)
|
||
else:
|
||
fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=None, model_type="vocab")
|
||
|
||
# Use the default filename
|
||
self.fname_out = self.fname_out / f"{fname_default}.gguf"
|
||
else:
|
||
# Output path is a custom defined templated filename
|
||
# Note: `not is_dir()` is used because `.is_file()` will not detect
|
||
# file template strings as it doesn't actually exist as a file
|
||
|
||
# Process templated file name with the output ftype, useful with the "auto" ftype
|
||
self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type)
|
||
|
||
self.set_type()
|
||
|
||
logger.info("Set meta model")
|
||
self.metadata.set_gguf_meta_model(self.gguf_writer)
|
||
|
||
logger.info("Set model parameters")
|
||
self.set_gguf_parameters()
|
||
|
||
logger.info("Set model tokenizer")
|
||
self.set_vocab()
|
||
|
||
logger.info("Set model quantization version")
|
||
self.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION)
|
||
|
||
def write(self):
|
||
self.prepare_tensors()
|
||
self.prepare_metadata(vocab_only=False)
|
||
self.gguf_writer.write_header_to_file(path=self.fname_out)
|
||
self.gguf_writer.write_kv_data_to_file()
|
||
self.gguf_writer.write_tensors_to_file(progress=True)
|
||
self.gguf_writer.close()
|
||
|
||
def write_vocab(self):
|
||
if len(self.gguf_writer.tensors) != 1:
|
||
raise ValueError('Splitting the vocabulary is not supported')
|
||
|
||
self.prepare_metadata(vocab_only=True)
|
||
self.gguf_writer.write_header_to_file(path=self.fname_out)
|
||
self.gguf_writer.write_kv_data_to_file()
|
||
self.gguf_writer.close()
|
||
|
||
@staticmethod
|
||
def get_model_part_names(dir_model: Path, prefix: str, suffix: str) -> list[str]:
|
||
part_names: list[str] = []
|
||
for filename in os.listdir(dir_model):
|
||
if filename.startswith(prefix) and filename.endswith(suffix):
|
||
part_names.append(filename)
|
||
|
||
part_names.sort()
|
||
|
||
return part_names
|
||
|
||
@staticmethod
|
||
def load_hparams(dir_model: Path):
|
||
with open(dir_model / "config.json", "r", encoding="utf-8") as f:
|
||
return json.load(f)
|
||
|
||
@classmethod
|
||
def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
|
||
assert names
|
||
|
||
def func(modelcls: AnyModel) -> AnyModel:
|
||
for name in names:
|
||
cls._model_classes[name] = modelcls
|
||
return modelcls
|
||
return func
|
||
|
||
@classmethod
|
||
def from_model_architecture(cls, arch: str) -> type[Model]:
|
||
try:
|
||
return cls._model_classes[arch]
|
||
except KeyError:
|
||
raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
|
||
|
||
def does_token_look_special(self, token: str | bytes) -> bool:
|
||
if isinstance(token, (bytes, bytearray)):
|
||
token_text = token.decode(encoding="utf-8")
|
||
elif isinstance(token, memoryview):
|
||
token_text = token.tobytes().decode(encoding="utf-8")
|
||
else:
|
||
token_text = token
|
||
|
||
# Some models mark some added tokens which ought to be control tokens as not special.
|
||
# (e.g. command-r, command-r-plus, deepseek-coder, gemma{,-2})
|
||
seems_special = token_text in (
|
||
"<pad>", # deepseek-coder
|
||
"<mask>", "<2mass>", "[@BOS@]", # gemma{,-2}
|
||
)
|
||
|
||
seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>"))
|
||
seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>")) # deepseek-coder
|
||
|
||
# TODO: should these be marked as UNUSED instead? (maybe not)
|
||
seems_special = seems_special or (token_text.startswith("<unused") and token_text.endswith(">")) # gemma{,-2}
|
||
|
||
return seems_special
|
||
|
||
# used for GPT-2 BPE and WordPiece vocabs
|
||
def get_vocab_base(self) -> tuple[list[str], list[int], str]:
|
||
tokens: list[str] = []
|
||
toktypes: list[int] = []
|
||
|
||
from transformers import AutoTokenizer
|
||
tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
|
||
vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
|
||
assert max(tokenizer.vocab.values()) < vocab_size
|
||
|
||
tokpre = self.get_vocab_base_pre(tokenizer)
|
||
|
||
reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
|
||
added_vocab = tokenizer.get_added_vocab()
|
||
|
||
for i in range(vocab_size):
|
||
if i not in reverse_vocab:
|
||
tokens.append(f"[PAD{i}]")
|
||
toktypes.append(gguf.TokenType.UNUSED)
|
||
else:
|
||
token: str = reverse_vocab[i]
|
||
if token in added_vocab:
|
||
if tokenizer.added_tokens_decoder[i].special or self.does_token_look_special(token):
|
||
toktypes.append(gguf.TokenType.CONTROL)
|
||
else:
|
||
token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
|
||
toktypes.append(gguf.TokenType.USER_DEFINED)
|
||
else:
|
||
toktypes.append(gguf.TokenType.NORMAL)
|
||
tokens.append(token)
|
||
|
||
return tokens, toktypes, tokpre
|
||
|
||
# NOTE: this function is generated by convert_hf_to_gguf_update.py
|
||
# do not modify it manually!
|
||
# ref: https://github.com/ggerganov/llama.cpp/pull/6920
|
||
# Marker: Start get_vocab_base_pre
|
||
def get_vocab_base_pre(self, tokenizer) -> str:
|
||
# encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
|
||
# is specific for the BPE pre-tokenizer used by the model
|
||
# we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
|
||
# use in llama.cpp to implement the same pre-tokenizer
|
||
|
||
chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
|
||
|
||
chktok = tokenizer.encode(chktxt)
|
||
chkhsh = sha256(str(chktok).encode()).hexdigest()
|
||
|
||
logger.debug(f"chktok: {chktok}")
|
||
logger.debug(f"chkhsh: {chkhsh}")
|
||
|
||
res = None
|
||
|
||
# NOTE: if you get an error here, you need to update the convert_hf_to_gguf_update.py script
|
||
# or pull the latest version of the model from Huggingface
|
||
# don't edit the hashes manually!
|
||
if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
|
||
# ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
|
||
res = "llama-bpe"
|
||
if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754":
|
||
# ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base
|
||
res = "deepseek-llm"
|
||
if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821":
|
||
# ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
|
||
res = "deepseek-coder"
|
||
if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
|
||
# ref: https://huggingface.co/tiiuae/falcon-7b
|
||
res = "falcon"
|
||
if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
|
||
# ref: https://huggingface.co/BAAI/bge-small-en-v1.5
|
||
res = "bert-bge"
|
||
if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
|
||
# ref: https://huggingface.co/mosaicml/mpt-7b
|
||
res = "mpt"
|
||
if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34":
|
||
# ref: https://huggingface.co/bigcode/starcoder2-3b
|
||
res = "starcoder"
|
||
if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
|
||
# ref: https://huggingface.co/openai-community/gpt2
|
||
res = "gpt-2"
|
||
if chkhsh == "32d85c31273f8019248f2559fed492d929ea28b17e51d81d3bb36fff23ca72b3":
|
||
# ref: https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b
|
||
res = "stablelm2"
|
||
if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff":
|
||
# ref: https://huggingface.co/smallcloudai/Refact-1_6-base
|
||
res = "refact"
|
||
if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8":
|
||
# ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01
|
||
res = "command-r"
|
||
if chkhsh == "e636dc30a262dcc0d8c323492e32ae2b70728f4df7dfe9737d9f920a282b8aea":
|
||
# ref: https://huggingface.co/Qwen/Qwen1.5-7B
|
||
res = "qwen2"
|
||
if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
|
||
# ref: https://huggingface.co/allenai/OLMo-1.7-7B-hf
|
||
res = "olmo"
|
||
if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e":
|
||
# ref: https://huggingface.co/databricks/dbrx-base
|
||
res = "dbrx"
|
||
if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
|
||
# ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-en
|
||
res = "jina-v2-en"
|
||
if chkhsh == "171aeeedd6fb548d418a7461d053f11b6f1f1fc9b387bd66640d28a4b9f5c643":
|
||
# ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-es
|
||
res = "jina-v2-es"
|
||
if chkhsh == "27949a2493fc4a9f53f5b9b029c82689cfbe5d3a1929bb25e043089e28466de6":
|
||
# ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-de
|
||
res = "jina-v2-de"
|
||
if chkhsh == "c136ed14d01c2745d4f60a9596ae66800e2b61fa45643e72436041855ad4089d":
|
||
# ref: https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct
|
||
res = "smaug-bpe"
|
||
if chkhsh == "c7ea5862a53e4272c035c8238367063e2b270d51faa48c0f09e9d5b54746c360":
|
||
# ref: https://huggingface.co/LumiOpen/Poro-34B-chat
|
||
res = "poro-chat"
|
||
if chkhsh == "7967bfa498ade6b757b064f31e964dddbb80f8f9a4d68d4ba7998fcf281c531a":
|
||
# ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-code
|
||
res = "jina-v2-code"
|
||
if chkhsh == "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b":
|
||
# ref: https://huggingface.co/THUDM/glm-4-9b-chat
|
||
res = "chatglm-bpe"
|
||
if chkhsh == "7fc505bd3104ca1083b150b17d088b59534ede9bde81f0dd2090967d7fe52cee":
|
||
# ref: https://huggingface.co/LumiOpen/Viking-7B
|
||
res = "viking"
|
||
if chkhsh == "b53802fb28e26d645c3a310b34bfe07da813026ec7c7716883404d5e0f8b1901":
|
||
# ref: https://huggingface.co/core42/jais-13b
|
||
res = "jais"
|
||
if chkhsh == "7b3e7548e4308f52a76e8229e4e6cc831195d0d1df43aed21ac6c93da05fec5f":
|
||
# ref: https://huggingface.co/WisdomShell/CodeShell-7B
|
||
res = "codeshell"
|
||
if chkhsh == "63b97e4253352e6f357cc59ea5b583e3a680eaeaf2632188c2b952de2588485e":
|
||
# ref: https://huggingface.co/mistralai/Mistral-Nemo-Base-2407
|
||
res = "tekken"
|
||
if chkhsh == "855059429035d75a914d1eda9f10a876752e281a054a7a3d421ef0533e5b6249":
|
||
# ref: https://huggingface.co/HuggingFaceTB/SmolLM-135M
|
||
res = "smollm"
|
||
if chkhsh == "3c30d3ad1d6b64202cd222813e7736c2db6e1bd6d67197090fc1211fbc612ae7":
|
||
# ref: https://huggingface.co/bigscience/bloom
|
||
res = "bloom"
|
||
if chkhsh == "bc01ce58980e1db43859146dc51b1758b3b88729b217a74792e9f8d43e479d21":
|
||
# ref: https://huggingface.co/TurkuNLP/gpt3-finnish-small
|
||
res = "gpt3-finnish"
|
||
if chkhsh == "4e2b24cc4770243d65a2c9ec19770a72f08cffc161adbb73fcbb6b7dd45a0aae":
|
||
# ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct
|
||
res = "exaone"
|
||
if chkhsh == "fcace8b9cac38ce847670c970cd5892031a753a1ef381abd1d9af00f713da085":
|
||
# ref: https://huggingface.co/microsoft/phi-2
|
||
res = "phi-2"
|
||
|
||
if res is None:
|
||
logger.warning("\n")
|
||
logger.warning("**************************************************************************************")
|
||
logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
|
||
logger.warning("** There are 2 possible reasons for this:")
|
||
logger.warning("** - the model has not been added to convert_hf_to_gguf_update.py yet")
|
||
logger.warning("** - the pre-tokenization config has changed upstream")
|
||
logger.warning("** Check your model files and convert_hf_to_gguf_update.py and update them accordingly.")
|
||
logger.warning("** ref: https://github.com/ggerganov/llama.cpp/pull/6920")
|
||
logger.warning("**")
|
||
logger.warning(f"** chkhsh: {chkhsh}")
|
||
logger.warning("**************************************************************************************")
|
||
logger.warning("\n")
|
||
raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
|
||
|
||
logger.debug(f"tokenizer.ggml.pre: {repr(res)}")
|
||
logger.debug(f"chkhsh: {chkhsh}")
|
||
|
||
return res
|
||
# Marker: End get_vocab_base_pre
|
||
|
||
def _set_vocab_gpt2(self) -> None:
|
||
tokens, toktypes, tokpre = self.get_vocab_base()
|
||
self.gguf_writer.add_tokenizer_model("gpt2")
|
||
self.gguf_writer.add_tokenizer_pre(tokpre)
|
||
self.gguf_writer.add_token_list(tokens)
|
||
self.gguf_writer.add_token_types(toktypes)
|
||
|
||
special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
|
||
special_vocab.add_to_gguf(self.gguf_writer)
|
||
|
||
def _set_vocab_qwen(self):
|
||
dir_model = self.dir_model
|
||
hparams = self.hparams
|
||
tokens: list[str] = []
|
||
toktypes: list[int] = []
|
||
|
||
from transformers import AutoTokenizer
|
||
tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
|
||
vocab_size = hparams["vocab_size"]
|
||
assert max(tokenizer.get_vocab().values()) < vocab_size
|
||
|
||
tokpre = self.get_vocab_base_pre(tokenizer)
|
||
|
||
merges = []
|
||
vocab = {}
|
||
mergeable_ranks = tokenizer.mergeable_ranks
|
||
for token, rank in mergeable_ranks.items():
|
||
vocab[QwenModel.token_bytes_to_string(token)] = rank
|
||
if len(token) == 1:
|
||
continue
|
||
merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
|
||
assert len(merged) == 2
|
||
merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
|
||
|
||
# for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
|
||
added_vocab = tokenizer.special_tokens
|
||
reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
|
||
|
||
for i in range(vocab_size):
|
||
if i not in reverse_vocab:
|
||
tokens.append(f"[PAD{i}]")
|
||
toktypes.append(gguf.TokenType.UNUSED)
|
||
elif reverse_vocab[i] in added_vocab:
|
||
tokens.append(reverse_vocab[i])
|
||
toktypes.append(gguf.TokenType.CONTROL)
|
||
else:
|
||
tokens.append(reverse_vocab[i])
|
||
toktypes.append(gguf.TokenType.NORMAL)
|
||
|
||
self.gguf_writer.add_tokenizer_model("gpt2")
|
||
self.gguf_writer.add_tokenizer_pre(tokpre)
|
||
self.gguf_writer.add_token_list(tokens)
|
||
self.gguf_writer.add_token_types(toktypes)
|
||
|
||
special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
|
||
special_vocab.merges = merges
|
||
# only add special tokens when they were not already loaded from config.json
|
||
if len(special_vocab.special_token_ids) == 0:
|
||
special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
|
||
special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
|
||
# this one is usually not in config.json anyway
|
||
special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
|
||
special_vocab.add_to_gguf(self.gguf_writer)
|
||
|
||
def _set_vocab_sentencepiece(self, add_to_gguf=True):
|
||
tokens, scores, toktypes = self._create_vocab_sentencepiece()
|
||
|
||
self.gguf_writer.add_tokenizer_model("llama")
|
||
self.gguf_writer.add_tokenizer_pre("default")
|
||
self.gguf_writer.add_token_list(tokens)
|
||
self.gguf_writer.add_token_scores(scores)
|
||
self.gguf_writer.add_token_types(toktypes)
|
||
|
||
special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
|
||
special_vocab.add_to_gguf(self.gguf_writer)
|
||
|
||
def _create_vocab_sentencepiece(self):
|
||
from sentencepiece import SentencePieceProcessor
|
||
|
||
tokenizer_path = self.dir_model / 'tokenizer.model'
|
||
|
||
if not tokenizer_path.is_file():
|
||
raise FileNotFoundError(f"File not found: {tokenizer_path}")
|
||
|
||
tokenizer = SentencePieceProcessor()
|
||
tokenizer.LoadFromFile(str(tokenizer_path))
|
||
|
||
vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
|
||
|
||
tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
|
||
scores: list[float] = [-10000.0] * vocab_size
|
||
toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
|
||
|
||
for token_id in range(tokenizer.vocab_size()):
|
||
piece = tokenizer.IdToPiece(token_id)
|
||
text = piece.encode("utf-8")
|
||
score = tokenizer.GetScore(token_id)
|
||
|
||
toktype = SentencePieceTokenTypes.NORMAL
|
||
if tokenizer.IsUnknown(token_id):
|
||
toktype = SentencePieceTokenTypes.UNKNOWN
|
||
elif tokenizer.IsControl(token_id):
|
||
toktype = SentencePieceTokenTypes.CONTROL
|
||
elif tokenizer.IsUnused(token_id):
|
||
toktype = SentencePieceTokenTypes.UNUSED
|
||
elif tokenizer.IsByte(token_id):
|
||
toktype = SentencePieceTokenTypes.BYTE
|
||
|
||
tokens[token_id] = text
|
||
scores[token_id] = score
|
||
toktypes[token_id] = toktype
|
||
|
||
added_tokens_file = self.dir_model / 'added_tokens.json'
|
||
if added_tokens_file.is_file():
|
||
with open(added_tokens_file, "r", encoding="utf-8") as f:
|
||
added_tokens_json = json.load(f)
|
||
for key in added_tokens_json:
|
||
token_id = added_tokens_json[key]
|
||
if token_id >= vocab_size:
|
||
logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
|
||
continue
|
||
|
||
tokens[token_id] = key.encode("utf-8")
|
||
scores[token_id] = -1000.0
|
||
toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
|
||
|
||
tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
|
||
if tokenizer_config_file.is_file():
|
||
with open(tokenizer_config_file, "r", encoding="utf-8") as f:
|
||
tokenizer_config_json = json.load(f)
|
||
added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
|
||
for token_id, token_data in added_tokens_decoder.items():
|
||
token_id = int(token_id)
|
||
token: str = token_data["content"]
|
||
if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
|
||
if tokens[token_id] != token.encode("utf-8"):
|
||
logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token!r}')
|
||
if token_data.get("special") or self.does_token_look_special(token):
|
||
toktypes[token_id] = SentencePieceTokenTypes.CONTROL
|
||
else:
|
||
token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
|
||
toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
|
||
|
||
scores[token_id] = -1000.0
|
||
tokens[token_id] = token.encode("utf-8")
|
||
|
||
if vocab_size > len(tokens):
|
||
pad_count = vocab_size - len(tokens)
|
||
logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
|
||
for i in range(1, pad_count + 1):
|
||
tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
|
||
scores.append(-1000.0)
|
||
toktypes.append(SentencePieceTokenTypes.UNUSED)
|
||
|
||
return tokens, scores, toktypes
|
||
|
||
def _set_vocab_llama_hf(self):
|
||
vocab = gguf.LlamaHfVocab(self.dir_model)
|
||
tokens = []
|
||
scores = []
|
||
toktypes = []
|
||
|
||
for text, score, toktype in vocab.all_tokens():
|
||
tokens.append(text)
|
||
scores.append(score)
|
||
toktypes.append(toktype)
|
||
|
||
assert len(tokens) == vocab.vocab_size
|
||
|
||
self.gguf_writer.add_tokenizer_model("llama")
|
||
self.gguf_writer.add_tokenizer_pre("default")
|
||
self.gguf_writer.add_token_list(tokens)
|
||
self.gguf_writer.add_token_scores(scores)
|
||
self.gguf_writer.add_token_types(toktypes)
|
||
|
||
special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
|
||
special_vocab.add_to_gguf(self.gguf_writer)
|
||
|
||
def _set_vocab_builtin(self, model_name: Literal["gpt-neox", "llama-spm"], vocab_size: int):
|
||
tokenizer_path = Path(sys.path[0]) / "models" / f"ggml-vocab-{model_name}.gguf"
|
||
logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
|
||
vocab_reader = gguf.GGUFReader(tokenizer_path, "r")
|
||
|
||
default_pre = "mpt" if model_name == "gpt-neox" else "default"
|
||
|
||
field = vocab_reader.get_field(gguf.Keys.Tokenizer.MODEL)
|
||
assert field # tokenizer model
|
||
self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]).decode("utf-8"))
|
||
|
||
field = vocab_reader.get_field(gguf.Keys.Tokenizer.PRE)
|
||
self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]).decode("utf-8") if field else default_pre)
|
||
|
||
field = vocab_reader.get_field(gguf.Keys.Tokenizer.LIST)
|
||
assert field # token list
|
||
self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
|
||
|
||
if model_name == "llama-spm":
|
||
field = vocab_reader.get_field(gguf.Keys.Tokenizer.SCORES)
|
||
assert field # token scores
|
||
self.gguf_writer.add_token_scores([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
|
||
|
||
field = vocab_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
|
||
assert field # token types
|
||
self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
|
||
|
||
if model_name != "llama-spm":
|
||
field = vocab_reader.get_field(gguf.Keys.Tokenizer.MERGES)
|
||
assert field # token merges
|
||
self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
|
||
|
||
if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)) is not None:
|
||
self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0])
|
||
if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)) is not None:
|
||
self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0])
|
||
if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)) is not None:
|
||
self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0])
|
||
if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.PAD_ID)) is not None:
|
||
self.gguf_writer.add_pad_token_id(field.parts[-1].tolist()[0])
|
||
if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_BOS)) is not None:
|
||
self.gguf_writer.add_add_bos_token(field.parts[-1].tolist()[0])
|
||
if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_EOS)) is not None:
|
||
self.gguf_writer.add_add_eos_token(field.parts[-1].tolist()[0])
|
||
|
||
|
||
@Model.register("GPTNeoXForCausalLM")
|
||
class GPTNeoXModel(Model):
|
||
model_arch = gguf.MODEL_ARCH.GPTNEOX
|
||
|
||
def set_gguf_parameters(self):
|
||
block_count = self.hparams["num_hidden_layers"]
|
||
|
||
self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
|
||
self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
|
||
self.gguf_writer.add_block_count(block_count)
|
||
self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
|
||
self.gguf_writer.add_rope_dimension_count(
|
||
int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
|
||
)
|
||
self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
|
||
self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
|
||
self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
|
||
|
||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||
del bid # unused
|
||
|
||
n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
|
||
n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
|
||
|
||
tensors: list[tuple[str, Tensor]] = []
|
||
|
||
if re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.weight", name):
|
||
# Map bloom-style qkv_linear to gpt-style qkv_linear
|
||
# bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
|
||
# gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
|
||
qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
|
||
data_torch = torch.cat(
|
||
(
|
||
qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
|
||
qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
|
||
qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
|
||
),
|
||
dim=0,
|
||
)
|
||
logger.info("re-format attention.linear_qkv.weight")
|
||
elif re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.bias", name):
|
||
qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
|
||
data_torch = torch.cat(
|
||
(
|
||
qkv_bias[:, 0, :].reshape((n_embed,)),
|
||
qkv_bias[:, 1, :].reshape((n_embed,)),
|
||
qkv_bias[:, 2, :].reshape((n_embed,)),
|
||
),
|
||
dim=0,
|
||
)
|
||
logger.info("re-format attention.linear_qkv.bias")
|
||
|
||
tensors.append((self.map_tensor_name(name), data_torch))
|
||
|
||
return tensors
|
||
|
||
|
||
@Model.register("BloomForCausalLM", "BloomModel")
|
||
class BloomModel(Model):
|
||
model_arch = gguf.MODEL_ARCH.BLOOM
|
||
|
||
def set_gguf_parameters(self):
|
||
n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
|
||
n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
|
||
self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
|
||
self.gguf_writer.add_embedding_length(n_embed)
|
||
self.gguf_writer.add_feed_forward_length(4 * n_embed)
|
||
self.gguf_writer.add_block_count(self.hparams["n_layer"])
|
||
self.gguf_writer.add_head_count(n_head)
|
||
self.gguf_writer.add_head_count_kv(n_head)
|
||
self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
|
||
self.gguf_writer.add_file_type(self.ftype)
|
||
|
||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||
del bid # unused
|
||
|
||
n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
|
||
n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
|
||
|
||
name = re.sub(r'transformer\.', '', name)
|
||
|
||
tensors: list[tuple[str, Tensor]] = []
|
||
|
||
if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
|
||
# Map bloom-style qkv_linear to gpt-style qkv_linear
|
||
# bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
|
||
# gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
|
||
qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
|
||
data_torch = torch.cat(
|
||
(
|
||
qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
|
||
qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
|
||
qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
|
||
),
|
||
dim=0,
|
||
)
|
||
logger.info("re-format attention.linear_qkv.weight")
|
||
elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
|
||
qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
|
||
data_torch = torch.cat(
|
||
(
|
||
qkv_bias[:, 0, :].reshape((n_embed,)),
|
||
qkv_bias[:, 1, :].reshape((n_embed,)),
|
||
qkv_bias[:, 2, :].reshape((n_embed,)),
|
||
),
|
||
dim=0,
|
||
)
|
||
logger.info("re-format attention.linear_qkv.bias")
|
||
|
||
tensors.append((self.map_tensor_name(name), data_torch))
|
||
|
||
if name == "word_embeddings.weight":
|
||
assert self.tensor_names is not None
|
||
|
||
# TODO: tie them at runtime, don't duplicate in the model file
|
||
if all(s not in self.tensor_names for s in ("lm_head.weight", "output.weight")):
|
||
tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
|
||
|
||
return tensors
|
||
|
||
|
||
@Model.register("MPTForCausalLM")
|
||
class MPTModel(Model):
|
||
model_arch = gguf.MODEL_ARCH.MPT
|
||
|
||
def set_vocab(self):
|
||
try:
|
||
self._set_vocab_gpt2()
|
||
except Exception:
|
||
# Fallback for SEA-LION model
|
||
self._set_vocab_sentencepiece()
|
||
self.gguf_writer.add_add_bos_token(False)
|
||
self.gguf_writer.add_pad_token_id(3)
|
||
self.gguf_writer.add_eos_token_id(1)
|
||
self.gguf_writer.add_unk_token_id(0)
|
||
|
||
def set_gguf_parameters(self):
|
||
block_count = self.hparams["n_layers"]
|
||
self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
|
||
self.gguf_writer.add_embedding_length(self.hparams["d_model"])
|
||
self.gguf_writer.add_block_count(block_count)
|
||
self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
|
||
self.gguf_writer.add_head_count(self.hparams["n_heads"])
|
||
if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
|
||
self.gguf_writer.add_head_count_kv(kv_n_heads)
|
||
self.gguf_writer.add_layer_norm_eps(1e-5)
|
||
if self.hparams["attn_config"]["clip_qkv"] is not None:
|
||
self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
|
||
if self.hparams["attn_config"]["alibi"]:
|
||
self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
|
||
else:
|
||
self.gguf_writer.add_max_alibi_bias(0.0)
|
||
|
||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||
del bid # unused
|
||
|
||
if "scales" in name:
|
||
new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias", ".scales"))
|
||
new_name = new_name.replace("scales", "act.scales")
|
||
else:
|
||
new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias"))
|
||
|
||
return [(new_name, data_torch)]
|
||
|
||
|
||
@Model.register("OrionForCausalLM")
|
||
class OrionModel(Model):
|
||
model_arch = gguf.MODEL_ARCH.ORION
|
||
|
||
def set_vocab(self):
|
||
self._set_vocab_sentencepiece()
|
||
|
||
def set_gguf_parameters(self):
|
||
block_count = self.hparams["num_hidden_layers"]
|
||
head_count = self.hparams["num_attention_heads"]
|
||
head_count_kv = self.hparams.get("num_key_value_heads", head_count)
|
||
|
||
ctx_length = 0
|
||
if "max_sequence_length" in self.hparams:
|
||
ctx_length = self.hparams["max_sequence_length"]
|
||
elif "max_position_embeddings" in self.hparams:
|
||
ctx_length = self.hparams["max_position_embeddings"]
|
||
elif "model_max_length" in self.hparams:
|
||
ctx_length = self.hparams["model_max_length"]
|
||
else:
|
||
raise ValueError("gguf: can not find ctx length parameter.")
|
||
|
||
self.gguf_writer.add_file_type(self.ftype)
|
||
self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
|
||
self.gguf_writer.add_context_length(ctx_length)
|
||
self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
|
||
self.gguf_writer.add_block_count(block_count)
|
||
self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
|
||
self.gguf_writer.add_head_count(head_count)
|
||
self.gguf_writer.add_head_count_kv(head_count_kv)
|
||
# note: config provides rms norm but it is actually layer norm
|
||
# ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
|
||
self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
|
||
|
||
|
||
@Model.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
|
||
class BaichuanModel(Model):
|
||
model_arch = gguf.MODEL_ARCH.BAICHUAN
|
||
|
||
def set_vocab(self):
|
||
self._set_vocab_sentencepiece()
|
||
|
||
def set_gguf_parameters(self):
|
||
block_count = self.hparams["num_hidden_layers"]
|
||
head_count = self.hparams["num_attention_heads"]
|
||
head_count_kv = self.hparams.get("num_key_value_heads", head_count)
|
||
|
||
ctx_length = 0
|
||
if "max_sequence_length" in self.hparams:
|
||
ctx_length = self.hparams["max_sequence_length"]
|
||
elif "max_position_embeddings" in self.hparams:
|
||
ctx_length = self.hparams["max_position_embeddings"]
|
||
elif "model_max_length" in self.hparams:
|
||
ctx_length = self.hparams["model_max_length"]
|
||
else:
|
||
raise ValueError("gguf: can not find ctx length parameter.")
|
||
|
||
self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
|
||
self.gguf_writer.add_context_length(ctx_length)
|
||
self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
|
||
self.gguf_writer.add_block_count(block_count)
|
||
self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
|
||
self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
|
||
self.gguf_writer.add_head_count(head_count)
|
||
self.gguf_writer.add_head_count_kv(head_count_kv)
|
||
self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
|
||
self.gguf_writer.add_file_type(self.ftype)
|
||
|
||
if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
|
||
if self.hparams["rope_scaling"].get("type") == "linear":
|
||
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
|
||
self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
|
||
|
||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||
head_count = self.hparams["num_attention_heads"]
|
||
head_count_kv = self.hparams.get("num_key_value_heads", head_count)
|
||
|
||
tensors: list[tuple[str, Tensor]] = []
|
||
|
||
if bid is not None and name == f"model.layers.{bid}.self_attn.W_pack.weight":
|
||
logger.info(f"Unpacking and permuting layer {bid}")
|
||
tensors = [
|
||
(self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid),
|
||
self._reverse_hf_permute_part(data_torch, 0, head_count, head_count)),
|
||
(self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid),
|
||
self._reverse_hf_permute_part(data_torch, 1, head_count, head_count_kv)),
|
||
(self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid),
|
||
self._reverse_hf_part(data_torch, 2)),
|
||
]
|
||
else:
|
||
tensors = [(self.map_tensor_name(name), data_torch)]
|
||
|
||
return tensors
|
||
|
||
def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
|
||
if n_kv_head is not None and n_head != n_kv_head:
|
||
n_head //= n_kv_head
|
||
|
||
return (
|
||
weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
|
||
.swapaxes(1, 2)
|
||
.reshape(weights.shape)
|
||
)
|
||
|
||
def _reverse_hf_permute_part(
|
||
self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
|
||
) -> Tensor:
|
||
r = weights.shape[0] // 3
|
||
return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
|
||
|
||
def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
|
||
r = weights.shape[0] // 3
|
||
return weights[r * n_part:r * n_part + r, ...]
|
||
|
||
|
||
@Model.register("XverseForCausalLM")
|
||
class XverseModel(Model):
|
||
model_arch = gguf.MODEL_ARCH.XVERSE
|
||
|
||
def set_vocab(self):
|
||
assert (self.dir_model / "tokenizer.json").is_file()
|
||
dir_model = self.dir_model
|
||
hparams = self.hparams
|
||
|
||
tokens: list[bytes] = []
|
||
toktypes: list[int] = []
|
||
|
||
from transformers import AutoTokenizer
|
||
tokenizer = AutoTokenizer.from_pretrained(dir_model)
|
||
vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
|
||
# Since we are checking the maximum index, we need to ensure it's strictly less than vocab_size,
|
||
# because vocab_size is the count of items, and indexes start at 0.
|
||
max_vocab_index = max(tokenizer.get_vocab().values())
|
||
if max_vocab_index >= vocab_size:
|
||
raise ValueError("Vocabulary size exceeds expected maximum size.")
|
||
|
||
reverse_vocab: dict[int, str] = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
|
||
added_vocab = tokenizer.get_added_vocab()
|
||
|
||
for token_id in range(vocab_size):
|
||
token_text = reverse_vocab[token_id].encode('utf-8')
|
||
# replace "\x00" to string with length > 0
|
||
if token_text == b"\x00":
|
||
toktype = gguf.TokenType.BYTE # special
|
||
token_text = f"<{token_text}>".encode('utf-8')
|
||
elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
|
||
toktype = gguf.TokenType.BYTE # special
|
||
elif reverse_vocab[token_id] in added_vocab:
|
||
if tokenizer.added_tokens_decoder[token_id].special:
|
||
toktype = gguf.TokenType.CONTROL
|
||
else:
|
||
toktype = gguf.TokenType.USER_DEFINED
|
||
else:
|
||
toktype = gguf.TokenType.NORMAL
|
||
|
||
tokens.append(token_text)
|
||
toktypes.append(toktype)
|
||
|
||
self.gguf_writer.add_tokenizer_model("llama")
|
||
self.gguf_writer.add_tokenizer_pre("default")
|
||
self.gguf_writer.add_token_list(tokens)
|
||
self.gguf_writer.add_token_types(toktypes)
|
||
|
||
special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
|
||
special_vocab.add_to_gguf(self.gguf_writer)
|
||
|
||
def set_gguf_parameters(self):
|
||
block_count = self.hparams["num_hidden_layers"]
|
||
head_count = self.hparams["num_attention_heads"]
|
||
head_count_kv = self.hparams.get("num_key_value_heads", head_count)
|
||
|
||
ctx_length = 0
|
||
if "max_sequence_length" in self.hparams:
|
||
ctx_length = self.hparams["max_sequence_length"]
|
||
elif "max_position_embeddings" in self.hparams:
|
||
ctx_length = self.hparams["max_position_embeddings"]
|
||
elif "model_max_length" in self.hparams:
|
||
ctx_length = self.hparams["model_max_length"]
|
||
else:
|
||
raise ValueError("gguf: can not find ctx length parameter.")
|
||
|
||
self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
|
||
self.gguf_writer.add_context_length(ctx_length)
|
||
self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
|
||
self.gguf_writer.add_block_count(block_count)
|
||
self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
|
||
self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
|
||
self.gguf_writer.add_head_count(head_count)
|
||
self.gguf_writer.add_head_count_kv(head_count_kv)
|
||
self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
|
||
self.gguf_writer.add_file_type(self.ftype)
|
||
|
||
if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
|
||
if self.hparams["rope_scaling"].get("type") == "linear":
|
||
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
|
||
self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
|
||
|
||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||
del bid # unused
|
||
|
||
head_count = self.hparams["num_attention_heads"]
|
||
head_count_kv = self.hparams.get("num_key_value_heads", head_count)
|
||
|
||
# HF models permute some of the tensors, so we need to undo that
|
||
if name.endswith("q_proj.weight"):
|
||
data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
|
||
if name.endswith("k_proj.weight"):
|
||
data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
|
||
|
||
return [(self.map_tensor_name(name), data_torch)]
|
||
|
||
def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
|
||
if n_kv_head is not None and n_head != n_kv_head:
|
||
n_head //= n_kv_head
|
||
|
||
return (
|
||
weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
|
||
.swapaxes(1, 2)
|
||
.reshape(weights.shape)
|
||
)
|
||
|
||
|
||
@Model.register("FalconForCausalLM", "RWForCausalLM")
|
||
class FalconModel(Model):
|
||
model_arch = gguf.MODEL_ARCH.FALCON
|
||
|
||
def set_gguf_parameters(self):
|
||
block_count = self.hparams.get("num_hidden_layers")
|
||
if block_count is None:
|
||
block_count = self.hparams["n_layer"] # old name
|
||
|
||
n_head = self.hparams.get("num_attention_heads")
|
||
if n_head is None:
|
||
n_head = self.hparams["n_head"] # old name
|
||
|
||
n_head_kv = self.hparams.get("num_kv_heads")
|
||
if n_head_kv is None:
|
||
n_head_kv = self.hparams.get("n_head_kv", 1) # old name
|
||
|
||
self.gguf_writer.add_context_length(2048) # not in config.json
|
||
self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
|
||
self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
|
||
self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
|
||
self.gguf_writer.add_block_count(block_count)
|
||
self.gguf_writer.add_head_count(n_head)
|
||
self.gguf_writer.add_head_count_kv(n_head_kv)
|
||
self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
|
||
self.gguf_writer.add_file_type(self.ftype)
|
||
|
||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||
del bid # unused
|
||
|
||
# QKV tensor transform
|
||
# The original query_key_value tensor contains n_head_kv "kv groups",
|
||
# each consisting of n_head/n_head_kv query weights followed by one key
|
||
# and one value weight (shared by all query heads in the kv group).
|
||
# This layout makes it a big pain to work with in GGML.
|
||
# So we rearrange them here,, so that we have n_head query weights
|
||
# followed by n_head_kv key weights followed by n_head_kv value weights,
|
||
# in contiguous fashion.
|
||
# ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
|
||
|
||
if "query_key_value" in name:
|
||
n_head = self.find_hparam(["num_attention_heads", "n_head"])
|
||
n_head_kv = self.find_hparam(["num_kv_heads", "n_head_kv"], optional=True) or 1
|
||
head_dim = self.hparams["hidden_size"] // n_head
|
||
|
||
qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
|
||
q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
|
||
k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
|
||
v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
|
||
data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
|
||
|
||
return [(self.map_tensor_name(name), data_torch)]
|
||
|
||
|
||
@Model.register("GPTBigCodeForCausalLM")
|
||
class StarCoderModel(Model):
|
||
model_arch = gguf.MODEL_ARCH.STARCODER
|
||
|
||
def set_gguf_parameters(self):
|
||
block_count = self.hparams["n_layer"]
|
||
|
||
self.gguf_writer.add_context_length(self.hparams["n_positions"])
|
||
self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
|
||
self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
|
||
self.gguf_writer.add_block_count(block_count)
|
||
self.gguf_writer.add_head_count(self.hparams["n_head"])
|
||
self.gguf_writer.add_head_count_kv(1)
|
||
self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
|
||
self.gguf_writer.add_file_type(self.ftype)
|
||
|
||
|
||
@Model.register("GPTRefactForCausalLM")
|
||
class RefactModel(Model):
|
||
model_arch = gguf.MODEL_ARCH.REFACT
|
||
|
||
def set_vocab(self):
|
||
super().set_vocab()
|
||
|
||
# TODO: how to determine special FIM tokens automatically?
|
||
special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
|
||
special_token_types = ['prefix', 'suffix', 'middle', 'eot'])
|
||
special_vocab._set_special_token("prefix", 1)
|
||
special_vocab._set_special_token("suffix", 3)
|
||
special_vocab._set_special_token("middle", 2)
|
||
special_vocab.chat_template = None # do not add it twice
|
||
special_vocab.add_to_gguf(self.gguf_writer)
|
||
|
||
def set_gguf_parameters(self):
|
||
hidden_dim = self.hparams["n_embd"]
|
||
inner_dim = 4 * hidden_dim
|
||
hidden_dim = int(2 * inner_dim / 3)
|
||
multiple_of = 256
|
||
ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
|
||
|
||
block_count = self.hparams["n_layer"]
|
||
|
||
# refact uses Alibi. So this is from config.json which might be used by training.
|
||
self.gguf_writer.add_context_length(self.hparams["n_positions"])
|
||
self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
|
||
|
||
self.gguf_writer.add_feed_forward_length(ff_dim)
|
||
self.gguf_writer.add_block_count(block_count)
|
||
self.gguf_writer.add_head_count(self.hparams["n_head"])
|
||
self.gguf_writer.add_head_count_kv(1)
|
||
self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
|
||
self.gguf_writer.add_file_type(self.ftype)
|
||
|
||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||
hidden_dim = self.hparams["n_embd"]
|
||
inner_dim = 4 * hidden_dim
|
||
hidden_dim = int(2 * inner_dim / 3)
|
||
multiple_of = 256
|
||
ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
|
||
n_head = self.hparams["n_head"]
|
||
n_head_kv = 1
|
||
head_dim = self.hparams["n_embd"] // n_head
|
||
|
||
tensors: list[tuple[str, Tensor]] = []
|
||
|
||
if bid is not None:
|
||
if name == f"transformer.h.{bid}.attn.kv.weight":
|
||
tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), data_torch[:n_head_kv * head_dim]))
|
||
tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), data_torch[n_head_kv * head_dim:]))
|
||
elif name == f"transformer.h.{bid}.attn.q.weight":
|
||
tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), data_torch))
|
||
elif name == f"transformer.h.{bid}.mlp.gate_up_proj.weight":
|
||
tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim]))
|
||
tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:]))
|
||
|
||
if len(tensors) == 0:
|
||
tensors.append((self.map_tensor_name(name), data_torch))
|
||
|
||
return tensors
|
||
|
||
|
||
@Model.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
|
||
class StableLMModel(Model):
|
||
model_arch = gguf.MODEL_ARCH.STABLELM
|
||
|
||
def set_vocab(self):
|
||
if (self.dir_model / "tokenizer.json").is_file():
|
||
self._set_vocab_gpt2()
|
||
else:
|
||
# StableLM 2 1.6B used to have a vocab in a similar format to Qwen's vocab
|
||
self._set_vocab_qwen()
|
||
|
||
def set_gguf_parameters(self):
|
||
hparams = self.hparams
|
||
block_count = hparams["num_hidden_layers"]
|
||
|
||
self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
|
||
self.gguf_writer.add_embedding_length(hparams["hidden_size"])
|
||
self.gguf_writer.add_block_count(block_count)
|
||
self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
|
||
rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
|
||
self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
|
||
self.gguf_writer.add_head_count(hparams["num_attention_heads"])
|
||
self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
|
||
self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
|
||
self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
|
||
self.gguf_writer.add_file_type(self.ftype)
|
||
|
||
_q_norms: list[dict[str, Tensor]] | None = None
|
||
_k_norms: list[dict[str, Tensor]] | None = None
|
||
|
||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||
n_head = self.hparams["num_attention_heads"]
|
||
n_kv_head = self.hparams["num_key_value_heads"]
|
||
|
||
if name.find("q_layernorm.norms") != -1:
|
||
assert bid is not None
|
||
|
||
if self._q_norms is None:
|
||
self._q_norms = [{} for _ in range(self.block_count)]
|
||
|
||
self._q_norms[bid][name] = data_torch
|
||
|
||
if len(self._q_norms[bid]) >= n_head:
|
||
return self._stack_qk_norm(bid, n_head, self._q_norms[bid], "q_layernorm")
|
||
else:
|
||
return []
|
||
|
||
if name.find("k_layernorm.norms") != -1:
|
||
assert bid is not None
|
||
|
||
if self._k_norms is None:
|
||
self._k_norms = [{} for _ in range(self.block_count)]
|
||
|
||
self._k_norms[bid][name] = data_torch
|
||
|
||
if len(self._k_norms[bid]) >= n_kv_head:
|
||
return self._stack_qk_norm(bid, n_kv_head, self._k_norms[bid], "k_layernorm")
|
||
else:
|
||
return []
|
||
|
||
return [(self.map_tensor_name(name), data_torch)]
|
||
|
||
def _stack_qk_norm(self, bid: int, n_head: int, norms: dict[str, Tensor], layer_name: str = "q_layernorm"):
|
||
datas: list[Tensor] = []
|
||
# extract the norms in order
|
||
for xid in range(n_head):
|
||
ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
|
||
datas.append(norms[ename])
|
||
del norms[ename]
|
||
data_torch = torch.stack(datas, dim=0)
|
||
|
||
merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
|
||
new_name = self.map_tensor_name(merged_name)
|
||
|
||
return [(new_name, data_torch)]
|
||
|
||
def prepare_tensors(self):
|
||
super().prepare_tensors()
|
||
|
||
if self._q_norms is not None or self._k_norms is not None:
|
||
# flatten two `list[dict[str, Tensor]]` into a single `list[str]`
|
||
norms = (
|
||
[k for d in self._q_norms for k in d.keys()] if self._q_norms is not None else []
|
||
) + (
|
||
[k for d in self._k_norms for k in d.keys()] if self._k_norms is not None else []
|
||
)
|
||
if len(norms) > 0:
|
||
raise ValueError(f"Unprocessed norms: {norms}")
|
||
|
||
|
||
@Model.register("LLaMAForCausalLM", "LlamaForCausalLM", "MistralForCausalLM", "MixtralForCausalLM")
|
||
class LlamaModel(Model):
|
||
model_arch = gguf.MODEL_ARCH.LLAMA
|
||
|
||
def set_vocab(self):
|
||
try:
|
||
self._set_vocab_sentencepiece()
|
||
except FileNotFoundError:
|
||
try:
|
||
self._set_vocab_llama_hf()
|
||
except (FileNotFoundError, TypeError):
|
||
# Llama 3
|
||
self._set_vocab_gpt2()
|
||
|
||
# Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
|
||
if self.hparams.get("vocab_size", 32000) == 32016:
|
||
special_vocab = gguf.SpecialVocab(
|
||
self.dir_model, load_merges=False,
|
||
special_token_types = ['prefix', 'suffix', 'middle', 'eot']
|
||
)
|
||
special_vocab._set_special_token("prefix", 32007)
|
||
special_vocab._set_special_token("suffix", 32008)
|
||
special_vocab._set_special_token("middle", 32009)
|
||
special_vocab._set_special_token("eot", 32010)
|
||
special_vocab.add_to_gguf(self.gguf_writer)
|
||
|
||
def set_gguf_parameters(self):
|
||
super().set_gguf_parameters()
|
||
hparams = self.hparams
|
||
self.gguf_writer.add_vocab_size(hparams["vocab_size"])
|
||
|
||
if "head_dim" in hparams:
|
||
rope_dim = hparams["head_dim"]
|
||
else:
|
||
rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
|
||
self.gguf_writer.add_rope_dimension_count(rope_dim)
|
||
|
||
if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
|
||
if self.hparams["rope_scaling"].get("type") == "linear":
|
||
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
|
||
self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
|
||
|
||
tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
|
||
if tokenizer_config_file.is_file():
|
||
with open(tokenizer_config_file, "r", encoding="utf-8") as f:
|
||
tokenizer_config_json = json.load(f)
|
||
if "add_prefix_space" in tokenizer_config_json:
|
||
self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
|
||
|
||
# Apply to granite small models only
|
||
if self.hparams.get("vocab_size", 32000) == 49152:
|
||
self.gguf_writer.add_add_bos_token(False)
|
||
|
||
@staticmethod
|
||
def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
|
||
if n_head_kv is not None and n_head != n_head_kv:
|
||
n_head = n_head_kv
|
||
return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
|
||
.swapaxes(1, 2)
|
||
.reshape(weights.shape))
|
||
|
||
_experts: list[dict[str, Tensor]] | None = None
|
||
|
||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||
n_head = self.hparams["num_attention_heads"]
|
||
n_kv_head = self.hparams.get("num_key_value_heads")
|
||
|
||
if name.endswith(("q_proj.weight", "q_proj.bias")):
|
||
data_torch = LlamaModel.permute(data_torch, n_head, n_head)
|
||
if name.endswith(("k_proj.weight", "k_proj.bias")):
|
||
data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
|
||
|
||
# process the experts separately
|
||
if name.find("block_sparse_moe.experts") != -1:
|
||
n_experts = self.hparams["num_local_experts"]
|
||
|
||
assert bid is not None
|
||
|
||
if self._experts is None:
|
||
self._experts = [{} for _ in range(self.block_count)]
|
||
|
||
self._experts[bid][name] = data_torch
|
||
|
||
if len(self._experts[bid]) >= n_experts * 3:
|
||
tensors: list[tuple[str, Tensor]] = []
|
||
|
||
# merge the experts into a single 3d tensor
|
||
for wid in ["w1", "w2", "w3"]:
|
||
datas: list[Tensor] = []
|
||
|
||
for xid in range(n_experts):
|
||
ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
|
||
datas.append(self._experts[bid][ename])
|
||
del self._experts[bid][ename]
|
||
|
||
data_torch = torch.stack(datas, dim=0)
|
||
|
||
merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
|
||
|
||
new_name = self.map_tensor_name(merged_name)
|
||
|
||
tensors.append((new_name, data_torch))
|
||
return tensors
|
||
else:
|
||
return []
|
||
|
||
return [(self.map_tensor_name(name), data_torch)]
|
||
|
||
def prepare_tensors(self):
|
||
if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
|
||
if rope_scaling.get("rope_type", '').lower() == "llama3":
|
||
base = self.hparams.get("rope_theta", 10000.0)
|
||
dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
|
||
freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
|
||
|
||
factor = rope_scaling.get("factor", 8.0)
|
||
low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
|
||
high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
|
||
old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
|
||
|
||
low_freq_wavelen = old_context_len / low_freq_factor
|
||
high_freq_wavelen = old_context_len / high_freq_factor
|
||
assert low_freq_wavelen != high_freq_wavelen
|
||
|
||
rope_factors = []
|
||
for freq in freqs:
|
||
wavelen = 2 * math.pi / freq
|
||
if wavelen < high_freq_wavelen:
|
||
rope_factors.append(1)
|
||
elif wavelen > low_freq_wavelen:
|
||
rope_factors.append(factor)
|
||
else:
|
||
smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
|
||
rope_factors.append(1 / ((1 - smooth) / factor + smooth))
|
||
|
||
if not self.is_lora:
|
||
self.gguf_writer.add_tensor(self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), np.array(rope_factors, dtype=np.float32))
|
||
|
||
super().prepare_tensors()
|
||
|
||
if self._experts is not None:
|
||
# flatten `list[dict[str, Tensor]]` into `list[str]`
|
||
experts = [k for d in self._experts for k in d.keys()]
|
||
if len(experts) > 0:
|
||
raise ValueError(f"Unprocessed experts: {experts}")
|
||
|
||
|
||
@Model.register("BitnetForCausalLM")
|
||
class BitnetModel(Model):
|
||
model_arch = gguf.MODEL_ARCH.BITNET
|
||
|
||
def set_vocab(self):
|
||
self._set_vocab_sentencepiece()
|
||
|
||
def set_gguf_parameters(self):
|
||
super().set_gguf_parameters()
|
||
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
|
||
self.gguf_writer.add_rope_scaling_factor(1.0)
|
||
|
||
def weight_quant(self, weight: Tensor) -> Tensor:
|
||
dtype = weight.dtype
|
||
weight = weight.float()
|
||
scale = weight.abs().mean().clamp(min=1e-5)
|
||
iscale = 1 / scale
|
||
# TODO: multiply by the scale directly instead of inverting it twice
|
||
# (this is also unnecessarily doubly inverted upstream)
|
||
# ref: https://huggingface.co/1bitLLM/bitnet_b1_58-3B/blob/af89e318d78a70802061246bf037199d2fb97020/utils_quant.py#L10
|
||
result = (weight * iscale).round().clamp(-1, 1) / iscale
|
||
return result.type(dtype)
|
||
|
||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||
new_name = self.map_tensor_name(name)
|
||
|
||
if any(self.match_model_tensor_name(new_name, key, bid) for key in [
|
||
gguf.MODEL_TENSOR.ATTN_Q,
|
||
gguf.MODEL_TENSOR.ATTN_K,
|
||
gguf.MODEL_TENSOR.ATTN_V,
|
||
gguf.MODEL_TENSOR.ATTN_OUT,
|
||
gguf.MODEL_TENSOR.FFN_UP,
|
||
gguf.MODEL_TENSOR.FFN_DOWN,
|
||
gguf.MODEL_TENSOR.FFN_GATE,
|
||
]):
|
||
# transform weight into 1/0/-1 (in fp32)
|
||
data_torch = self.weight_quant(data_torch)
|
||
|
||
yield (new_name, data_torch)
|
||
|
||
|
||
@Model.register("GrokForCausalLM")
|
||
class GrokModel(Model):
|
||
model_arch = gguf.MODEL_ARCH.GROK
|
||
|
||
def set_vocab(self):
|
||
self._set_vocab_sentencepiece()
|
||
|
||
def __init__(self, *args, **kwargs):
|
||
super().__init__(*args, **kwargs)
|
||
|
||
def set_gguf_parameters(self):
|
||
super().set_gguf_parameters()
|
||
|
||
_experts: list[dict[str, Tensor]] | None = None
|
||
|
||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||
# process the experts separately
|
||
if name.find(".moe.") != -1:
|
||
n_experts = self.hparams["num_local_experts"]
|
||
|
||
assert bid is not None
|
||
|
||
if self._experts is None:
|
||
self._experts = [{} for _ in range(self.block_count)]
|
||
|
||
self._experts[bid][name] = data_torch
|
||
|
||
if len(self._experts[bid]) >= n_experts * 3:
|
||
tensors: list[tuple[str, Tensor]] = []
|
||
|
||
# merge the experts into a single 3d tensor
|
||
for wid in ["linear", "linear_1", "linear_v"]:
|
||
datas: list[Tensor] = []
|
||
|
||
for xid in range(n_experts):
|
||
ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
|
||
datas.append(self._experts[bid][ename])
|
||
del self._experts[bid][ename]
|
||
|
||
data_torch = torch.stack(datas, dim=0)
|
||
|
||
merged_name = f"transformer.decoder_layer.{bid}.moe.{wid}.weight"
|
||
|
||
new_name = self.map_tensor_name(merged_name)
|
||
|
||
tensors.append((new_name, data_torch))
|
||
return tensors
|
||
else:
|
||
return []
|
||
|
||
return [(self.map_tensor_name(name), data_torch)]
|
||
|
||
|
||
@Model.register("DbrxForCausalLM")
|
||
class DbrxModel(Model):
|
||
model_arch = gguf.MODEL_ARCH.DBRX
|
||
|
||
def set_gguf_parameters(self):
|
||
ffn_config = self.hparams["ffn_config"]
|
||
attn_config = self.hparams["attn_config"]
|
||
self.gguf_writer.add_block_count(self.hparams["n_layers"])
|
||
|
||
self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
|
||
self.gguf_writer.add_embedding_length(self.hparams["d_model"])
|
||
self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
|
||
|
||
self.gguf_writer.add_head_count(self.hparams["n_heads"])
|
||
self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
|
||
|
||
self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
|
||
|
||
self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
|
||
|
||
self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
|
||
self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
|
||
|
||
self.gguf_writer.add_layer_norm_eps(1e-5)
|
||
|
||
self.gguf_writer.add_file_type(self.ftype)
|
||
logger.info(f"gguf: file type = {self.ftype}")
|
||
|
||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||
del bid # unused
|
||
|
||
n_expert = self.hparams["ffn_config"]["moe_num_experts"]
|
||
n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
|
||
n_embd = self.hparams["d_model"]
|
||
|
||
# Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
|
||
# original implementation expects (n_expert, n_ff, n_embd) for all experts weights
|
||
# But llama.cpp moe graph works differently
|
||
# AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
|
||
# so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
|
||
exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
|
||
"ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
|
||
"ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
|
||
experts = False
|
||
|
||
for exp_tensor_name in exp_tensor_names.keys():
|
||
if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
|
||
experts = True
|
||
data_torch = data_torch.view(n_expert, n_ff, n_embd)
|
||
if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
|
||
data_torch = data_torch.permute(*permute_tensor)
|
||
break
|
||
|
||
# map tensor names
|
||
# In MoE models the ffn tensors are typically most of the model weights,
|
||
# and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
|
||
# Every other model has the weight names ending in .weight,
|
||
# let's assume that is the convention which is not the case for dbrx:
|
||
# https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
|
||
new_name = self.map_tensor_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
|
||
|
||
return [(new_name, data_torch)]
|
||
|
||
def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
|
||
del name, new_name, bid # unused
|
||
|
||
return n_dims > 1
|
||
|
||
|
||
@Model.register("MiniCPMForCausalLM")
|
||
class MiniCPMModel(Model):
|
||
model_arch = gguf.MODEL_ARCH.MINICPM
|
||
|
||
def set_gguf_parameters(self):
|
||
block_count = self.hparams["num_hidden_layers"]
|
||
self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
|
||
self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
|
||
self.gguf_writer.add_block_count(block_count)
|
||
self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
|
||
self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
|
||
self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
|
||
self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
|
||
self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
|
||
self.gguf_writer.add_file_type(self.ftype)
|
||
|
||
def set_vocab(self):
|
||
self._set_vocab_llama_hf()
|
||
|
||
def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
|
||
if n_kv_head is not None and n_head != n_kv_head:
|
||
n_head //= n_kv_head
|
||
|
||
return (
|
||
weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
|
||
.swapaxes(1, 2)
|
||
.reshape(weights.shape)
|
||
)
|
||
|
||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||
del bid # unused
|
||
|
||
n_head = self.hparams["num_attention_heads"]
|
||
n_kv_head = self.hparams.get("num_key_value_heads")
|
||
|
||
# HF models permute some of the tensors, so we need to undo that
|
||
if name.endswith(("q_proj.weight")):
|
||
data_torch = self._reverse_hf_permute(data_torch, n_head, n_head)
|
||
if name.endswith(("k_proj.weight")):
|
||
data_torch = self._reverse_hf_permute(data_torch, n_head, n_kv_head)
|
||
|
||
return [(self.map_tensor_name(name), data_torch)]
|
||
|
||
|
||
@Model.register("MiniCPM3ForCausalLM")
|
||
class MiniCPM3Model(Model):
|
||
model_arch = gguf.MODEL_ARCH.MINICPM3
|
||
|
||
def set_gguf_parameters(self):
|
||
hparams = self.hparams
|
||
|
||
rope_dims = hparams["qk_rope_head_dim"]
|
||
|
||
self.gguf_writer.add_file_type(self.ftype)
|
||
self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
|
||
self.gguf_writer.add_embedding_length(hparams["hidden_size"])
|
||
self.gguf_writer.add_block_count(self.block_count)
|
||
self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
|
||
self.gguf_writer.add_head_count(hparams["num_attention_heads"])
|
||
self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
|
||
self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
|
||
self.gguf_writer.add_vocab_size(hparams["vocab_size"])
|
||
if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
|
||
self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
|
||
self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
|
||
self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
|
||
self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
|
||
|
||
rope_scaling = self.find_hparam(['rope_scaling'], True)
|
||
if rope_scaling is None:
|
||
return
|
||
|
||
long_factors = rope_scaling.get('long_factor', None)
|
||
short_factors = rope_scaling.get('short_factor', None)
|
||
|
||
if long_factors is None or short_factors is None:
|
||
raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
|
||
|
||
if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
|
||
raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
|
||
|
||
self.gguf_writer.add_tensor(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.ROPE_FACTORS_LONG] + ".weight", np.array(long_factors, dtype=np.float32))
|
||
self.gguf_writer.add_tensor(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT] + ".weight", np.array(short_factors, dtype=np.float32))
|
||
|
||
def set_vocab(self):
|
||
self._set_vocab_llama_hf()
|
||
|
||
def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
|
||
if n_kv_head is not None and n_head != n_kv_head:
|
||
n_head //= n_kv_head
|
||
|
||
return (
|
||
weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
|
||
.swapaxes(1, 2)
|
||
.reshape(weights.shape)
|
||
)
|
||
|
||
|
||
@Model.register("QWenLMHeadModel")
|
||
class QwenModel(Model):
|
||
model_arch = gguf.MODEL_ARCH.QWEN
|
||
|
||
@staticmethod
|
||
def token_bytes_to_string(b):
|
||
from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
|
||
byte_encoder = bytes_to_unicode()
|
||
return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
|
||
|
||
@staticmethod
|
||
def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
|
||
parts = [bytes([b]) for b in token]
|
||
while True:
|
||
min_idx = None
|
||
min_rank = None
|
||
for i, pair in enumerate(zip(parts[:-1], parts[1:])):
|
||
rank = mergeable_ranks.get(pair[0] + pair[1])
|
||
if rank is not None and (min_rank is None or rank < min_rank):
|
||
min_idx = i
|
||
min_rank = rank
|
||
if min_rank is None or (max_rank is not None and min_rank >= max_rank):
|
||
break
|
||
assert min_idx is not None
|
||
parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
|
||
return parts
|
||
|
||
def set_vocab(self):
|
||
self._set_vocab_qwen()
|
||
|
||
def set_gguf_parameters(self):
|
||
self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
|
||
self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
|
||
self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
|
||
self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
|
||
self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
|
||
self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
|
||
self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
|
||
self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
|
||
self.gguf_writer.add_file_type(self.ftype)
|
||
|
||
|
||
@Model.register("Qwen2ForCausalLM")
|
||
class Qwen2Model(Model):
|
||
model_arch = gguf.MODEL_ARCH.QWEN2
|
||
|
||
def set_vocab(self):
|
||
try:
|
||
self._set_vocab_sentencepiece()
|
||
except FileNotFoundError:
|
||
self._set_vocab_gpt2()
|
||
|
||
|
||
@Model.register("Qwen2MoeForCausalLM")
|
||
class Qwen2MoeModel(Model):
|
||
model_arch = gguf.MODEL_ARCH.QWEN2MOE
|
||
|
||
def set_gguf_parameters(self):
|
||
super().set_gguf_parameters()
|
||
if (n_experts := self.hparams.get("num_experts")) is not None:
|
||
self.gguf_writer.add_expert_count(n_experts)
|
||
if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
|
||
self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
|
||
logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
|
||
if (shared_expert_intermediate_size := self.hparams.get('shared_expert_intermediate_size')) is not None:
|
||
self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size)
|
||
logger.info(f"gguf: expert shared feed forward length = {shared_expert_intermediate_size}")
|
||
|
||
_experts: list[dict[str, Tensor]] | None = None
|
||
|
||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||
# process the experts separately
|
||
if name.find("experts") != -1:
|
||
n_experts = self.hparams["num_experts"]
|
||
assert bid is not None
|
||
|
||
if self._experts is None:
|
||
self._experts = [{} for _ in range(self.block_count)]
|
||
|
||
self._experts[bid][name] = data_torch
|
||
|
||
if len(self._experts[bid]) >= n_experts * 3:
|
||
tensors: list[tuple[str, Tensor]] = []
|
||
|
||
# merge the experts into a single 3d tensor
|
||
for w_name in ["down_proj", "gate_proj", "up_proj"]:
|
||
datas: list[Tensor] = []
|
||
|
||
for xid in range(n_experts):
|
||
ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
|
||
datas.append(self._experts[bid][ename])
|
||
del self._experts[bid][ename]
|
||
|
||
data_torch = torch.stack(datas, dim=0)
|
||
|
||
merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
|
||
|
||
new_name = self.map_tensor_name(merged_name)
|
||
|
||
tensors.append((new_name, data_torch))
|
||
return tensors
|
||
else:
|
||
return []
|
||
|
||
return [(self.map_tensor_name(name), data_torch)]
|
||
|
||
def prepare_tensors(self):
|
||
super().prepare_tensors()
|
||
|
||
if self._experts is not None:
|
||
# flatten `list[dict[str, Tensor]]` into `list[str]`
|
||
experts = [k for d in self._experts for k in d.keys()]
|
||
if len(experts) > 0:
|
||
raise ValueError(f"Unprocessed experts: {experts}")
|
||
|
||
|
||
@Model.register("GPT2LMHeadModel")
|
||
class GPT2Model(Model):
|
||
model_arch = gguf.MODEL_ARCH.GPT2
|
||
|
||
def set_gguf_parameters(self):
|
||
self.gguf_writer.add_block_count(self.hparams["n_layer"])
|
||
self.gguf_writer.add_context_length(self.hparams["n_ctx"])
|
||
self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
|
||
self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
|
||
self.gguf_writer.add_head_count(self.hparams["n_head"])
|
||
self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
|
||
self.gguf_writer.add_file_type(self.ftype)
|
||
|
||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||
del bid # unused
|
||
|
||
tensors: list[tuple[str, Tensor]] = []
|
||
|
||
# we don't need these
|
||
if name.endswith((".attn.bias", ".attn.masked_bias")):
|
||
return tensors
|
||
|
||
if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
|
||
data_torch = data_torch.transpose(1, 0)
|
||
|
||
new_name = self.map_tensor_name(name)
|
||
|
||
tensors.append((new_name, data_torch))
|
||
|
||
# note: GPT2 output is tied to (same as) wte in original model
|
||
if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
|
||
tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
|
||
|
||
return tensors
|
||
|
||
|
||
@Model.register("PhiForCausalLM")
|
||
class Phi2Model(Model):
|
||
model_arch = gguf.MODEL_ARCH.PHI2
|
||
|
||
def set_gguf_parameters(self):
|
||
block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
|
||
|
||
rot_pct = self.find_hparam(["partial_rotary_factor"])
|
||
n_embd = self.find_hparam(["hidden_size", "n_embd"])
|
||
n_head = self.find_hparam(["num_attention_heads", "n_head"])
|
||
|
||
self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
|
||
|
||
self.gguf_writer.add_embedding_length(n_embd)
|
||
self.gguf_writer.add_feed_forward_length(4 * n_embd)
|
||
self.gguf_writer.add_block_count(block_count)
|
||
self.gguf_writer.add_head_count(n_head)
|
||
self.gguf_writer.add_head_count_kv(n_head)
|
||
self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
|
||
self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
|
||
self.gguf_writer.add_file_type(self.ftype)
|
||
self.gguf_writer.add_add_bos_token(False)
|
||
|
||
|
||
@Model.register("Phi3ForCausalLM")
|
||
class Phi3MiniModel(Model):
|
||
model_arch = gguf.MODEL_ARCH.PHI3
|
||
|
||
def set_vocab(self):
|
||
from sentencepiece import SentencePieceProcessor
|
||
|
||
tokenizer_path = self.dir_model / 'tokenizer.model'
|
||
|
||
if not tokenizer_path.is_file():
|
||
raise ValueError(f'Error: Missing {tokenizer_path}')
|
||
|
||
tokenizer = SentencePieceProcessor()
|
||
tokenizer.LoadFromFile(str(tokenizer_path))
|
||
|
||
vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
|
||
|
||
tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
|
||
scores: list[float] = [-10000.0] * vocab_size
|
||
toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
|
||
|
||
for token_id in range(tokenizer.vocab_size()):
|
||
|
||
piece = tokenizer.IdToPiece(token_id)
|
||
text = piece.encode("utf-8")
|
||
score = tokenizer.GetScore(token_id)
|
||
|
||
toktype = SentencePieceTokenTypes.NORMAL
|
||
if tokenizer.IsUnknown(token_id):
|
||
toktype = SentencePieceTokenTypes.UNKNOWN
|
||
elif tokenizer.IsControl(token_id):
|
||
toktype = SentencePieceTokenTypes.CONTROL
|
||
elif tokenizer.IsUnused(token_id):
|
||
toktype = SentencePieceTokenTypes.UNUSED
|
||
elif tokenizer.IsByte(token_id):
|
||
toktype = SentencePieceTokenTypes.BYTE
|
||
|
||
tokens[token_id] = text
|
||
scores[token_id] = score
|
||
toktypes[token_id] = toktype
|
||
|
||
added_tokens_file = self.dir_model / 'added_tokens.json'
|
||
if added_tokens_file.is_file():
|
||
with open(added_tokens_file, "r", encoding="utf-8") as f:
|
||
added_tokens_json = json.load(f)
|
||
|
||
for key in added_tokens_json:
|
||
token_id = added_tokens_json[key]
|
||
if token_id >= vocab_size:
|
||
logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
|
||
continue
|
||
|
||
tokens[token_id] = key.encode("utf-8")
|
||
scores[token_id] = -1000.0
|
||
toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
|
||
|
||
tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
|
||
if tokenizer_config_file.is_file():
|
||
with open(tokenizer_config_file, "r", encoding="utf-8") as f:
|
||
tokenizer_config_json = json.load(f)
|
||
added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
|
||
for token_id, foken_data in added_tokens_decoder.items():
|
||
token_id = int(token_id)
|
||
token = foken_data["content"].encode("utf-8")
|
||
if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
|
||
if tokens[token_id] != token:
|
||
logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
|
||
tokens[token_id] = token
|
||
scores[token_id] = -1000.0
|
||
toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
|
||
if foken_data.get("special"):
|
||
toktypes[token_id] = SentencePieceTokenTypes.CONTROL
|
||
|
||
tokenizer_file = self.dir_model / 'tokenizer.json'
|
||
if tokenizer_file.is_file():
|
||
with open(tokenizer_file, "r", encoding="utf-8") as f:
|
||
tokenizer_json = json.load(f)
|
||
added_tokens = tokenizer_json.get("added_tokens", [])
|
||
for foken_data in added_tokens:
|
||
token_id = int(foken_data["id"])
|
||
token = foken_data["content"].encode("utf-8")
|
||
if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
|
||
if tokens[token_id] != token:
|
||
logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
|
||
tokens[token_id] = token
|
||
scores[token_id] = -1000.0
|
||
toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
|
||
if foken_data.get("special"):
|
||
toktypes[token_id] = SentencePieceTokenTypes.CONTROL
|
||
|
||
self.gguf_writer.add_tokenizer_model("llama")
|
||
self.gguf_writer.add_tokenizer_pre("default")
|
||
self.gguf_writer.add_token_list(tokens)
|
||
self.gguf_writer.add_token_scores(scores)
|
||
self.gguf_writer.add_token_types(toktypes)
|
||
|
||
special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
|
||
special_vocab.add_to_gguf(self.gguf_writer)
|
||
|
||
def set_gguf_parameters(self):
|
||
block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
|
||
|
||
n_embd = self.find_hparam(["hidden_size", "n_embd"])
|
||
n_head = self.find_hparam(["num_attention_heads", "n_head"])
|
||
n_head_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
|
||
rms_eps = self.find_hparam(["rms_norm_eps"])
|
||
max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
|
||
orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
|
||
rope_dims = n_embd // n_head
|
||
|
||
self.gguf_writer.add_context_length(max_pos_embds)
|
||
self.gguf_writer.add_rope_scaling_orig_ctx_len(orig_max_pos_embds)
|
||
self.gguf_writer.add_embedding_length(n_embd)
|
||
self.gguf_writer.add_feed_forward_length(self.find_hparam(["intermediate_size"]))
|
||
self.gguf_writer.add_block_count(block_count)
|
||
self.gguf_writer.add_head_count(n_head)
|
||
self.gguf_writer.add_head_count_kv(n_head_kv)
|
||
self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
|
||
self.gguf_writer.add_rope_dimension_count(rope_dims)
|
||
self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
|
||
self.gguf_writer.add_file_type(self.ftype)
|
||
self.gguf_writer.add_sliding_window(self.find_hparam(["sliding_window"]))
|
||
|
||
# write rope scaling for long context (128k) model
|
||
rope_scaling = self.find_hparam(['rope_scaling'], True)
|
||
if rope_scaling is None:
|
||
return
|
||
|
||
scale = max_pos_embds / orig_max_pos_embds
|
||
|
||
rope_scaling_type = rope_scaling.get('type', '').lower()
|
||
if len(rope_scaling_type) == 0:
|
||
raise KeyError('Missing the required key rope_scaling.type')
|
||
|
||
if rope_scaling_type == 'su' or rope_scaling_type == 'longrope':
|
||
attn_factor = math.sqrt(1 + math.log(scale) / math.log(orig_max_pos_embds)) if scale > 1.0 else 1.0
|
||
elif rope_scaling_type == 'yarn':
|
||
attn_factor = 0.1 * math.log(scale) + 1.0 if scale > 1.0 else 1.0
|
||
else:
|
||
raise NotImplementedError(f'The rope scaling type {rope_scaling_type} is not supported yet')
|
||
|
||
self.gguf_writer.add_rope_scaling_attn_factors(attn_factor)
|
||
|
||
long_factors = rope_scaling.get('long_factor', None)
|
||
short_factors = rope_scaling.get('short_factor', None)
|
||
|
||
if long_factors is None or short_factors is None:
|
||
raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
|
||
|
||
if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
|
||
raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
|
||
|
||
if not self.is_lora:
|
||
self.gguf_writer.add_tensor(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.ROPE_FACTORS_LONG] + ".weight", np.array(long_factors, dtype=np.float32))
|
||
self.gguf_writer.add_tensor(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT] + ".weight", np.array(short_factors, dtype=np.float32))
|
||
|
||
|
||
@Model.register("PlamoForCausalLM")
|
||
class PlamoModel(Model):
|
||
model_arch = gguf.MODEL_ARCH.PLAMO
|
||
|
||
def set_vocab(self):
|
||
self._set_vocab_sentencepiece()
|
||
|
||
def set_gguf_parameters(self):
|
||
hparams = self.hparams
|
||
block_count = hparams["num_hidden_layers"]
|
||
|
||
self.gguf_writer.add_context_length(4096) # not in config.json
|
||
self.gguf_writer.add_embedding_length(hparams["hidden_size"])
|
||
self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
|
||
self.gguf_writer.add_block_count(block_count)
|
||
self.gguf_writer.add_head_count(hparams["num_attention_heads"])
|
||
self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
|
||
self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
|
||
self.gguf_writer.add_file_type(self.ftype)
|
||
|
||
def shuffle_attn_q_weight(self, data_torch):
|
||
assert data_torch.size() == (5120, 5120)
|
||
data_torch = data_torch.reshape(8, 5, 128, 5120)
|
||
data_torch = torch.permute(data_torch, (1, 0, 2, 3))
|
||
data_torch = torch.reshape(data_torch, (5120, 5120))
|
||
return data_torch
|
||
|
||
def shuffle_attn_output_weight(self, data_torch):
|
||
assert data_torch.size() == (5120, 5120)
|
||
data_torch = data_torch.reshape(5120, 8, 5, 128)
|
||
data_torch = torch.permute(data_torch, (0, 2, 1, 3))
|
||
data_torch = torch.reshape(data_torch, (5120, 5120))
|
||
return data_torch
|
||
|
||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||
del bid # unused
|
||
|
||
new_name = self.map_tensor_name(name)
|
||
|
||
# shuffle for broadcasting of gqa in ggml_mul_mat
|
||
if new_name.endswith("attn_q.weight"):
|
||
data_torch = self.shuffle_attn_q_weight(data_torch)
|
||
elif new_name.endswith("attn_output.weight"):
|
||
data_torch = self.shuffle_attn_output_weight(data_torch)
|
||
|
||
return [(new_name, data_torch)]
|
||
|
||
|
||
@Model.register("CodeShellForCausalLM")
|
||
class CodeShellModel(Model):
|
||
model_arch = gguf.MODEL_ARCH.CODESHELL
|
||
|
||
def set_gguf_parameters(self):
|
||
block_count = self.hparams["n_layer"]
|
||
|
||
self.gguf_writer.add_context_length(self.hparams["n_positions"])
|
||
self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
|
||
self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
|
||
self.gguf_writer.add_block_count(block_count)
|
||
self.gguf_writer.add_head_count(self.hparams["n_head"])
|
||
self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
|
||
self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
|
||
self.gguf_writer.add_file_type(self.ftype)
|
||
self.gguf_writer.add_rope_freq_base(10000.0)
|
||
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
|
||
self.gguf_writer.add_rope_scaling_factor(1.0)
|
||
|
||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||
del bid # unused
|
||
|
||
new_name = self.map_tensor_name(name)
|
||
|
||
tensors: list[tuple[str, Tensor]] = [(new_name, data_torch)]
|
||
|
||
if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
|
||
assert self.tensor_names is not None
|
||
|
||
if all(s not in self.tensor_names for s in ("lm_head.weight", "output.weight")):
|
||
# copy tok_embd.weight to output.weight
|
||
tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
|
||
|
||
return tensors
|
||
|
||
|
||
@Model.register("InternLM2ForCausalLM")
|
||
class InternLM2Model(Model):
|
||
model_arch = gguf.MODEL_ARCH.INTERNLM2
|
||
|
||
def set_vocab(self):
|
||
# (TODO): Is there a better way?
|
||
# Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
|
||
# \x00 specially and convert it into an emoji character to prevent it from being mistakenly
|
||
# recognized as an empty string in C++.
|
||
from sentencepiece import SentencePieceProcessor
|
||
from sentencepiece import sentencepiece_model_pb2 as model
|
||
|
||
tokenizer_path = self.dir_model / 'tokenizer.model'
|
||
|
||
tokens: list[bytes] = []
|
||
scores: list[float] = []
|
||
toktypes: list[int] = []
|
||
|
||
if not tokenizer_path.is_file():
|
||
logger.error(f'Error: Missing {tokenizer_path}')
|
||
sys.exit(1)
|
||
|
||
sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
|
||
sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
|
||
add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
|
||
|
||
tokenizer = SentencePieceProcessor()
|
||
tokenizer.LoadFromFile(str(tokenizer_path))
|
||
|
||
vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
|
||
|
||
for token_id in range(vocab_size):
|
||
piece = tokenizer.IdToPiece(token_id)
|
||
text = piece.encode("utf-8")
|
||
score = tokenizer.GetScore(token_id)
|
||
if text == b"\x00":
|
||
# (TODO): fixme
|
||
# Hack here and replace the \x00 characters.
|
||
logger.warning(f"InternLM2 convert token '{text}' to '🐉'!")
|
||
text = "🐉".encode("utf-8")
|
||
|
||
toktype = SentencePieceTokenTypes.NORMAL
|
||
if tokenizer.IsUnknown(token_id):
|
||
toktype = SentencePieceTokenTypes.UNKNOWN
|
||
elif tokenizer.IsControl(token_id):
|
||
toktype = SentencePieceTokenTypes.CONTROL
|
||
elif tokenizer.IsUnused(token_id):
|
||
toktype = SentencePieceTokenTypes.UNUSED
|
||
elif tokenizer.IsByte(token_id):
|
||
toktype = SentencePieceTokenTypes.BYTE
|
||
# take care of ununsed raw token
|
||
if piece.startswith('[UNUSED'):
|
||
toktype = SentencePieceTokenTypes.UNUSED
|
||
|
||
tokens.append(text)
|
||
scores.append(score)
|
||
toktypes.append(toktype)
|
||
|
||
added_tokens_file = self.dir_model / 'added_tokens.json'
|
||
if added_tokens_file.is_file():
|
||
with open(added_tokens_file, "r", encoding="utf-8") as f:
|
||
added_tokens_json = json.load(f)
|
||
|
||
for key in added_tokens_json:
|
||
tokens.append(key.encode("utf-8"))
|
||
scores.append(-1000.0)
|
||
toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
|
||
|
||
chat_eos_token = '<|im_end|>'
|
||
chat_eos_token_id = None
|
||
|
||
tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
|
||
if tokenizer_config_file.is_file():
|
||
with open(tokenizer_config_file, "r", encoding="utf-8") as f:
|
||
tokenizer_config_json = json.load(f)
|
||
added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
|
||
for token_id, foken_data in added_tokens_decoder.items():
|
||
token_id = int(token_id)
|
||
token = foken_data["content"]
|
||
if token == chat_eos_token:
|
||
chat_eos_token_id = token_id
|
||
token = token.encode("utf-8")
|
||
if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
|
||
if tokens[token_id] != token:
|
||
logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
|
||
tokens[token_id] = token
|
||
scores[token_id] = -1000.0
|
||
toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
|
||
if foken_data.get("special"):
|
||
toktypes[token_id] = SentencePieceTokenTypes.CONTROL
|
||
|
||
tokenizer_file = self.dir_model / 'tokenizer.json'
|
||
if tokenizer_file.is_file():
|
||
with open(tokenizer_file, "r", encoding="utf-8") as f:
|
||
tokenizer_json = json.load(f)
|
||
added_tokens = tokenizer_json.get("added_tokens", [])
|
||
for foken_data in added_tokens:
|
||
token_id = int(foken_data["id"])
|
||
token = foken_data["content"]
|
||
if token == chat_eos_token:
|
||
chat_eos_token_id = token_id
|
||
token = token.encode("utf-8")
|
||
if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
|
||
if tokens[token_id] != token:
|
||
logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
|
||
tokens[token_id] = token
|
||
scores[token_id] = -1000.0
|
||
toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
|
||
if foken_data.get("special"):
|
||
toktypes[token_id] = SentencePieceTokenTypes.CONTROL
|
||
|
||
self.gguf_writer.add_tokenizer_model("llama")
|
||
self.gguf_writer.add_tokenizer_pre("default")
|
||
self.gguf_writer.add_token_list(tokens)
|
||
self.gguf_writer.add_token_scores(scores)
|
||
self.gguf_writer.add_token_types(toktypes)
|
||
self.gguf_writer.add_add_space_prefix(add_prefix)
|
||
|
||
special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
|
||
old_eos = special_vocab.special_token_ids["eos"]
|
||
if chat_eos_token_id is not None:
|
||
# For the chat model, we replace the eos with '<|im_end|>'.
|
||
# TODO: this is a hack, should be fixed
|
||
# https://github.com/ggerganov/llama.cpp/pull/6745#issuecomment-2067687048
|
||
special_vocab.special_token_ids["eos"] = chat_eos_token_id
|
||
logger.warning(f"Replace eos:{old_eos} with a special token:{chat_eos_token_id}"
|
||
" in chat mode so that the conversation can end normally.")
|
||
|
||
special_vocab.add_to_gguf(self.gguf_writer)
|
||
|
||
def set_gguf_parameters(self):
|
||
self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
|
||
self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
|
||
self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
|
||
self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
|
||
self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
|
||
self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
|
||
self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
|
||
self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
|
||
self.gguf_writer.add_file_type(self.ftype)
|
||
if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
|
||
if self.hparams["rope_scaling"].get("type") == "linear":
|
||
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
|
||
self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
|
||
|
||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||
num_heads = self.hparams["num_attention_heads"]
|
||
num_kv_heads = self.hparams["num_key_value_heads"]
|
||
n_embd = self.hparams["hidden_size"]
|
||
q_per_kv = num_heads // num_kv_heads
|
||
head_dim = n_embd // num_heads
|
||
num_groups = num_heads // q_per_kv
|
||
|
||
if bid is not None and f"model.layers.{bid}.attention.wqkv" in name:
|
||
qkv = data_torch
|
||
|
||
qkv = qkv.reshape((num_groups, q_per_kv + 2, head_dim, n_embd))
|
||
q, k, v = qkv[:, : q_per_kv], qkv[:, -2], qkv[:, -1]
|
||
|
||
# The model weights of q and k equire additional reshape.
|
||
q = LlamaModel.permute(q.reshape((-1, q.shape[-1])), num_heads, num_heads)
|
||
k = LlamaModel.permute(k.reshape((-1, k.shape[-1])), num_heads, num_kv_heads)
|
||
v = v.reshape((-1, v.shape[-1]))
|
||
|
||
return [
|
||
(self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), q),
|
||
(self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), k),
|
||
(self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v),
|
||
]
|
||
else:
|
||
return [(self.map_tensor_name(name), data_torch)]
|
||
|
||
|
||
@Model.register("BertModel", "CamembertModel")
|
||
class BertModel(Model):
|
||
model_arch = gguf.MODEL_ARCH.BERT
|
||
|
||
def __init__(self, *args, **kwargs):
|
||
super().__init__(*args, **kwargs)
|
||
self.vocab_size = None
|
||
|
||
def set_gguf_parameters(self):
|
||
super().set_gguf_parameters()
|
||
self.gguf_writer.add_causal_attention(False)
|
||
|
||
# get pooling path
|
||
pooling_path = None
|
||
module_path = self.dir_model / "modules.json"
|
||
if module_path.is_file():
|
||
with open(module_path, encoding="utf-8") as f:
|
||
modules = json.load(f)
|
||
for mod in modules:
|
||
if mod["type"] == "sentence_transformers.models.Pooling":
|
||
pooling_path = mod["path"]
|
||
break
|
||
|
||
# get pooling type
|
||
if pooling_path is not None:
|
||
with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
|
||
pooling = json.load(f)
|
||
if pooling["pooling_mode_mean_tokens"]:
|
||
pooling_type = gguf.PoolingType.MEAN
|
||
elif pooling["pooling_mode_cls_token"]:
|
||
pooling_type = gguf.PoolingType.CLS
|
||
else:
|
||
raise NotImplementedError("Only MEAN and CLS pooling types supported")
|
||
self.gguf_writer.add_pooling_type(pooling_type)
|
||
|
||
def set_vocab(self):
|
||
tokens, toktypes, tokpre = self.get_vocab_base()
|
||
self.vocab_size = len(tokens)
|
||
|
||
# we need this to validate the size of the token_type embeddings
|
||
# though currently we are passing all zeros to the token_type embeddings
|
||
self.gguf_writer.add_token_type_count(2) # "Sequence A" or "Sequence B"
|
||
|
||
# convert to phantom space vocab
|
||
def phantom(tok):
|
||
if tok.startswith("[") and tok.endswith("]"):
|
||
return tok
|
||
if tok.startswith("##"):
|
||
return tok[2:]
|
||
return "\u2581" + tok
|
||
tokens = list(map(phantom, tokens))
|
||
|
||
# add vocab to gguf
|
||
self.gguf_writer.add_tokenizer_model("bert")
|
||
self.gguf_writer.add_tokenizer_pre(tokpre)
|
||
self.gguf_writer.add_token_list(tokens)
|
||
self.gguf_writer.add_token_types(toktypes)
|
||
|
||
# handle special tokens
|
||
special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
|
||
special_vocab.add_to_gguf(self.gguf_writer)
|
||
|
||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||
del bid # unused
|
||
|
||
# we are only using BERT for embeddings so we don't need the pooling layer
|
||
if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
|
||
return [] # we don't need these
|
||
|
||
return [(self.map_tensor_name(name), data_torch)]
|
||
|
||
|
||
@Model.register("NomicBertModel")
|
||
class NomicBertModel(BertModel):
|
||
model_arch = gguf.MODEL_ARCH.NOMIC_BERT
|
||
|
||
def __init__(self, *args, **kwargs):
|
||
super().__init__(*args, **kwargs)
|
||
|
||
# the HF config claims n_ctx=8192, but it uses RoPE scaling
|
||
self.hparams["n_ctx"] = 2048
|
||
|
||
# SwigLU activation
|
||
assert self.hparams["activation_function"] == "swiglu"
|
||
# this doesn't do anything in the HF version
|
||
assert self.hparams["causal"] is False
|
||
# no bias tensors
|
||
assert self.hparams["qkv_proj_bias"] is False
|
||
assert self.hparams["mlp_fc1_bias"] is False
|
||
assert self.hparams["mlp_fc2_bias"] is False
|
||
# norm at end of layer
|
||
assert self.hparams["prenorm"] is False
|
||
# standard RoPE
|
||
assert self.hparams["rotary_emb_fraction"] == 1.0
|
||
assert self.hparams["rotary_emb_interleaved"] is False
|
||
assert self.hparams["rotary_emb_scale_base"] is None
|
||
|
||
def set_gguf_parameters(self):
|
||
super().set_gguf_parameters()
|
||
self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
|
||
|
||
|
||
@Model.register("XLMRobertaModel")
|
||
class XLMRobertaModel(BertModel):
|
||
model_arch = gguf.MODEL_ARCH.BERT
|
||
|
||
def __init__(self, *args, **kwargs):
|
||
super().__init__(*args, **kwargs)
|
||
|
||
# we need the pad_token_id to know how to chop down position_embd matrix
|
||
if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
|
||
self._position_offset = 1 + pad_token_id
|
||
if "max_position_embeddings" in self.hparams:
|
||
self.hparams["max_position_embeddings"] -= self._position_offset
|
||
else:
|
||
self._position_offset = None
|
||
|
||
def set_vocab(self):
|
||
# to avoid TypeError: Descriptors cannot be created directly
|
||
# exception when importing sentencepiece_model_pb2
|
||
os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
|
||
from sentencepiece import SentencePieceProcessor
|
||
from sentencepiece import sentencepiece_model_pb2 as model
|
||
|
||
tokenizer_path = self.dir_model / 'sentencepiece.bpe.model'
|
||
if not tokenizer_path.is_file():
|
||
raise FileNotFoundError(f"File not found: {tokenizer_path}")
|
||
|
||
sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
|
||
sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
|
||
assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
|
||
|
||
add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
|
||
remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
|
||
precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
|
||
|
||
tokenizer = SentencePieceProcessor()
|
||
tokenizer.LoadFromFile(str(tokenizer_path))
|
||
|
||
vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
|
||
|
||
tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
|
||
scores: list[float] = [-10000.0] * vocab_size
|
||
toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
|
||
|
||
for token_id in range(tokenizer.vocab_size()):
|
||
piece = tokenizer.IdToPiece(token_id)
|
||
text = piece.encode("utf-8")
|
||
score = tokenizer.GetScore(token_id)
|
||
|
||
toktype = SentencePieceTokenTypes.NORMAL
|
||
if tokenizer.IsUnknown(token_id):
|
||
toktype = SentencePieceTokenTypes.UNKNOWN
|
||
elif tokenizer.IsControl(token_id):
|
||
toktype = SentencePieceTokenTypes.CONTROL
|
||
elif tokenizer.IsUnused(token_id):
|
||
toktype = SentencePieceTokenTypes.UNUSED
|
||
elif tokenizer.IsByte(token_id):
|
||
toktype = SentencePieceTokenTypes.BYTE
|
||
|
||
tokens[token_id] = text
|
||
scores[token_id] = score
|
||
toktypes[token_id] = toktype
|
||
|
||
if vocab_size > len(tokens):
|
||
pad_count = vocab_size - len(tokens)
|
||
logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
|
||
for i in range(1, pad_count + 1):
|
||
tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
|
||
scores.append(-1000.0)
|
||
toktypes.append(SentencePieceTokenTypes.UNUSED)
|
||
|
||
# realign tokens (see HF tokenizer code)
|
||
tokens = [b'<s>', b'<pad>', b'</s>', b'<unk>'] + tokens[3:-1]
|
||
scores = [0.0, 0.0, 0.0, 0.0] + scores[3:-1]
|
||
toktypes = [
|
||
SentencePieceTokenTypes.CONTROL,
|
||
SentencePieceTokenTypes.CONTROL,
|
||
SentencePieceTokenTypes.CONTROL,
|
||
SentencePieceTokenTypes.UNKNOWN,
|
||
] + toktypes[3:-1]
|
||
|
||
self.gguf_writer.add_tokenizer_model("t5")
|
||
self.gguf_writer.add_tokenizer_pre("default")
|
||
self.gguf_writer.add_token_list(tokens)
|
||
self.gguf_writer.add_token_scores(scores)
|
||
self.gguf_writer.add_token_types(toktypes)
|
||
self.gguf_writer.add_add_space_prefix(add_prefix)
|
||
self.gguf_writer.add_token_type_count(1)
|
||
self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
|
||
if precompiled_charsmap:
|
||
self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
|
||
|
||
special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
|
||
special_vocab.add_to_gguf(self.gguf_writer)
|
||
|
||
self.gguf_writer.add_add_bos_token(True)
|
||
self.gguf_writer.add_add_eos_token(True)
|
||
|
||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||
# position embeddings start at pad_token_id + 1, so just chop down the weight tensor
|
||
if name == "embeddings.position_embeddings.weight":
|
||
if self._position_offset is not None:
|
||
data_torch = data_torch[self._position_offset:,:]
|
||
|
||
return super().modify_tensors(data_torch, name, bid)
|
||
|
||
|
||
@Model.register("GemmaForCausalLM")
|
||
class GemmaModel(Model):
|
||
model_arch = gguf.MODEL_ARCH.GEMMA
|
||
|
||
def set_vocab(self):
|
||
self._set_vocab_sentencepiece()
|
||
|
||
# TODO: these special tokens should be exported only for the CodeGemma family
|
||
special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
|
||
special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
|
||
special_vocab._set_special_token("prefix", 67)
|
||
special_vocab._set_special_token("suffix", 69)
|
||
special_vocab._set_special_token("middle", 68)
|
||
special_vocab._set_special_token("fsep", 70)
|
||
special_vocab._set_special_token("eot", 107)
|
||
special_vocab.chat_template = None # do not add it twice
|
||
special_vocab.add_to_gguf(self.gguf_writer)
|
||
|
||
self.gguf_writer.add_add_space_prefix(False)
|
||
|
||
def set_gguf_parameters(self):
|
||
hparams = self.hparams
|
||
block_count = hparams["num_hidden_layers"]
|
||
|
||
self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
|
||
self.gguf_writer.add_embedding_length(hparams["hidden_size"])
|
||
self.gguf_writer.add_block_count(block_count)
|
||
self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
|
||
self.gguf_writer.add_head_count(hparams["num_attention_heads"])
|
||
self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
|
||
self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
|
||
self.gguf_writer.add_key_length(hparams["head_dim"])
|
||
self.gguf_writer.add_value_length(hparams["head_dim"])
|
||
self.gguf_writer.add_file_type(self.ftype)
|
||
|
||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||
del bid # unused
|
||
|
||
# lm_head is not used in llama.cpp, while autoawq will include this tensor in model
|
||
# To prevent errors, skip loading lm_head.weight.
|
||
if name == "lm_head.weight":
|
||
logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
|
||
return []
|
||
|
||
# ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
|
||
if name.endswith("norm.weight"):
|
||
data_torch = data_torch + 1
|
||
|
||
return [(self.map_tensor_name(name), data_torch)]
|
||
|
||
|
||
@Model.register("Gemma2ForCausalLM")
|
||
class Gemma2Model(Model):
|
||
model_arch = gguf.MODEL_ARCH.GEMMA2
|
||
|
||
def set_vocab(self):
|
||
self._set_vocab_sentencepiece()
|
||
|
||
self.gguf_writer.add_add_space_prefix(False)
|
||
|
||
def set_gguf_parameters(self):
|
||
hparams = self.hparams
|
||
block_count = hparams["num_hidden_layers"]
|
||
|
||
self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
|
||
self.gguf_writer.add_embedding_length(hparams["hidden_size"])
|
||
self.gguf_writer.add_block_count(block_count)
|
||
self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
|
||
self.gguf_writer.add_head_count(hparams["num_attention_heads"])
|
||
self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
|
||
self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
|
||
self.gguf_writer.add_key_length(hparams["head_dim"])
|
||
self.gguf_writer.add_value_length(hparams["head_dim"])
|
||
self.gguf_writer.add_file_type(self.ftype)
|
||
self.gguf_writer.add_attn_logit_softcapping(
|
||
self.hparams["attn_logit_softcapping"]
|
||
)
|
||
self.gguf_writer.add_final_logit_softcapping(
|
||
self.hparams["final_logit_softcapping"]
|
||
)
|
||
self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
|
||
|
||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||
del bid # unused
|
||
|
||
# lm_head is not used in llama.cpp, while autoawq will include this tensor in model
|
||
# To prevent errors, skip loading lm_head.weight.
|
||
if name == "lm_head.weight":
|
||
logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
|
||
return []
|
||
|
||
# ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
|
||
if name.endswith("norm.weight"):
|
||
data_torch = data_torch + 1
|
||
|
||
return [(self.map_tensor_name(name), data_torch)]
|
||
|
||
|
||
@Model.register("Starcoder2ForCausalLM")
|
||
class StarCoder2Model(Model):
|
||
model_arch = gguf.MODEL_ARCH.STARCODER2
|
||
|
||
|
||
@Model.register("Rwkv6ForCausalLM")
|
||
class Rwkv6Model(Model):
|
||
model_arch = gguf.MODEL_ARCH.RWKV6
|
||
|
||
def set_vocab(self):
|
||
assert (self.dir_model / "rwkv_vocab_v20230424.txt").is_file()
|
||
vocab_size = self.hparams.get("vocab_size", 65536)
|
||
|
||
tokens: list[bytes] = ['<s>'.encode("utf-8")]
|
||
toktypes: list[int] = [gguf.TokenType.CONTROL]
|
||
|
||
with open(self.dir_model / "rwkv_vocab_v20230424.txt", "r", encoding="utf-8") as f:
|
||
lines = f.readlines()
|
||
for line in lines:
|
||
parts = line.split(' ')
|
||
assert len(parts) >= 3
|
||
token, token_len = ast.literal_eval(' '.join(parts[1:-1])), int(parts[-1])
|
||
token = token.encode("utf-8") if isinstance(token, str) else token
|
||
assert isinstance(token, bytes)
|
||
assert len(token) == token_len
|
||
token_text: str = repr(token)[2:-1] # "b'\xff'" -> "\xff"
|
||
tokens.append(token_text.encode("utf-8"))
|
||
toktypes.append(gguf.TokenType.NORMAL)
|
||
remainder = vocab_size - len(tokens)
|
||
assert remainder >= 0
|
||
for i in range(len(tokens), vocab_size):
|
||
tokens.append(f"[PAD{i}]".encode("utf-8"))
|
||
toktypes.append(gguf.TokenType.UNUSED)
|
||
|
||
self.gguf_writer.add_tokenizer_model("rwkv")
|
||
self.gguf_writer.add_token_list(tokens)
|
||
self.gguf_writer.add_token_types(toktypes)
|
||
special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
|
||
special_vocab.add_to_gguf(self.gguf_writer)
|
||
|
||
def set_gguf_parameters(self):
|
||
block_count = self.hparams["num_hidden_layers"]
|
||
head_size = self.hparams["head_size"]
|
||
hidden_size = self.hparams["hidden_size"]
|
||
layer_norm_eps = self.hparams["layer_norm_epsilon"]
|
||
rescale_every_n_layers = self.hparams["rescale_every"]
|
||
intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else int((hidden_size * 3.5) // 32 * 32)
|
||
time_mix_extra_dim = 64 if hidden_size == 4096 else 32
|
||
time_decay_extra_dim = 128 if hidden_size == 4096 else 64
|
||
|
||
# RWKV isn't context limited
|
||
self.gguf_writer.add_context_length(1048576)
|
||
self.gguf_writer.add_embedding_length(hidden_size)
|
||
self.gguf_writer.add_block_count(block_count)
|
||
self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
|
||
self.gguf_writer.add_rescale_every_n_layers(rescale_every_n_layers)
|
||
self.gguf_writer.add_wkv_head_size(head_size)
|
||
self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
|
||
self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
|
||
self.gguf_writer.add_feed_forward_length(intermediate_size)
|
||
self.gguf_writer.add_file_type(self.ftype)
|
||
|
||
# required by llama.cpp, unused
|
||
self.gguf_writer.add_head_count(0)
|
||
|
||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||
new_name = self.map_tensor_name(name)
|
||
|
||
if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
|
||
new_name += ".weight"
|
||
|
||
if new_name.endswith("time_mix_w1.weight") or new_name.endswith("time_mix_decay_w1.weight") or new_name.endswith("time_mix_decay_w2.weight"):
|
||
data_torch = data_torch.transpose(0, 1)
|
||
|
||
if new_name.endswith("time_mix_w2.weight"):
|
||
data_torch = data_torch.permute(0, 2, 1)
|
||
|
||
rescale_every_n_layers = self.hparams["rescale_every"]
|
||
if rescale_every_n_layers > 0:
|
||
if new_name.endswith("time_mix_output.weight") or new_name.endswith("channel_mix_value.weight"):
|
||
data_torch = data_torch.div_(2 ** int(bid // rescale_every_n_layers))
|
||
|
||
yield (new_name, data_torch)
|
||
|
||
|
||
@Model.register("MambaForCausalLM", "MambaLMHeadModel", "FalconMambaForCausalLM")
|
||
class MambaModel(Model):
|
||
model_arch = gguf.MODEL_ARCH.MAMBA
|
||
|
||
def set_vocab(self):
|
||
vocab_size = self.hparams["vocab_size"]
|
||
# Round vocab size to next multiple of 8
|
||
pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
|
||
# pad using ceiling division
|
||
# ref: https://stackoverflow.com/a/17511341/22827863
|
||
vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
|
||
self.hparams["vocab_size"] = vocab_size
|
||
|
||
if (self.dir_model / "tokenizer.json").is_file():
|
||
self._set_vocab_gpt2()
|
||
elif (self.dir_model / "tokenizer.model").is_file():
|
||
self._set_vocab_sentencepiece()
|
||
else:
|
||
# Use the GPT-NeoX tokenizer when no tokenizer files are present
|
||
self._set_vocab_builtin("gpt-neox", vocab_size)
|
||
|
||
def set_gguf_parameters(self):
|
||
d_model = self.find_hparam(["hidden_size", "d_model"])
|
||
d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
|
||
d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
|
||
d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
|
||
# ceiling division
|
||
# ref: https://stackoverflow.com/a/17511341/22827863
|
||
# ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
|
||
dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
|
||
rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
|
||
use_dt_b_c_norm = False
|
||
# For falconmamba we do apply RMS norm on B / DT and C layers
|
||
if self.find_hparam(["model_type"], optional=True) in ("falcon_mamba",):
|
||
use_dt_b_c_norm = True
|
||
# Fail early for models which don't have a block expansion factor of 2
|
||
assert d_inner == 2 * d_model
|
||
|
||
self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
|
||
self.gguf_writer.add_embedding_length(d_model)
|
||
self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
|
||
self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
|
||
self.gguf_writer.add_block_count(self.block_count)
|
||
self.gguf_writer.add_ssm_conv_kernel(d_conv)
|
||
self.gguf_writer.add_ssm_inner_size(d_inner)
|
||
self.gguf_writer.add_ssm_state_size(d_state)
|
||
self.gguf_writer.add_ssm_time_step_rank(dt_rank)
|
||
self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
|
||
self.gguf_writer.add_ssm_dt_b_c_rms(use_dt_b_c_norm) # For classic Mamba we don't apply rms norm on B / DT layers
|
||
self.gguf_writer.add_file_type(self.ftype)
|
||
|
||
_tok_embd = None
|
||
|
||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||
del bid # unused
|
||
|
||
output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
|
||
tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
|
||
|
||
new_name = self.map_tensor_name(name)
|
||
|
||
if name.endswith(".A_log"):
|
||
logger.debug("A_log --> A ==> " + new_name)
|
||
data_torch = -torch.exp(data_torch)
|
||
|
||
# assuming token_embd.weight is seen before output.weight
|
||
if self._tok_embd is not None and new_name == output_name:
|
||
if torch.equal(self._tok_embd, data_torch):
|
||
logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting")
|
||
return []
|
||
elif new_name == tok_embd_name:
|
||
self._tok_embd = data_torch
|
||
|
||
return [(new_name, data_torch)]
|
||
|
||
|
||
@Model.register("CohereForCausalLM")
|
||
class CommandR2Model(Model):
|
||
model_arch = gguf.MODEL_ARCH.COMMAND_R
|
||
|
||
def __init__(self, *args, **kwargs):
|
||
super().__init__(*args, **kwargs)
|
||
|
||
# max_position_embeddings = 8192 in config.json but model was actually
|
||
# trained on 128k context length
|
||
# aya-23 models don't have model_max_length specified
|
||
self.hparams["max_position_embeddings"] = self.find_hparam(["model_max_length", "max_position_embeddings"])
|
||
|
||
def set_gguf_parameters(self):
|
||
super().set_gguf_parameters()
|
||
self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
|
||
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
|
||
|
||
|
||
@Model.register("OlmoForCausalLM")
|
||
@Model.register("OLMoForCausalLM")
|
||
class OlmoModel(Model):
|
||
model_arch = gguf.MODEL_ARCH.OLMO
|
||
|
||
def set_gguf_parameters(self):
|
||
super().set_gguf_parameters()
|
||
self.gguf_writer.add_layer_norm_eps(1e-5)
|
||
clip_qkv = self.hparams.get("clip_qkv")
|
||
if clip_qkv is not None:
|
||
self.gguf_writer.add_clamp_kqv(clip_qkv)
|
||
|
||
# Same as super class, but permuting q_proj, k_proj
|
||
# Copied from: LlamaModel
|
||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||
del bid # unused
|
||
|
||
n_head = self.hparams["num_attention_heads"]
|
||
n_kv_head = self.hparams.get("num_key_value_heads")
|
||
|
||
if name.endswith("q_proj.weight"):
|
||
data_torch = LlamaModel.permute(data_torch, n_head, n_head)
|
||
if name.endswith("k_proj.weight"):
|
||
data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
|
||
|
||
return [(self.map_tensor_name(name), data_torch)]
|
||
|
||
|
||
@Model.register("OlmoeForCausalLM")
|
||
class OlmoeModel(Model):
|
||
model_arch = gguf.MODEL_ARCH.OLMOE
|
||
|
||
def set_gguf_parameters(self):
|
||
super().set_gguf_parameters()
|
||
self.gguf_writer.add_layer_norm_rms_eps(1e-5)
|
||
if (n_experts := self.hparams.get("num_experts")) is not None:
|
||
self.gguf_writer.add_expert_count(n_experts)
|
||
|
||
_experts: list[dict[str, Tensor]] | None = None
|
||
|
||
# Copied from: Qwen2MoeModel
|
||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||
# process the experts separately
|
||
if name.find("experts") != -1:
|
||
n_experts = self.hparams["num_experts"]
|
||
assert bid is not None
|
||
|
||
if self._experts is None:
|
||
self._experts = [{} for _ in range(self.block_count)]
|
||
|
||
self._experts[bid][name] = data_torch
|
||
|
||
if len(self._experts[bid]) >= n_experts * 3:
|
||
tensors: list[tuple[str, Tensor]] = []
|
||
|
||
# merge the experts into a single 3d tensor
|
||
for w_name in ["down_proj", "gate_proj", "up_proj"]:
|
||
datas: list[Tensor] = []
|
||
|
||
for xid in range(n_experts):
|
||
ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
|
||
datas.append(self._experts[bid][ename])
|
||
del self._experts[bid][ename]
|
||
|
||
data_torch = torch.stack(datas, dim=0)
|
||
|
||
merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
|
||
|
||
new_name = self.map_tensor_name(merged_name)
|
||
|
||
tensors.append((new_name, data_torch))
|
||
return tensors
|
||
else:
|
||
return []
|
||
|
||
return [(self.map_tensor_name(name), data_torch)]
|
||
|
||
# Copied from: Qwen2MoeModel
|
||
def prepare_tensors(self):
|
||
super().prepare_tensors()
|
||
|
||
if self._experts is not None:
|
||
# flatten `list[dict[str, Tensor]]` into `list[str]`
|
||
experts = [k for d in self._experts for k in d.keys()]
|
||
if len(experts) > 0:
|
||
raise ValueError(f"Unprocessed experts: {experts}")
|
||
|
||
|
||
@Model.register("JinaBertModel", "JinaBertForMaskedLM")
|
||
class JinaBertV2Model(BertModel):
|
||
model_arch = gguf.MODEL_ARCH.JINA_BERT_V2
|
||
|
||
def __init__(self, *args, **kwargs):
|
||
super().__init__(*args, **kwargs)
|
||
self.intermediate_size = self.hparams["intermediate_size"]
|
||
|
||
def get_tensors(self):
|
||
for name, data in super().get_tensors():
|
||
if 'gated_layer' in name:
|
||
d1 = data[:self.intermediate_size, :]
|
||
name1 = name.replace('gated_layers', 'gated_layers_w')
|
||
name1 = name1.replace('up_gated_layer', 'gated_layers_v')
|
||
d2 = data[self.intermediate_size:, :]
|
||
name2 = name.replace('gated_layers', 'gated_layers_v')
|
||
name2 = name2.replace('up_gated_layer', 'gated_layers_w')
|
||
yield name1, d1
|
||
yield name2, d2
|
||
continue
|
||
|
||
yield name, data
|
||
|
||
def set_vocab(self):
|
||
tokenizer_class = 'BertTokenizer'
|
||
with open(self.dir_model / "tokenizer_config.json", "r", encoding="utf-8") as f:
|
||
tokenizer_class = json.load(f)['tokenizer_class']
|
||
|
||
if tokenizer_class == 'BertTokenizer':
|
||
super().set_vocab()
|
||
elif tokenizer_class == 'RobertaTokenizer':
|
||
self._set_vocab_gpt2()
|
||
self.gguf_writer.add_token_type_count(2)
|
||
else:
|
||
raise NotImplementedError(f'Tokenizer {tokenizer_class} is not supported for JinaBertModel')
|
||
self.gguf_writer.add_add_bos_token(True)
|
||
self.gguf_writer.add_add_eos_token(True)
|
||
|
||
|
||
@Model.register("OpenELMForCausalLM")
|
||
class OpenELMModel(Model):
|
||
model_arch = gguf.MODEL_ARCH.OPENELM
|
||
|
||
@staticmethod
|
||
def _make_divisible(v: float | int, divisor: int) -> int:
|
||
# ref: https://huggingface.co/apple/OpenELM-270M-Instruct/blob/eb111ff2e6724348e5b905984063d4064d4bc579/configuration_openelm.py#L34-L38
|
||
new_v = max(divisor, int(v + divisor / 2) // divisor * divisor)
|
||
# Make sure that round down does not go down by more than 10%.
|
||
if new_v < 0.9 * v:
|
||
new_v += divisor
|
||
return new_v
|
||
|
||
def __init__(self, *args, **kwargs):
|
||
super().__init__(*args, **kwargs)
|
||
|
||
ffn_multipliers: list[float] = self.hparams["ffn_multipliers"]
|
||
ffn_dim_divisor: int = self.hparams["ffn_dim_divisor"]
|
||
self._n_embd: int = self.hparams["model_dim"]
|
||
self._num_kv_heads: list[int] = self.hparams["num_kv_heads"]
|
||
self._num_query_heads: list[int] = self.hparams["num_query_heads"]
|
||
self._ffn_dims: list[int] = [
|
||
OpenELMModel._make_divisible(multiplier * self._n_embd, ffn_dim_divisor)
|
||
for multiplier in ffn_multipliers
|
||
]
|
||
assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
|
||
assert isinstance(self._num_query_heads, list) and isinstance(self._num_query_heads[0], int)
|
||
|
||
# Uses the tokenizer from meta-llama/Llama-2-7b-hf
|
||
def set_vocab(self):
|
||
try:
|
||
self._set_vocab_sentencepiece()
|
||
except FileNotFoundError:
|
||
self._set_vocab_builtin("llama-spm", self.hparams["vocab_size"])
|
||
|
||
def set_gguf_parameters(self):
|
||
n_embd = self._n_embd
|
||
head_dim = self.hparams["head_dim"]
|
||
rot_pct = 1.0
|
||
assert self.block_count == len(self._num_kv_heads)
|
||
assert self.block_count == len(self._num_query_heads)
|
||
assert self.block_count == len(self._ffn_dims)
|
||
|
||
self.gguf_writer.add_block_count(self.block_count)
|
||
self.gguf_writer.add_context_length(self.hparams["max_context_length"])
|
||
self.gguf_writer.add_embedding_length(n_embd)
|
||
self.gguf_writer.add_feed_forward_length(self._ffn_dims)
|
||
self.gguf_writer.add_head_count(self._num_query_heads)
|
||
self.gguf_writer.add_head_count_kv(self._num_kv_heads)
|
||
self.gguf_writer.add_rope_freq_base(self.hparams["rope_freq_constant"])
|
||
# https://huggingface.co/apple/OpenELM-270M-Instruct/blob/c401df2/modeling_openelm.py#L30
|
||
self.gguf_writer.add_layer_norm_rms_eps(1e-6)
|
||
self.gguf_writer.add_rope_dimension_count(int(rot_pct * head_dim))
|
||
self.gguf_writer.add_key_length(head_dim)
|
||
self.gguf_writer.add_value_length(head_dim)
|
||
self.gguf_writer.add_file_type(self.ftype)
|
||
|
||
def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
|
||
if "n_layers" in keys:
|
||
return self.hparams["num_transformer_layers"]
|
||
|
||
return super().find_hparam(keys, optional)
|
||
|
||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||
|
||
# split ff
|
||
if bid is not None and name == f"transformer.layers.{bid}.ffn.proj_1.weight":
|
||
ff_dim = self._ffn_dims[bid]
|
||
yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim])
|
||
yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:])
|
||
return
|
||
|
||
yield (self.map_tensor_name(name), data_torch)
|
||
|
||
|
||
@Model.register("ArcticForCausalLM")
|
||
class ArcticModel(Model):
|
||
model_arch = gguf.MODEL_ARCH.ARCTIC
|
||
|
||
def set_vocab(self):
|
||
# The reason for using a custom implementation here is that the
|
||
# snowflake-arctic-instruct model redefined tokens 31998 and 31999 from
|
||
# tokenizer.model and used them as BOS and EOS instead of adding new tokens.
|
||
from sentencepiece import SentencePieceProcessor
|
||
|
||
tokenizer_path = self.dir_model / 'tokenizer.model'
|
||
|
||
if not tokenizer_path.is_file():
|
||
logger.error(f'Error: Missing {tokenizer_path}')
|
||
sys.exit(1)
|
||
|
||
# Read the whole vocabulary from the tokenizer.model file
|
||
tokenizer = SentencePieceProcessor()
|
||
tokenizer.LoadFromFile(str(tokenizer_path))
|
||
|
||
vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
|
||
|
||
tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
|
||
scores: list[float] = [-10000.0] * vocab_size
|
||
toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
|
||
|
||
for token_id in range(tokenizer.vocab_size()):
|
||
|
||
piece = tokenizer.IdToPiece(token_id)
|
||
text = piece.encode("utf-8")
|
||
score = tokenizer.GetScore(token_id)
|
||
|
||
toktype = SentencePieceTokenTypes.NORMAL
|
||
if tokenizer.IsUnknown(token_id):
|
||
toktype = SentencePieceTokenTypes.UNKNOWN
|
||
elif tokenizer.IsControl(token_id):
|
||
toktype = SentencePieceTokenTypes.CONTROL
|
||
elif tokenizer.IsUnused(token_id):
|
||
toktype = SentencePieceTokenTypes.UNUSED
|
||
elif tokenizer.IsByte(token_id):
|
||
toktype = SentencePieceTokenTypes.BYTE
|
||
|
||
tokens[token_id] = text
|
||
scores[token_id] = score
|
||
toktypes[token_id] = toktype
|
||
|
||
# Use the added_tokens_decoder field from tokeniser_config.json as the source
|
||
# of information about added/redefined tokens and modify them accordingly.
|
||
tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
|
||
if tokenizer_config_file.is_file():
|
||
with open(tokenizer_config_file, "r", encoding="utf-8") as f:
|
||
tokenizer_config_json = json.load(f)
|
||
|
||
if "added_tokens_decoder" in tokenizer_config_json:
|
||
added_tokens_decoder = tokenizer_config_json["added_tokens_decoder"]
|
||
for token_id, token_json in added_tokens_decoder.items():
|
||
token_id = int(token_id)
|
||
if token_id >= vocab_size:
|
||
logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
|
||
continue
|
||
|
||
token_content = token_json["content"]
|
||
token_type = SentencePieceTokenTypes.USER_DEFINED
|
||
token_score = -10000.0
|
||
|
||
# Map unk_token to UNKNOWN, other special tokens to CONTROL
|
||
# Set the score to 0.0 as in the original tokenizer.model
|
||
if ("special" in token_json) and token_json["special"]:
|
||
if token_content == tokenizer_config_json["unk_token"]:
|
||
token_type = SentencePieceTokenTypes.UNKNOWN
|
||
else:
|
||
token_type = SentencePieceTokenTypes.CONTROL
|
||
token_score = 0.0
|
||
|
||
logger.info(f"Setting added token {token_id} to '{token_content}' (type: {token_type}, score: {token_score:.2f})")
|
||
tokens[token_id] = token_content.encode("utf-8")
|
||
toktypes[token_id] = token_type
|
||
scores[token_id] = token_score
|
||
|
||
self.gguf_writer.add_tokenizer_model("llama")
|
||
self.gguf_writer.add_tokenizer_pre("default")
|
||
self.gguf_writer.add_token_list(tokens)
|
||
self.gguf_writer.add_token_scores(scores)
|
||
self.gguf_writer.add_token_types(toktypes)
|
||
|
||
special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
|
||
special_vocab.add_to_gguf(self.gguf_writer)
|
||
|
||
def set_gguf_parameters(self):
|
||
super().set_gguf_parameters()
|
||
hparams = self.hparams
|
||
self.gguf_writer.add_vocab_size(hparams["vocab_size"])
|
||
self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
|
||
|
||
_experts: list[dict[str, Tensor]] | None = None
|
||
|
||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||
n_head = self.hparams["num_attention_heads"]
|
||
n_kv_head = self.hparams.get("num_key_value_heads")
|
||
|
||
if name.endswith("q_proj.weight"):
|
||
data_torch = LlamaModel.permute(data_torch, n_head, n_head)
|
||
if name.endswith("k_proj.weight"):
|
||
data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
|
||
|
||
# process the experts separately
|
||
if name.find("block_sparse_moe.experts") != -1:
|
||
n_experts = self.hparams["num_local_experts"]
|
||
|
||
assert bid is not None
|
||
|
||
if self._experts is None:
|
||
self._experts = [{} for _ in range(self.block_count)]
|
||
|
||
self._experts[bid][name] = data_torch
|
||
|
||
if len(self._experts[bid]) >= n_experts * 3:
|
||
tensors: list[tuple[str, Tensor]] = []
|
||
|
||
# merge the experts into a single 3d tensor
|
||
for wid in ["w1", "w2", "w3"]:
|
||
datas: list[Tensor] = []
|
||
|
||
for xid in range(n_experts):
|
||
ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
|
||
datas.append(self._experts[bid][ename])
|
||
del self._experts[bid][ename]
|
||
|
||
data_torch = torch.stack(datas, dim=0)
|
||
|
||
merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
|
||
|
||
new_name = self.map_tensor_name(merged_name)
|
||
|
||
tensors.append((new_name, data_torch))
|
||
return tensors
|
||
else:
|
||
return []
|
||
|
||
return [(self.map_tensor_name(name), data_torch)]
|
||
|
||
def prepare_tensors(self):
|
||
super().prepare_tensors()
|
||
|
||
if self._experts is not None:
|
||
# flatten `list[dict[str, Tensor]]` into `list[str]`
|
||
experts = [k for d in self._experts for k in d.keys()]
|
||
if len(experts) > 0:
|
||
raise ValueError(f"Unprocessed experts: {experts}")
|
||
|
||
|
||
@Model.register("DeepseekV2ForCausalLM")
|
||
class DeepseekV2Model(Model):
|
||
model_arch = gguf.MODEL_ARCH.DEEPSEEK2
|
||
|
||
def set_vocab(self):
|
||
self._set_vocab_gpt2()
|
||
|
||
def set_gguf_parameters(self):
|
||
super().set_gguf_parameters()
|
||
hparams = self.hparams
|
||
|
||
self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
|
||
self.gguf_writer.add_vocab_size(hparams["vocab_size"])
|
||
if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
|
||
self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
|
||
self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
|
||
self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
|
||
self.gguf_writer.add_value_length(hparams["v_head_dim"])
|
||
self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
|
||
self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
|
||
self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
|
||
self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
|
||
self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
|
||
|
||
if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
|
||
if self.hparams["rope_scaling"].get("type") == "yarn":
|
||
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
|
||
self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
|
||
self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
|
||
self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1 * hparams["rope_scaling"]["mscale_all_dim"])
|
||
|
||
_experts: list[dict[str, Tensor]] | None = None
|
||
|
||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||
# process the experts separately
|
||
if name.find("mlp.experts") != -1:
|
||
n_experts = self.hparams["n_routed_experts"]
|
||
assert bid is not None
|
||
|
||
if self._experts is None:
|
||
self._experts = [{} for _ in range(self.block_count)]
|
||
|
||
self._experts[bid][name] = data_torch
|
||
|
||
if len(self._experts[bid]) >= n_experts * 3:
|
||
tensors: list[tuple[str, Tensor]] = []
|
||
|
||
# merge the experts into a single 3d tensor
|
||
for w_name in ["down_proj", "gate_proj", "up_proj"]:
|
||
datas: list[Tensor] = []
|
||
|
||
for xid in range(n_experts):
|
||
ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
|
||
datas.append(self._experts[bid][ename])
|
||
del self._experts[bid][ename]
|
||
|
||
data_torch = torch.stack(datas, dim=0)
|
||
|
||
merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
|
||
|
||
new_name = self.map_tensor_name(merged_name)
|
||
|
||
tensors.append((new_name, data_torch))
|
||
return tensors
|
||
else:
|
||
return []
|
||
|
||
return [(self.map_tensor_name(name), data_torch)]
|
||
|
||
def prepare_tensors(self):
|
||
super().prepare_tensors()
|
||
|
||
if self._experts is not None:
|
||
# flatten `list[dict[str, Tensor]]` into `list[str]`
|
||
experts = [k for d in self._experts for k in d.keys()]
|
||
if len(experts) > 0:
|
||
raise ValueError(f"Unprocessed experts: {experts}")
|
||
|
||
|
||
@Model.register("T5WithLMHeadModel")
|
||
@Model.register("T5ForConditionalGeneration")
|
||
@Model.register("MT5ForConditionalGeneration")
|
||
@Model.register("UMT5ForConditionalGeneration")
|
||
class T5Model(Model):
|
||
model_arch = gguf.MODEL_ARCH.T5
|
||
|
||
def __init__(self, *args, **kwargs):
|
||
super().__init__(*args, **kwargs)
|
||
self.shared_token_embeddings_found = False
|
||
|
||
def set_vocab(self):
|
||
# to avoid TypeError: Descriptors cannot be created directly
|
||
# exception when importing sentencepiece_model_pb2
|
||
os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
|
||
from sentencepiece import SentencePieceProcessor
|
||
from sentencepiece import sentencepiece_model_pb2 as model
|
||
|
||
tokenizer_path = self.dir_model / 'tokenizer.model'
|
||
|
||
# many older models use spiece.model tokenizer model filename
|
||
if not tokenizer_path.is_file():
|
||
tokenizer_path = self.dir_model / 'spiece.model'
|
||
|
||
if not tokenizer_path.is_file():
|
||
raise FileNotFoundError(f"File not found: {tokenizer_path}")
|
||
|
||
sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
|
||
sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
|
||
|
||
# some models like Pile-T5 family use BPE tokenizer instead of Unigram
|
||
if sentencepiece_model.trainer_spec.model_type == 2: # BPE
|
||
# assure the tokenizer model file name is correct
|
||
assert tokenizer_path.name == 'tokenizer.model'
|
||
return self._set_vocab_sentencepiece()
|
||
else:
|
||
assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
|
||
|
||
add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
|
||
remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
|
||
precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
|
||
|
||
tokenizer = SentencePieceProcessor()
|
||
tokenizer.LoadFromFile(str(tokenizer_path))
|
||
|
||
vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
|
||
|
||
tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
|
||
scores: list[float] = [-10000.0] * vocab_size
|
||
toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
|
||
|
||
for token_id in range(tokenizer.vocab_size()):
|
||
piece = tokenizer.IdToPiece(token_id)
|
||
text = piece.encode("utf-8")
|
||
score = tokenizer.GetScore(token_id)
|
||
|
||
toktype = SentencePieceTokenTypes.NORMAL
|
||
if tokenizer.IsUnknown(token_id):
|
||
toktype = SentencePieceTokenTypes.UNKNOWN
|
||
elif tokenizer.IsControl(token_id):
|
||
toktype = SentencePieceTokenTypes.CONTROL
|
||
elif tokenizer.IsUnused(token_id):
|
||
toktype = SentencePieceTokenTypes.UNUSED
|
||
elif tokenizer.IsByte(token_id):
|
||
toktype = SentencePieceTokenTypes.BYTE
|
||
|
||
tokens[token_id] = text
|
||
scores[token_id] = score
|
||
toktypes[token_id] = toktype
|
||
|
||
added_tokens_file = self.dir_model / 'added_tokens.json'
|
||
if added_tokens_file.is_file():
|
||
with open(added_tokens_file, "r", encoding="utf-8") as f:
|
||
added_tokens_json = json.load(f)
|
||
for key in added_tokens_json:
|
||
token_id = added_tokens_json[key]
|
||
if token_id >= vocab_size:
|
||
logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
|
||
continue
|
||
|
||
tokens[token_id] = key.encode("utf-8")
|
||
scores[token_id] = -1000.0
|
||
toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
|
||
|
||
if vocab_size > len(tokens):
|
||
pad_count = vocab_size - len(tokens)
|
||
logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
|
||
for i in range(1, pad_count + 1):
|
||
tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
|
||
scores.append(-1000.0)
|
||
toktypes.append(SentencePieceTokenTypes.UNUSED)
|
||
|
||
self.gguf_writer.add_tokenizer_model("t5")
|
||
self.gguf_writer.add_tokenizer_pre("default")
|
||
self.gguf_writer.add_token_list(tokens)
|
||
self.gguf_writer.add_token_scores(scores)
|
||
self.gguf_writer.add_token_types(toktypes)
|
||
self.gguf_writer.add_add_space_prefix(add_prefix)
|
||
self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
|
||
if precompiled_charsmap:
|
||
self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
|
||
|
||
special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
|
||
special_vocab.add_to_gguf(self.gguf_writer)
|
||
|
||
self.gguf_writer.add_add_bos_token(False)
|
||
self.gguf_writer.add_add_eos_token(True)
|
||
|
||
def set_gguf_parameters(self):
|
||
if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
|
||
logger.warning("Couldn't find context length in config.json, assuming default value of 512")
|
||
n_ctx = 512
|
||
self.gguf_writer.add_context_length(n_ctx)
|
||
self.gguf_writer.add_embedding_length(self.hparams["d_model"])
|
||
self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
|
||
self.gguf_writer.add_block_count(self.hparams["num_layers"])
|
||
self.gguf_writer.add_head_count(self.hparams["num_heads"])
|
||
self.gguf_writer.add_key_length(self.hparams["d_kv"])
|
||
self.gguf_writer.add_value_length(self.hparams["d_kv"])
|
||
self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
|
||
self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
|
||
self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
|
||
self.gguf_writer.add_decoder_start_token_id(self.hparams["decoder_start_token_id"])
|
||
self.gguf_writer.add_file_type(self.ftype)
|
||
|
||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||
del bid # unused
|
||
|
||
# T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
|
||
# "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
|
||
# in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
|
||
# and decoder and ignore the remaining ones.
|
||
if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
|
||
if not self.shared_token_embeddings_found:
|
||
name = "shared.weight"
|
||
self.shared_token_embeddings_found = True
|
||
else:
|
||
logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
|
||
return []
|
||
|
||
return [(self.map_tensor_name(name), data_torch)]
|
||
|
||
|
||
@Model.register("T5EncoderModel")
|
||
class T5EncoderModel(Model):
|
||
model_arch = gguf.MODEL_ARCH.T5ENCODER
|
||
|
||
def __init__(self, *args, **kwargs):
|
||
super().__init__(*args, **kwargs)
|
||
self.shared_token_embeddings_found = False
|
||
|
||
def set_vocab(self):
|
||
# to avoid TypeError: Descriptors cannot be created directly
|
||
# exception when importing sentencepiece_model_pb2
|
||
os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
|
||
from sentencepiece import SentencePieceProcessor
|
||
from sentencepiece import sentencepiece_model_pb2 as model
|
||
|
||
tokenizer_path = self.dir_model / 'tokenizer.model'
|
||
|
||
# many older models use spiece.model tokenizer model filename
|
||
if not tokenizer_path.is_file():
|
||
tokenizer_path = self.dir_model / 'spiece.model'
|
||
|
||
if not tokenizer_path.is_file():
|
||
raise FileNotFoundError(f"File not found: {tokenizer_path}")
|
||
|
||
sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
|
||
sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
|
||
|
||
# some models like Pile-T5 family use BPE tokenizer instead of Unigram
|
||
if sentencepiece_model.trainer_spec.model_type == 2: # BPE
|
||
# assure the tokenizer model file name is correct
|
||
assert tokenizer_path.name == 'tokenizer.model'
|
||
return self._set_vocab_sentencepiece()
|
||
else:
|
||
assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
|
||
|
||
add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
|
||
remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
|
||
precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
|
||
|
||
tokenizer = SentencePieceProcessor()
|
||
tokenizer.LoadFromFile(str(tokenizer_path))
|
||
|
||
vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
|
||
|
||
tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
|
||
scores: list[float] = [-10000.0] * vocab_size
|
||
toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
|
||
|
||
for token_id in range(tokenizer.vocab_size()):
|
||
piece = tokenizer.IdToPiece(token_id)
|
||
text = piece.encode("utf-8")
|
||
score = tokenizer.GetScore(token_id)
|
||
|
||
toktype = SentencePieceTokenTypes.NORMAL
|
||
if tokenizer.IsUnknown(token_id):
|
||
toktype = SentencePieceTokenTypes.UNKNOWN
|
||
elif tokenizer.IsControl(token_id):
|
||
toktype = SentencePieceTokenTypes.CONTROL
|
||
elif tokenizer.IsUnused(token_id):
|
||
toktype = SentencePieceTokenTypes.UNUSED
|
||
elif tokenizer.IsByte(token_id):
|
||
toktype = SentencePieceTokenTypes.BYTE
|
||
|
||
tokens[token_id] = text
|
||
scores[token_id] = score
|
||
toktypes[token_id] = toktype
|
||
|
||
added_tokens_file = self.dir_model / 'added_tokens.json'
|
||
if added_tokens_file.is_file():
|
||
with open(added_tokens_file, "r", encoding="utf-8") as f:
|
||
added_tokens_json = json.load(f)
|
||
for key in added_tokens_json:
|
||
token_id = added_tokens_json[key]
|
||
if token_id >= vocab_size:
|
||
logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
|
||
continue
|
||
|
||
tokens[token_id] = key.encode("utf-8")
|
||
scores[token_id] = -1000.0
|
||
toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
|
||
|
||
if vocab_size > len(tokens):
|
||
pad_count = vocab_size - len(tokens)
|
||
logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
|
||
for i in range(1, pad_count + 1):
|
||
tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
|
||
scores.append(-1000.0)
|
||
toktypes.append(SentencePieceTokenTypes.UNUSED)
|
||
|
||
self.gguf_writer.add_tokenizer_model("t5")
|
||
self.gguf_writer.add_tokenizer_pre("default")
|
||
self.gguf_writer.add_token_list(tokens)
|
||
self.gguf_writer.add_token_scores(scores)
|
||
self.gguf_writer.add_token_types(toktypes)
|
||
self.gguf_writer.add_add_space_prefix(add_prefix)
|
||
self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
|
||
if precompiled_charsmap:
|
||
self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
|
||
|
||
special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
|
||
special_vocab.add_to_gguf(self.gguf_writer)
|
||
|
||
self.gguf_writer.add_add_bos_token(False)
|
||
self.gguf_writer.add_add_eos_token(True)
|
||
|
||
def set_gguf_parameters(self):
|
||
if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
|
||
logger.warning("Couldn't find context length in config.json, assuming default value of 512")
|
||
n_ctx = 512
|
||
self.gguf_writer.add_context_length(n_ctx)
|
||
self.gguf_writer.add_embedding_length(self.hparams["d_model"])
|
||
self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
|
||
self.gguf_writer.add_block_count(self.hparams["num_layers"])
|
||
self.gguf_writer.add_head_count(self.hparams["num_heads"])
|
||
self.gguf_writer.add_key_length(self.hparams["d_kv"])
|
||
self.gguf_writer.add_value_length(self.hparams["d_kv"])
|
||
self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
|
||
self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
|
||
self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
|
||
self.gguf_writer.add_file_type(self.ftype)
|
||
|
||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||
del bid # unused
|
||
|
||
# T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
|
||
# "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
|
||
# in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
|
||
# and decoder and ignore the remaining ones.
|
||
if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
|
||
if not self.shared_token_embeddings_found:
|
||
name = "shared.weight"
|
||
self.shared_token_embeddings_found = True
|
||
else:
|
||
logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
|
||
return []
|
||
|
||
return [(self.map_tensor_name(name), data_torch)]
|
||
|
||
|
||
@Model.register("JAISLMHeadModel")
|
||
class JaisModel(Model):
|
||
model_arch = gguf.MODEL_ARCH.JAIS
|
||
|
||
def __init__(self, *args, **kwargs):
|
||
super().__init__(*args, **kwargs)
|
||
|
||
# SwigLU activation
|
||
assert self.hparams["activation_function"] == "swiglu"
|
||
# ALiBi position embedding
|
||
assert self.hparams["position_embedding_type"] == "alibi"
|
||
|
||
# Embeddings scale
|
||
self.embeddings_scale = 1.0
|
||
# note: For some JAIS flavors, output is tied to (same as) wte in original model
|
||
self.output_is_wte = False
|
||
if 'mup_embeddings_scale' in self.hparams:
|
||
self.output_is_wte = True # Hack (?)
|
||
self.embeddings_scale = self.hparams['mup_embeddings_scale']
|
||
elif 'embeddings_scale' in self.hparams:
|
||
self.embeddings_scale = self.hparams['embeddings_scale']
|
||
else:
|
||
assert False
|
||
|
||
self.width_scale = 1.0
|
||
if 'mup_output_alpha' in self.hparams:
|
||
assert 'mup_width_scale' in self.hparams
|
||
self.width_scale = self.hparams['mup_output_alpha'] * self.hparams['mup_width_scale']
|
||
elif 'width_scale' in self.hparams:
|
||
self.width_scale = self.hparams['width_scale']
|
||
else:
|
||
assert False
|
||
|
||
self.max_alibi_bias = 8.0
|
||
|
||
def set_vocab(self):
|
||
self._set_vocab_gpt2()
|
||
|
||
def set_gguf_parameters(self):
|
||
self.gguf_writer.add_block_count(self.hparams["n_layer"])
|
||
self.gguf_writer.add_context_length(self.hparams["n_positions"])
|
||
self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
|
||
self.gguf_writer.add_feed_forward_length(self.hparams["n_inner"])
|
||
self.gguf_writer.add_head_count(self.hparams["n_head"])
|
||
self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
|
||
self.gguf_writer.add_file_type(self.ftype)
|
||
|
||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||
del bid # unused
|
||
|
||
tensors: list[tuple[str, Tensor]] = []
|
||
|
||
# we don't need these
|
||
if name.endswith((".attn.bias")):
|
||
return tensors
|
||
|
||
if name.endswith(("relative_pe.slopes")):
|
||
# Calculate max ALiBi bias (this is the inverse of the ALiBi calculation)
|
||
# Some other models has max_alibi_bias spelled out explicitly in the hyperparams,
|
||
# but Jais's PyTorch model simply precalculates the slope values and places them
|
||
# in relative_pes.slopes
|
||
n_head_closest_log2 = 2 ** math.floor(math.log2(self.hparams["n_head"]))
|
||
first_val = float(data_torch[0].item())
|
||
self.max_alibi_bias = -round(math.log2(first_val) * n_head_closest_log2)
|
||
|
||
return tensors
|
||
|
||
if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_fc2.weight")):
|
||
data_torch = data_torch.transpose(1, 0)
|
||
|
||
new_name = self.map_tensor_name(name)
|
||
|
||
if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
|
||
tensors.append((new_name, data_torch * self.embeddings_scale))
|
||
if self.output_is_wte:
|
||
tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch * self.width_scale))
|
||
elif new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
|
||
assert not self.output_is_wte
|
||
tensors.append((new_name, data_torch * self.width_scale))
|
||
else:
|
||
tensors.append((new_name, data_torch))
|
||
|
||
return tensors
|
||
|
||
def prepare_tensors(self):
|
||
super().prepare_tensors()
|
||
self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias)
|
||
|
||
|
||
@Model.register("ChatGLMModel", "ChatGLMForConditionalGeneration")
|
||
class ChatGLMModel(Model):
|
||
model_arch = gguf.MODEL_ARCH.CHATGLM
|
||
|
||
def set_vocab_chatglm3(self):
|
||
dir_model = self.dir_model
|
||
hparams = self.hparams
|
||
tokens: list[bytes] = []
|
||
toktypes: list[int] = []
|
||
scores: list[float] = []
|
||
|
||
from transformers import AutoTokenizer
|
||
tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
|
||
vocab_size = hparams.get("padded_vocab_size", len(tokenizer.get_vocab()))
|
||
assert max(tokenizer.get_vocab().values()) < vocab_size
|
||
role_special_tokens = ["<|system|>", "<|user|>", "<|assistant|>", "<|observation|>"]
|
||
special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] + role_special_tokens
|
||
for token_id in range(vocab_size):
|
||
piece = tokenizer._convert_id_to_token(token_id)
|
||
if token_id == 0:
|
||
piece = "<unk>"
|
||
elif token_id == 1:
|
||
piece = "<bos>"
|
||
elif token_id == 2:
|
||
piece = "<eos>"
|
||
|
||
text = piece.encode("utf-8")
|
||
score = 0.0
|
||
# Referencing the tokenizer Python implementation(https://huggingface.co/THUDM/chatglm3-6b/blob/main/tokenization_chatglm.py),
|
||
# it is only valid if it is less than tokenizer.tokenizer.sp_model.vocab_size()
|
||
if len(piece) != 0 and token_id < tokenizer.tokenizer.sp_model.vocab_size():
|
||
score = tokenizer.tokenizer.sp_model.get_score(token_id)
|
||
|
||
if token_id >= tokenizer.tokenizer.sp_model.vocab_size():
|
||
if piece in special_tokens:
|
||
toktype = SentencePieceTokenTypes.CONTROL
|
||
elif len(piece) == 0:
|
||
text = f"[PAD{token_id}]".encode("utf-8")
|
||
toktype = SentencePieceTokenTypes.UNUSED
|
||
else:
|
||
toktype = SentencePieceTokenTypes.USER_DEFINED
|
||
tokens.append(text)
|
||
scores.append(score)
|
||
toktypes.append(toktype)
|
||
continue
|
||
|
||
toktype = SentencePieceTokenTypes.NORMAL
|
||
if tokenizer.tokenizer.sp_model.is_unknown(token_id):
|
||
toktype = SentencePieceTokenTypes.UNKNOWN
|
||
elif tokenizer.tokenizer.sp_model.is_control(token_id):
|
||
toktype = SentencePieceTokenTypes.CONTROL
|
||
elif tokenizer.tokenizer.sp_model.is_unused(token_id):
|
||
toktype = SentencePieceTokenTypes.UNUSED
|
||
elif tokenizer.tokenizer.sp_model.is_byte(token_id):
|
||
toktype = SentencePieceTokenTypes.BYTE
|
||
|
||
tokens.append(text)
|
||
scores.append(score)
|
||
toktypes.append(toktype)
|
||
|
||
self.gguf_writer.add_tokenizer_model("llama")
|
||
# glm3 needs prefix and suffix formatted as:
|
||
# prompt = "[gMASK]sop<|user|>\n" + prompt + "<|assistant|>"
|
||
self.gguf_writer.add_tokenizer_pre("chatglm-spm")
|
||
self.gguf_writer.add_token_list(tokens)
|
||
self.gguf_writer.add_token_scores(scores)
|
||
self.gguf_writer.add_token_types(toktypes)
|
||
|
||
special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
|
||
special_vocab.add_to_gguf(self.gguf_writer)
|
||
|
||
@staticmethod
|
||
def token_bytes_to_string(b):
|
||
from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
|
||
byte_encoder = bytes_to_unicode()
|
||
return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
|
||
|
||
@staticmethod
|
||
def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
|
||
parts = [bytes([b]) for b in token]
|
||
while True:
|
||
min_idx = None
|
||
min_rank = None
|
||
for i, pair in enumerate(zip(parts[:-1], parts[1:])):
|
||
rank = mergeable_ranks.get(pair[0] + pair[1])
|
||
if rank is not None and (min_rank is None or rank < min_rank):
|
||
min_idx = i
|
||
min_rank = rank
|
||
if min_rank is None or (max_rank is not None and min_rank >= max_rank):
|
||
break
|
||
assert min_idx is not None
|
||
parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
|
||
return parts
|
||
|
||
def set_vocab(self):
|
||
if "THUDM/chatglm3-6b" in self.hparams.get("_name_or_path", ""):
|
||
self.set_vocab_chatglm3()
|
||
return
|
||
|
||
dir_model = self.dir_model
|
||
hparams = self.hparams
|
||
tokens: list[str] = []
|
||
toktypes: list[int] = []
|
||
|
||
from transformers import AutoTokenizer
|
||
tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
|
||
vocab_size = hparams["padded_vocab_size"]
|
||
assert max(tokenizer.get_vocab().values()) < vocab_size
|
||
|
||
tokpre = self.get_vocab_base_pre(tokenizer)
|
||
|
||
merges = []
|
||
vocab = {}
|
||
mergeable_ranks = tokenizer.mergeable_ranks
|
||
for token, rank in mergeable_ranks.items():
|
||
vocab[ChatGLMModel.token_bytes_to_string(token)] = rank
|
||
if len(token) == 1:
|
||
continue
|
||
merged = ChatGLMModel.bpe(mergeable_ranks, token, max_rank=rank)
|
||
assert len(merged) >= 2 and len(merged) <= 7
|
||
merges.append(' '.join(map(ChatGLMModel.token_bytes_to_string, merged)))
|
||
|
||
# for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
|
||
added_vocab = tokenizer.get_added_vocab()
|
||
reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
|
||
|
||
for i in range(vocab_size):
|
||
if i not in reverse_vocab:
|
||
tokens.append(f"[PAD{i}]")
|
||
toktypes.append(gguf.TokenType.UNUSED)
|
||
elif reverse_vocab[i] in added_vocab:
|
||
tokens.append(reverse_vocab[i])
|
||
if tokenizer.added_tokens_decoder[i].special:
|
||
toktypes.append(gguf.TokenType.CONTROL)
|
||
else:
|
||
toktypes.append(gguf.TokenType.USER_DEFINED)
|
||
else:
|
||
tokens.append(reverse_vocab[i])
|
||
toktypes.append(gguf.TokenType.NORMAL)
|
||
|
||
self.gguf_writer.add_tokenizer_model("gpt2")
|
||
self.gguf_writer.add_tokenizer_pre(tokpre)
|
||
self.gguf_writer.add_token_list(tokens)
|
||
self.gguf_writer.add_token_types(toktypes)
|
||
|
||
special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
|
||
special_vocab.merges = merges
|
||
# only add special tokens when they were not already loaded from config.json
|
||
special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
|
||
special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
|
||
# this one is usually not in config.json anyway
|
||
special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
|
||
special_vocab.add_to_gguf(self.gguf_writer)
|
||
|
||
def set_gguf_parameters(self):
|
||
n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
|
||
n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
|
||
n_head_kv = self.hparams.get("multi_query_group_num", n_head)
|
||
self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
|
||
self.gguf_writer.add_embedding_length(n_embed)
|
||
self.gguf_writer.add_feed_forward_length(self.hparams.get("ffn_hidden_size", 4 * n_embed))
|
||
self.gguf_writer.add_block_count(self.hparams["num_layers"])
|
||
self.gguf_writer.add_head_count(n_head)
|
||
self.gguf_writer.add_head_count_kv(n_head_kv)
|
||
self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layernorm_epsilon"])
|
||
self.gguf_writer.add_file_type(self.ftype)
|
||
self.gguf_writer.add_rope_dimension_count(64)
|
||
self.gguf_writer.add_add_bos_token(False)
|
||
rope_freq = 10000
|
||
if "rope_ratio" in self.hparams:
|
||
rope_freq = rope_freq * self.hparams["rope_ratio"]
|
||
self.gguf_writer.add_rope_freq_base(rope_freq)
|
||
|
||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||
del bid # unused
|
||
|
||
if name.endswith(".rotary_pos_emb.inv_freq"):
|
||
return []
|
||
|
||
name = name.removeprefix("transformer.")
|
||
return [(self.map_tensor_name(name), data_torch)]
|
||
|
||
|
||
@Model.register("NemotronForCausalLM")
|
||
class NemotronModel(Model):
|
||
model_arch = gguf.MODEL_ARCH.NEMOTRON
|
||
|
||
def set_vocab(self):
|
||
self._set_vocab_sentencepiece()
|
||
self.gguf_writer.add_pad_token_id(0)
|
||
self.gguf_writer.add_unk_token_id(1)
|
||
|
||
def set_gguf_parameters(self):
|
||
super().set_gguf_parameters()
|
||
hparams = self.hparams
|
||
self.gguf_writer.add_vocab_size(hparams["vocab_size"])
|
||
|
||
f_norm_eps = self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon", "norm_eps"])
|
||
self.gguf_writer.add_layer_norm_eps(f_norm_eps)
|
||
|
||
# * Partial RoPE
|
||
rot_pct = self.find_hparam(["partial_rotary_factor", "rope_pct", "rope_percent"])
|
||
n_embd = self.find_hparam(["hidden_size", "n_embd"])
|
||
n_head = self.find_hparam(["num_attention_heads", "n_head"])
|
||
self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
|
||
|
||
# * RopeScaling for Nemotron
|
||
if "rope_scaling" not in self.hparams or self.hparams["rope_scaling"] is None:
|
||
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
|
||
else:
|
||
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
|
||
self.gguf_writer.add_rope_scaling_factor(self.hparams["factor"])
|
||
|
||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||
# * Adding +1 to LayerNorm's weights here to implement layernorm1p w/o changing anything on the GGML engine side
|
||
# model.layers.{l}.input_layernorm.weight
|
||
# model.layers.{l}.post_attention_layernorm.weight
|
||
# model.norm.weight
|
||
if name.endswith("norm.weight"):
|
||
data_torch = data_torch + 1
|
||
|
||
return [(self.map_tensor_name(name), data_torch)]
|
||
|
||
|
||
@Model.register("ExaoneForCausalLM")
|
||
class ExaoneModel(Model):
|
||
model_arch = gguf.MODEL_ARCH.EXAONE
|
||
|
||
def set_gguf_parameters(self):
|
||
hparams = self.hparams
|
||
|
||
assert (hparams["activation_function"] == "silu")
|
||
|
||
max_position_embeddings = hparams["max_position_embeddings"]
|
||
embed_dim = hparams["hidden_size"]
|
||
num_heads = hparams["num_attention_heads"]
|
||
num_kv_heads = hparams.get("num_key_value_heads", num_heads)
|
||
layer_norm_eps = hparams["layer_norm_epsilon"]
|
||
intermediate_size = hparams["intermediate_size"] if "intermediate_size" in hparams else 4 * embed_dim
|
||
num_layers = hparams["num_layers"]
|
||
# ignore for now as EXAONE-3.0-7.8B-Instruct attentino_dropout is 0.0
|
||
# attention_dropout_rate = hparams["attention_dropout"]
|
||
# ignore for now as EXAONE-3.0-7.8B-Instruct embed_dropout is 0.0
|
||
# embed_dropout_rate = hparams["embed_dropout"]
|
||
self.gguf_writer.add_embedding_length(embed_dim)
|
||
self.gguf_writer.add_head_count(num_heads)
|
||
self.gguf_writer.add_head_count_kv(num_kv_heads)
|
||
self.gguf_writer.add_context_length(max_position_embeddings)
|
||
self.gguf_writer.add_layer_norm_rms_eps(layer_norm_eps)
|
||
self.gguf_writer.add_feed_forward_length(intermediate_size)
|
||
self.gguf_writer.add_block_count(num_layers)
|
||
self.gguf_writer.add_file_type(self.ftype)
|
||
|
||
if (rope_theta := self.hparams.get("rope_theta")) is not None:
|
||
self.gguf_writer.add_rope_freq_base(rope_theta)
|
||
rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"], optional=True)
|
||
rotary_factor = rotary_factor if rotary_factor is not None else 1.0
|
||
self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
|
||
if hparams.get("rope_scaling") is not None and "factor" in hparams["rope_scaling"]:
|
||
if hparams["rope_scaling"].get("type") == "linear":
|
||
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
|
||
self.gguf_writer.add_rope_scaling_factor(hparams["rope_scaling"]["factor"])
|
||
|
||
def prepare_tensors(self):
|
||
if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
|
||
if rope_scaling.get("rope_type", '').lower() == "llama3":
|
||
base = self.hparams.get("rope_theta", 10000.0)
|
||
dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
|
||
freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
|
||
|
||
factor = rope_scaling.get("factor", 8.0)
|
||
low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
|
||
high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
|
||
old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
|
||
|
||
low_freq_wavelen = old_context_len / low_freq_factor
|
||
high_freq_wavelen = old_context_len / high_freq_factor
|
||
assert low_freq_wavelen != high_freq_wavelen
|
||
|
||
rope_factors = []
|
||
for freq in freqs:
|
||
wavelen = 2 * math.pi / freq
|
||
if wavelen < high_freq_wavelen:
|
||
rope_factors.append(1)
|
||
elif wavelen > low_freq_wavelen:
|
||
rope_factors.append(factor)
|
||
else:
|
||
smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
|
||
rope_factors.append(1 / ((1 - smooth) / factor + smooth))
|
||
|
||
if not self.is_lora:
|
||
self.gguf_writer.add_tensor(self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), np.array(rope_factors, dtype=np.float32))
|
||
|
||
super().prepare_tensors()
|
||
|
||
|
||
@Model.register("GraniteForCausalLM")
|
||
class GraniteModel(LlamaModel):
|
||
"""Conversion for IBM's GraniteForCausalLM"""
|
||
model_arch = gguf.MODEL_ARCH.GRANITE
|
||
|
||
def set_gguf_parameters(self):
|
||
"""Granite uses standard llama parameters with the following differences:
|
||
|
||
- No head_dim support
|
||
- New multiplier params:
|
||
- attention_scale
|
||
- embedding_scale
|
||
- residual_scale
|
||
- logits_scaling
|
||
"""
|
||
if head_dim := self.hparams.pop("head_dim", None):
|
||
logger.warning("Ignoring head_dim (%s) from config for Granite", head_dim)
|
||
super().set_gguf_parameters()
|
||
# NOTE: Convert _multiplier params to _scale params for naming
|
||
# consistency
|
||
if attention_scale := self.hparams.get("attention_multiplier"):
|
||
self.gguf_writer.add_attention_scale(attention_scale)
|
||
if embedding_scale := self.hparams.get("embedding_multiplier"):
|
||
self.gguf_writer.add_embedding_scale(embedding_scale)
|
||
if residual_scale := self.hparams.get("residual_multiplier"):
|
||
self.gguf_writer.add_residual_scale(residual_scale)
|
||
if logits_scaling := self.hparams.get("logits_scaling"):
|
||
self.gguf_writer.add_logit_scale(logits_scaling)
|
||
|
||
|
||
###### CONVERSION LOGIC ######
|
||
|
||
# tree of lazy tensors
|
||
class LazyTorchTensor(gguf.LazyBase):
|
||
_tensor_type = torch.Tensor
|
||
# to keep the type-checker happy
|
||
dtype: torch.dtype
|
||
shape: torch.Size
|
||
|
||
# only used when converting a torch.Tensor to a np.ndarray
|
||
_dtype_map: dict[torch.dtype, type] = {
|
||
torch.float16: np.float16,
|
||
torch.float32: np.float32,
|
||
}
|
||
|
||
# used for safetensors slices
|
||
# ref: https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/src/lib.rs#L1046
|
||
# TODO: uncomment U64, U32, and U16, ref: https://github.com/pytorch/pytorch/issues/58734
|
||
_dtype_str_map: dict[str, torch.dtype] = {
|
||
"F64": torch.float64,
|
||
"F32": torch.float32,
|
||
"BF16": torch.bfloat16,
|
||
"F16": torch.float16,
|
||
# "U64": torch.uint64,
|
||
"I64": torch.int64,
|
||
# "U32": torch.uint32,
|
||
"I32": torch.int32,
|
||
# "U16": torch.uint16,
|
||
"I16": torch.int16,
|
||
"U8": torch.uint8,
|
||
"I8": torch.int8,
|
||
"BOOL": torch.bool,
|
||
"F8_E4M3": torch.float8_e4m3fn,
|
||
"F8_E5M2": torch.float8_e5m2,
|
||
}
|
||
|
||
def numpy(self) -> gguf.LazyNumpyTensor:
|
||
dtype = self._dtype_map[self.dtype]
|
||
return gguf.LazyNumpyTensor(
|
||
meta=gguf.LazyNumpyTensor.meta_with_dtype_and_shape(dtype, self.shape),
|
||
args=(self,),
|
||
func=(lambda s: s.numpy())
|
||
)
|
||
|
||
@classmethod
|
||
def meta_with_dtype_and_shape(cls, dtype: torch.dtype, shape: tuple[int, ...]) -> Tensor:
|
||
return torch.empty(size=shape, dtype=dtype, device="meta")
|
||
|
||
@classmethod
|
||
def from_safetensors_slice(cls, st_slice: Any) -> Tensor:
|
||
dtype = cls._dtype_str_map[st_slice.get_dtype()]
|
||
shape: tuple[int, ...] = tuple(st_slice.get_shape())
|
||
lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(st_slice,), func=lambda s: s[:])
|
||
return cast(torch.Tensor, lazy)
|
||
|
||
@classmethod
|
||
def __torch_function__(cls, func, types, args=(), kwargs=None):
|
||
del types # unused
|
||
|
||
if kwargs is None:
|
||
kwargs = {}
|
||
|
||
if func is torch.Tensor.numpy:
|
||
return args[0].numpy()
|
||
|
||
return cls._wrap_fn(func)(*args, **kwargs)
|
||
|
||
|
||
def parse_args() -> argparse.Namespace:
|
||
parser = argparse.ArgumentParser(
|
||
description="Convert a huggingface model to a GGML compatible file")
|
||
parser.add_argument(
|
||
"--vocab-only", action="store_true",
|
||
help="extract only the vocab",
|
||
)
|
||
parser.add_argument(
|
||
"--outfile", type=Path,
|
||
help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
|
||
)
|
||
parser.add_argument(
|
||
"--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "tq1_0", "tq2_0", "auto"], default="f16",
|
||
help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, tq1_0 or tq2_0 for ternary, and auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
|
||
)
|
||
parser.add_argument(
|
||
"--bigendian", action="store_true",
|
||
help="model is executed on big endian machine",
|
||
)
|
||
parser.add_argument(
|
||
"model", type=Path,
|
||
help="directory containing model file",
|
||
)
|
||
parser.add_argument(
|
||
"--use-temp-file", action="store_true",
|
||
help="use the tempfile library while processing (helpful when running out of memory, process killed)",
|
||
)
|
||
parser.add_argument(
|
||
"--no-lazy", action="store_true",
|
||
help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)",
|
||
)
|
||
parser.add_argument(
|
||
"--model-name", type=str, default=None,
|
||
help="name of the model",
|
||
)
|
||
parser.add_argument(
|
||
"--verbose", action="store_true",
|
||
help="increase output verbosity",
|
||
)
|
||
parser.add_argument(
|
||
"--split-max-tensors", type=int, default=0,
|
||
help="max tensors in each split",
|
||
)
|
||
parser.add_argument(
|
||
"--split-max-size", type=str, default="0",
|
||
help="max size per split N(M|G)",
|
||
)
|
||
parser.add_argument(
|
||
"--dry-run", action="store_true",
|
||
help="only print out a split plan and exit, without writing any new files",
|
||
)
|
||
parser.add_argument(
|
||
"--no-tensor-first-split", action="store_true",
|
||
help="do not add tensors to the first split (disabled by default)"
|
||
)
|
||
parser.add_argument(
|
||
"--metadata", type=Path,
|
||
help="Specify the path for an authorship metadata override file"
|
||
)
|
||
|
||
return parser.parse_args()
|
||
|
||
|
||
def split_str_to_n_bytes(split_str: str) -> int:
|
||
if split_str.endswith("K"):
|
||
n = int(split_str[:-1]) * 1000
|
||
elif split_str.endswith("M"):
|
||
n = int(split_str[:-1]) * 1000 * 1000
|
||
elif split_str.endswith("G"):
|
||
n = int(split_str[:-1]) * 1000 * 1000 * 1000
|
||
elif split_str.isnumeric():
|
||
n = int(split_str)
|
||
else:
|
||
raise ValueError(f"Invalid split size: {split_str}, must be a number, optionally followed by K, M, or G")
|
||
|
||
if n < 0:
|
||
raise ValueError(f"Invalid split size: {split_str}, must be positive")
|
||
|
||
return n
|
||
|
||
|
||
def main() -> None:
|
||
args = parse_args()
|
||
|
||
if args.verbose:
|
||
logging.basicConfig(level=logging.DEBUG)
|
||
else:
|
||
logging.basicConfig(level=logging.INFO)
|
||
|
||
dir_model = args.model
|
||
|
||
if not dir_model.is_dir():
|
||
logger.error(f'Error: {args.model} is not a directory')
|
||
sys.exit(1)
|
||
|
||
ftype_map: dict[str, gguf.LlamaFileType] = {
|
||
"f32": gguf.LlamaFileType.ALL_F32,
|
||
"f16": gguf.LlamaFileType.MOSTLY_F16,
|
||
"bf16": gguf.LlamaFileType.MOSTLY_BF16,
|
||
"q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
|
||
"tq1_0": gguf.LlamaFileType.MOSTLY_TQ1_0,
|
||
"tq2_0": gguf.LlamaFileType.MOSTLY_TQ2_0,
|
||
"auto": gguf.LlamaFileType.GUESSED,
|
||
}
|
||
|
||
is_split = args.split_max_tensors > 0 or args.split_max_size != "0"
|
||
if args.use_temp_file and is_split:
|
||
logger.error("Error: Cannot use temp file when splitting")
|
||
sys.exit(1)
|
||
|
||
if args.outfile is not None:
|
||
fname_out = args.outfile
|
||
else:
|
||
fname_out = dir_model
|
||
|
||
logger.info(f"Loading model: {dir_model.name}")
|
||
|
||
hparams = Model.load_hparams(dir_model)
|
||
|
||
with torch.inference_mode():
|
||
output_type = ftype_map[args.outtype]
|
||
model_architecture = hparams["architectures"][0]
|
||
|
||
try:
|
||
model_class = Model.from_model_architecture(model_architecture)
|
||
except NotImplementedError:
|
||
logger.error(f"Model {model_architecture} is not supported")
|
||
sys.exit(1)
|
||
|
||
model_instance = model_class(dir_model=dir_model, ftype=output_type, fname_out=fname_out,
|
||
is_big_endian=args.bigendian, use_temp_file=args.use_temp_file,
|
||
eager=args.no_lazy,
|
||
metadata_override=args.metadata, model_name=args.model_name,
|
||
split_max_tensors=args.split_max_tensors,
|
||
split_max_size=split_str_to_n_bytes(args.split_max_size), dry_run=args.dry_run,
|
||
small_first_shard=args.no_tensor_first_split)
|
||
|
||
if args.vocab_only:
|
||
logger.info("Exporting model vocab...")
|
||
model_instance.write_vocab()
|
||
logger.info(f"Model vocab successfully exported to {model_instance.fname_out}")
|
||
else:
|
||
logger.info("Exporting model...")
|
||
model_instance.write()
|
||
out_path = f"{model_instance.fname_out.parent}{os.sep}" if is_split else model_instance.fname_out
|
||
logger.info(f"Model successfully exported to {out_path}")
|
||
|
||
|
||
if __name__ == '__main__':
|
||
main()
|