llama.cpp/examples/server/server.cpp
Xuan Son Nguyen bfe76d4a17
common : move arg parser code to arg.cpp (#9388)
* common : move arg parser to arg.cpp

* better categorize args

* add cmake

* missing climits

* missing cstdarg

* common : more explicit includes

* fix build

* refactor gpt_params_parse

* update server readme

* fix test

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-09-09 23:36:09 +02:00

3281 lines
128 KiB
C++

#include "utils.hpp"
#include "arg.h"
#include "common.h"
#include "sampling.h"
#include "json-schema-to-grammar.h"
#include "llama.h"
// Change JSON_ASSERT from assert() to GGML_ASSERT:
#define JSON_ASSERT GGML_ASSERT
#include "json.hpp"
// mime type for sending response
#define MIMETYPE_JSON "application/json; charset=utf-8"
// auto generated files (update with ./deps.sh)
#include "colorthemes.css.hpp"
#include "style.css.hpp"
#include "theme-beeninorder.css.hpp"
#include "theme-ketivah.css.hpp"
#include "theme-mangotango.css.hpp"
#include "theme-playground.css.hpp"
#include "theme-polarnight.css.hpp"
#include "theme-snowstorm.css.hpp"
#include "index.html.hpp"
#include "index-new.html.hpp"
#include "index.js.hpp"
#include "completion.js.hpp"
#include "system-prompts.js.hpp"
#include "prompt-formats.js.hpp"
#include "json-schema-to-grammar.mjs.hpp"
#include <atomic>
#include <chrono>
#include <condition_variable>
#include <cstddef>
#include <mutex>
#include <thread>
#include <signal.h>
#include <memory>
#include <unordered_set>
#include <unordered_map>
#include <deque>
using json = nlohmann::ordered_json;
bool server_verbose = false;
bool server_log_json = true;
enum stop_type {
STOP_TYPE_FULL,
STOP_TYPE_PARTIAL,
};
// state diagram: https://github.com/ggerganov/llama.cpp/pull/9283
enum slot_state {
SLOT_STATE_IDLE,
SLOT_STATE_PROCESSING_PROMPT,
SLOT_STATE_DONE_PROMPT,
SLOT_STATE_GENERATING,
};
enum server_state {
SERVER_STATE_LOADING_MODEL, // Server is starting up, model not fully loaded yet
SERVER_STATE_READY, // Server is ready and model is loaded
};
enum server_task_type {
SERVER_TASK_TYPE_COMPLETION,
SERVER_TASK_TYPE_CANCEL,
SERVER_TASK_TYPE_NEXT_RESPONSE,
SERVER_TASK_TYPE_METRICS,
SERVER_TASK_TYPE_SLOT_SAVE,
SERVER_TASK_TYPE_SLOT_RESTORE,
SERVER_TASK_TYPE_SLOT_ERASE,
SERVER_TASK_TYPE_SET_LORA,
};
enum server_task_cmpl_type {
SERVER_TASK_CMPL_TYPE_NORMAL,
SERVER_TASK_CMPL_TYPE_EMBEDDING,
SERVER_TASK_CMPL_TYPE_INFILL,
};
struct server_task {
int id = -1; // to be filled by server_queue
int id_target = -1; // used by SERVER_TASK_TYPE_CANCEL
server_task_type type;
json data;
server_task_cmpl_type cmpl_type = SERVER_TASK_CMPL_TYPE_NORMAL;
// utility function
static std::unordered_set<int> get_list_id(const std::vector<server_task> & tasks) {
std::unordered_set<int> ids(tasks.size());
for (size_t i = 0; i < tasks.size(); i++) {
ids.insert(tasks[i].id);
}
return ids;
}
};
struct server_task_result {
int id = -1;
json data;
bool stop;
bool error;
};
struct slot_params {
bool stream = true;
bool cache_prompt = false; // remember the prompt to avoid reprocessing all prompt
int32_t n_keep = 0; // number of tokens to keep from initial prompt
int32_t n_discard = 0; // number of tokens after n_keep that may be discarded when shifting context, 0 defaults to half
int32_t n_predict = -1; // new tokens to predict
std::vector<std::string> antiprompt;
json input_prefix;
json input_suffix;
};
struct server_slot {
int id;
int id_task = -1;
// the index relative to completion multi-task request
size_t index = 0;
struct slot_params params;
slot_state state = SLOT_STATE_IDLE;
// used to determine the slot that has been used the longest
int64_t t_last_used = -1;
// generation props
int32_t n_ctx = 0; // context size per slot
int32_t n_past = 0;
int32_t n_decoded = 0;
int32_t n_remaining = -1;
int32_t i_batch = -1;
int32_t n_predict = -1; // TODO: disambiguate from params.n_predict
int32_t n_prompt_tokens = 0;
int32_t n_prompt_tokens_processed = 0;
json prompt; // can be either a string, array of strings or array of token ids
// when a task is submitted, we first tokenize the prompt and store it here
std::vector<llama_token> prompt_tokens;
std::string generated_text;
std::vector<llama_token> cache_tokens;
std::vector<completion_token_output> generated_token_probs;
server_task_cmpl_type cmpl_type = SERVER_TASK_CMPL_TYPE_NORMAL;
bool has_next_token = true;
bool truncated = false;
bool stopped_eos = false;
bool stopped_word = false;
bool stopped_limit = false;
bool oaicompat = false;
std::string oaicompat_model;
std::string stopping_word;
// sampling
json json_schema;
struct gpt_sampler_params sparams;
struct gpt_sampler * smpl = nullptr;
llama_token sampled;
int32_t ga_i = 0; // group-attention state
int32_t ga_n = 1; // group-attention factor
int32_t ga_w = 512; // group-attention width
int32_t n_past_se = 0; // self-extend
// stats
size_t n_sent_text = 0; // number of sent text character
size_t n_sent_token_probs = 0;
int64_t t_start_process_prompt;
int64_t t_start_generation;
double t_prompt_processing; // ms
double t_token_generation; // ms
std::function<void(int)> callback_on_release;
void reset() {
n_prompt_tokens = 0;
generated_text = "";
truncated = false;
stopped_eos = false;
stopped_word = false;
stopped_limit = false;
stopping_word = "";
n_past = 0;
n_sent_text = 0;
n_sent_token_probs = 0;
cmpl_type = SERVER_TASK_CMPL_TYPE_NORMAL;
ga_i = 0;
n_past_se = 0;
generated_token_probs.clear();
}
bool has_budget(gpt_params &global_params) {
if (params.n_predict == -1 && global_params.n_predict == -1) {
return true; // limitless
}
n_remaining = -1;
if (params.n_predict != -1) {
n_remaining = params.n_predict - n_decoded;
} else if (global_params.n_predict != -1) {
n_remaining = global_params.n_predict - n_decoded;
}
return n_remaining > 0; // no budget
}
bool is_processing() const {
return state != SLOT_STATE_IDLE;
}
void add_token_string(const completion_token_output & token) {
if (!is_processing()) {
return;
}
generated_token_probs.push_back(token);
}
void release() {
if (is_processing()) {
t_token_generation = (ggml_time_us() - t_start_generation) / 1e3;
state = SLOT_STATE_IDLE;
LOG_INFO("slot released", {
{"id_slot", id},
{"id_task", id_task},
{"n_past", n_past},
{"truncated", truncated},
});
callback_on_release(id);
}
}
json get_formated_timings() const {
return json {
{"prompt_n", n_prompt_tokens_processed},
{"prompt_ms", t_prompt_processing},
{"prompt_per_token_ms", t_prompt_processing / n_prompt_tokens_processed},
{"prompt_per_second", 1e3 / t_prompt_processing * n_prompt_tokens_processed},
{"predicted_n", n_decoded},
{"predicted_ms", t_token_generation},
{"predicted_per_token_ms", t_token_generation / n_decoded},
{"predicted_per_second", 1e3 / t_token_generation * n_decoded},
};
}
size_t find_stopping_strings(const std::string & text, const size_t last_token_size, const stop_type type) {
size_t stop_pos = std::string::npos;
for (const std::string & word : params.antiprompt) {
size_t pos;
if (type == STOP_TYPE_FULL) {
const size_t tmp = word.size() + last_token_size;
const size_t from_pos = text.size() > tmp ? text.size() - tmp : 0;
pos = text.find(word, from_pos);
} else {
pos = find_partial_stop_string(word, text);
}
if (pos != std::string::npos && (stop_pos == std::string::npos || pos < stop_pos)) {
if (type == STOP_TYPE_FULL) {
stopped_word = true;
stopping_word = word;
has_next_token = false;
}
stop_pos = pos;
}
}
return stop_pos;
}
void print_timings() const {
char buffer[512];
double t_token = t_prompt_processing / n_prompt_tokens_processed;
double n_tokens_second = 1e3 / t_prompt_processing * n_prompt_tokens_processed;
snprintf(buffer, 512, "prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)",
t_prompt_processing, n_prompt_tokens_processed,
t_token, n_tokens_second);
LOG_INFO(buffer, {
{"id_slot", id},
{"id_task", id_task},
{"t_prompt_processing", t_prompt_processing},
{"n_prompt_tokens_processed", n_prompt_tokens_processed},
{"t_token", t_token},
{"n_tokens_second", n_tokens_second},
});
t_token = t_token_generation / n_decoded;
n_tokens_second = 1e3 / t_token_generation * n_decoded;
snprintf(buffer, 512, "generation eval time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)",
t_token_generation, n_decoded,
t_token, n_tokens_second);
LOG_INFO(buffer, {
{"id_slot", id},
{"id_task", id_task},
{"t_token_generation", t_token_generation},
{"n_decoded", n_decoded},
{"t_token", t_token},
{"n_tokens_second", n_tokens_second},
});
snprintf(buffer, 512, " total time = %10.2f ms", t_prompt_processing + t_token_generation);
LOG_INFO(buffer, {
{"id_slot", id},
{"id_task", id_task},
{"t_prompt_processing", t_prompt_processing},
{"t_token_generation", t_token_generation},
{"t_total", t_prompt_processing + t_token_generation},
});
}
};
struct server_metrics {
int64_t t_start = 0;
uint64_t n_prompt_tokens_processed_total = 0;
uint64_t t_prompt_processing_total = 0;
uint64_t n_tokens_predicted_total = 0;
uint64_t t_tokens_generation_total = 0;
uint64_t n_prompt_tokens_processed = 0;
uint64_t t_prompt_processing = 0;
uint64_t n_tokens_predicted = 0;
uint64_t t_tokens_generation = 0;
uint64_t n_decode_total = 0;
uint64_t n_busy_slots_total = 0;
void init() {
t_start = ggml_time_us();
}
void on_prompt_eval(const server_slot & slot) {
n_prompt_tokens_processed_total += slot.n_prompt_tokens_processed;
n_prompt_tokens_processed += slot.n_prompt_tokens_processed;
t_prompt_processing += slot.t_prompt_processing;
t_prompt_processing_total += slot.t_prompt_processing;
}
void on_prediction(const server_slot & slot) {
n_tokens_predicted_total += slot.n_decoded;
n_tokens_predicted += slot.n_decoded;
t_tokens_generation += slot.t_token_generation;
t_tokens_generation_total += slot.t_token_generation;
}
void on_decoded(const std::vector<server_slot> & slots) {
n_decode_total++;
for (const auto & slot : slots) {
if (slot.is_processing()) {
n_busy_slots_total++;
}
}
}
void reset_bucket() {
n_prompt_tokens_processed = 0;
t_prompt_processing = 0;
n_tokens_predicted = 0;
t_tokens_generation = 0;
}
};
struct server_queue {
int id = 0;
bool running;
// queues
std::deque<server_task> queue_tasks;
std::deque<server_task> queue_tasks_deferred;
std::mutex mutex_tasks;
std::condition_variable condition_tasks;
// callback functions
std::function<void(server_task&)> callback_new_task;
std::function<void(void)> callback_update_slots;
// Add a new task to the end of the queue
int post(server_task task, bool front = false) {
std::unique_lock<std::mutex> lock(mutex_tasks);
if (task.id == -1) {
task.id = id++;
LOG_VERBOSE("new task id", {{"new_id", task.id}});
}
if (front) {
queue_tasks.push_front(std::move(task));
} else {
queue_tasks.push_back(std::move(task));
}
condition_tasks.notify_one();
return task.id;
}
// multi-task version of post()
int post(std::vector<server_task> & tasks, bool front = false) {
std::unique_lock<std::mutex> lock(mutex_tasks);
for (auto & task : tasks) {
if (task.id == -1) {
task.id = id++;
LOG_VERBOSE("new task id", {{"new_id", task.id}});
}
if (front) {
queue_tasks.push_front(std::move(task));
} else {
queue_tasks.push_back(std::move(task));
}
}
condition_tasks.notify_one();
return 0;
}
// Add a new task, but defer until one slot is available
void defer(server_task task) {
std::unique_lock<std::mutex> lock(mutex_tasks);
queue_tasks_deferred.push_back(std::move(task));
condition_tasks.notify_one();
}
// Get the next id for creating a new task
int get_new_id() {
std::unique_lock<std::mutex> lock(mutex_tasks);
int new_id = id++;
LOG_VERBOSE("new task id", {{"new_id", new_id}});
return new_id;
}
// Register function to process a new task
void on_new_task(std::function<void(server_task &)> callback) {
callback_new_task = std::move(callback);
}
// Register the function to be called when all slots data is ready to be processed
void on_update_slots(std::function<void(void)> callback) {
callback_update_slots = std::move(callback);
}
// Call when the state of one slot is changed, it will move one task from deferred to main queue
void pop_deferred_task() {
std::unique_lock<std::mutex> lock(mutex_tasks);
if (!queue_tasks_deferred.empty()) {
queue_tasks.emplace_back(std::move(queue_tasks_deferred.front()));
queue_tasks_deferred.pop_front();
}
condition_tasks.notify_one();
}
// end the start_loop routine
void terminate() {
std::unique_lock<std::mutex> lock(mutex_tasks);
running = false;
condition_tasks.notify_all();
}
/**
* Main loop consists of these steps:
* - Wait until a new task arrives
* - Process the task (i.e. maybe copy data into slot)
* - Check if multitask is finished
* - Update all slots
*/
void start_loop() {
running = true;
while (true) {
LOG_VERBOSE("new task may arrive", {});
while (true) {
std::unique_lock<std::mutex> lock(mutex_tasks);
if (queue_tasks.empty()) {
lock.unlock();
break;
}
server_task task = queue_tasks.front();
queue_tasks.pop_front();
lock.unlock();
LOG_VERBOSE("callback_new_task", {{"id_task", task.id}});
callback_new_task(task);
}
// all tasks in the current loop is processed, slots data is now ready
LOG_VERBOSE("callback_update_slots", {});
callback_update_slots();
LOG_VERBOSE("wait for new task", {});
{
std::unique_lock<std::mutex> lock(mutex_tasks);
if (queue_tasks.empty()) {
if (!running) {
LOG_VERBOSE("ending start_loop", {});
return;
}
condition_tasks.wait(lock, [&]{
return (!queue_tasks.empty() || !running);
});
}
}
}
}
};
struct server_response {
// for keeping track of all tasks waiting for the result
std::unordered_set<int> waiting_task_ids;
// the main result queue
std::vector<server_task_result> queue_results;
std::mutex mutex_results;
std::condition_variable condition_results;
// add the id_task to the list of tasks waiting for response
void add_waiting_task_id(int id_task) {
LOG_VERBOSE("waiting for task id", {{"id_task", id_task}});
std::unique_lock<std::mutex> lock(mutex_results);
waiting_task_ids.insert(id_task);
}
void add_waiting_tasks(const std::vector<server_task> & tasks) {
for (const auto & t : tasks) {
add_waiting_task_id(t.id);
}
}
// when the request is finished, we can remove task associated with it
void remove_waiting_task_id(int id_task) {
LOG_VERBOSE("remove waiting for task id", {{"id_task", id_task}});
std::unique_lock<std::mutex> lock(mutex_results);
waiting_task_ids.erase(id_task);
}
// This function blocks the thread until there is a response for one of the id_tasks
server_task_result recv(const std::unordered_set<int> & id_tasks) {
while (true) {
std::unique_lock<std::mutex> lock(mutex_results);
condition_results.wait(lock, [&]{
return !queue_results.empty();
});
for (int i = 0; i < (int) queue_results.size(); i++) {
if (id_tasks.find(queue_results[i].id) != id_tasks.end()) {
server_task_result res = queue_results[i];
queue_results.erase(queue_results.begin() + i);
return res;
}
}
}
// should never reach here
}
// single-task version of recv()
server_task_result recv(int id_task) {
std::unordered_set<int> id_tasks = {id_task};
return recv(id_tasks);
}
// Send a new result to a waiting id_task
void send(server_task_result & result) {
LOG_VERBOSE("send new result", {{"id_task", result.id}});
std::unique_lock<std::mutex> lock(mutex_results);
for (const auto & id_task : waiting_task_ids) {
if (result.id == id_task) {
LOG_VERBOSE("queue_results.push_back", {{"id_task", id_task}});
queue_results.push_back(std::move(result));
condition_results.notify_all();
return;
}
}
}
};
struct server_context {
llama_model * model = nullptr;
llama_context * ctx = nullptr;
std::vector<llama_lora_adapter_container> lora_adapters;
gpt_params params;
llama_batch batch = {};
bool clean_kv_cache = true;
bool add_bos_token = true;
bool has_eos_token = false;
int32_t n_ctx; // total context for all clients / slots
// system prompt
bool system_need_update = false;
std::string system_prompt;
std::vector<llama_token> system_tokens;
// slots / clients
std::vector<server_slot> slots;
json default_generation_settings_for_props;
server_queue queue_tasks;
server_response queue_results;
server_metrics metrics;
// Necessary similarity of prompt for slot selection
float slot_prompt_similarity = 0.0f;
~server_context() {
if (ctx) {
llama_free(ctx);
ctx = nullptr;
}
if (model) {
llama_free_model(model);
model = nullptr;
}
// Clear any sampling context
for (server_slot & slot : slots) {
if (slot.smpl != nullptr) {
gpt_sampler_free(slot.smpl);
}
}
llama_batch_free(batch);
}
bool load_model(const gpt_params & params_) {
params = params_;
// dedicate one sequence to the system prompt
params.n_parallel += 1;
llama_init_result llama_init = llama_init_from_gpt_params(params);
model = llama_init.model;
ctx = llama_init.context;
lora_adapters = llama_init.lora_adapters;
params.n_parallel -= 1; // but be sneaky about it
if (model == nullptr) {
LOG_ERROR("unable to load model", {{"model", params.model}});
return false;
}
n_ctx = llama_n_ctx(ctx);
add_bos_token = llama_add_bos_token(model);
has_eos_token = !llama_add_eos_token(model);
return true;
}
bool validate_model_chat_template() const {
llama_chat_message chat[] = {{"user", "test"}};
const int res = llama_chat_apply_template(model, nullptr, chat, 1, true, nullptr, 0);
return res > 0;
}
void init() {
const int32_t n_ctx_slot = n_ctx / params.n_parallel;
LOG_INFO("initializing slots", {{"n_slots", params.n_parallel}});
for (int i = 0; i < params.n_parallel; i++) {
server_slot slot;
slot.id = i;
slot.n_ctx = n_ctx_slot;
slot.n_predict = params.n_predict;
LOG_INFO("new slot", {
{"id_slot", slot.id},
{"n_ctx_slot", slot.n_ctx}
});
const int ga_n = params.grp_attn_n;
const int ga_w = params.grp_attn_w;
if (ga_n != 1) {
GGML_ASSERT(ga_n > 0 && "ga_n must be positive"); // NOLINT
GGML_ASSERT(ga_w % ga_n == 0 && "ga_w must be a multiple of ga_n"); // NOLINT
//GGML_ASSERT(n_ctx_train % ga_w == 0 && "n_ctx_train must be a multiple of ga_w"); // NOLINT
//GGML_ASSERT(n_ctx >= n_ctx_train * ga_n && "n_ctx must be at least n_ctx_train * ga_n"); // NOLINT
LOG_INFO("slot self-extend", {
{"id_slot", slot.id},
{"ga_n", ga_n},
{"ga_w", ga_w}
});
}
slot.ga_i = 0;
slot.ga_n = ga_n;
slot.ga_w = ga_w;
slot.sparams = params.sparams;
slot.callback_on_release = [this](int) {
queue_tasks.pop_deferred_task();
};
slot.reset();
slots.push_back(slot);
}
default_generation_settings_for_props = get_formated_generation(slots.front());
default_generation_settings_for_props["seed"] = -1;
// the update_slots() logic will always submit a maximum of n_batch or n_parallel tokens
// note that n_batch can be > n_ctx (e.g. for non-causal attention models such as BERT where the KV cache is not used)
{
const int32_t n_batch = llama_n_batch(ctx);
// only a single seq_id per token is needed
batch = llama_batch_init(std::max(n_batch, params.n_parallel), 0, 1);
}
metrics.init();
}
std::vector<llama_token> tokenize(const json & json_prompt, bool add_special) const {
// TODO: currently, we tokenize using special tokens by default
// this is not always correct (see https://github.com/ggerganov/llama.cpp/pull/4160#issuecomment-1824826216)
// but it's better compared to completely ignoring ChatML and other chat templates
const bool TMP_FORCE_SPECIAL = true;
// If `add_bos` is true, we only add BOS, when json_prompt is a string,
// or the first element of the json_prompt array is a string.
std::vector<llama_token> prompt_tokens;
if (json_prompt.is_array()) {
bool first = true;
for (const auto & p : json_prompt) {
if (p.is_string()) {
auto s = p.template get<std::string>();
std::vector<llama_token> p;
if (first) {
p = ::llama_tokenize(ctx, s, add_special, TMP_FORCE_SPECIAL);
first = false;
} else {
p = ::llama_tokenize(ctx, s, false, TMP_FORCE_SPECIAL);
}
prompt_tokens.insert(prompt_tokens.end(), p.begin(), p.end());
} else {
if (first) {
first = false;
}
prompt_tokens.push_back(p.template get<llama_token>());
}
}
} else {
auto s = json_prompt.template get<std::string>();
prompt_tokens = ::llama_tokenize(ctx, s, add_special, TMP_FORCE_SPECIAL);
}
return prompt_tokens;
}
server_slot * get_slot_by_id(int id) {
for (server_slot & slot : slots) {
if (slot.id == id) {
return &slot;
}
}
return nullptr;
}
server_slot * get_available_slot(const std::string & prompt) {
server_slot * ret = nullptr;
// find the slot that has at least n% prompt similarity
if (ret == nullptr && slot_prompt_similarity != 0.0f && !prompt.empty()) {
int max_lcp_len = 0;
float similarity = 0;
for (server_slot & slot : slots) {
// skip the slot if it is not available
if (slot.is_processing()) {
continue;
}
// skip the slot if it does not contains prompt
if (!slot.prompt.is_string()) {
continue;
}
// current slot's prompt
std::string slot_prompt = slot.prompt.get<std::string>();
// length of the current slot's prompt
int slot_prompt_len = slot_prompt.size();
// length of the Longest Common Prefix between the current slot's prompt and the input prompt
int lcp_len = common_part(slot_prompt, prompt);
// fraction of the common substring length compared to the current slot's prompt length
similarity = static_cast<float>(lcp_len) / slot_prompt_len;
// select the current slot if the criteria match
if (lcp_len > max_lcp_len && similarity > slot_prompt_similarity) {
max_lcp_len = lcp_len;
ret = &slot;
}
}
if (ret != nullptr) {
LOG_VERBOSE("selected slot by lcp similarity", {
{"id_slot", ret->id},
{"max_lcp_len", max_lcp_len},
{"similarity", similarity},
});
}
}
// find the slot that has been least recently used
if (ret == nullptr) {
int64_t t_last = ggml_time_us();
for (server_slot & slot : slots) {
// skip the slot if it is not available
if (slot.is_processing()) {
continue;
}
// select the current slot if the criteria match
if (slot.t_last_used < t_last) {
t_last = slot.t_last_used;
ret = &slot;
}
}
if (ret != nullptr) {
LOG_VERBOSE("selected slot by lru", {
{"id_slot", ret->id},
{"t_last", t_last},
});
}
}
return ret;
}
bool launch_slot_with_task(server_slot & slot, const server_task & task) {
slot_params default_params;
// Sampling parameter defaults are loaded from the global server context (but individual requests can still override them)
auto default_sparams = params.sparams;
const auto & data = task.data;
if (data.count("__oaicompat") != 0) {
slot.oaicompat = true;
slot.oaicompat_model = json_value(data, "model", std::string(DEFAULT_OAICOMPAT_MODEL));
} else {
slot.oaicompat = false;
slot.oaicompat_model = "";
}
slot.params.stream = json_value(data, "stream", false);
slot.params.cache_prompt = json_value(data, "cache_prompt", false);
slot.params.n_predict = json_value(data, "n_predict", json_value(data, "max_tokens", default_params.n_predict));
slot.sparams.top_k = json_value(data, "top_k", default_sparams.top_k);
slot.sparams.top_p = json_value(data, "top_p", default_sparams.top_p);
slot.sparams.min_p = json_value(data, "min_p", default_sparams.min_p);
slot.sparams.tfs_z = json_value(data, "tfs_z", default_sparams.tfs_z);
slot.sparams.typ_p = json_value(data, "typical_p", default_sparams.typ_p);
slot.sparams.temp = json_value(data, "temperature", default_sparams.temp);
slot.sparams.dynatemp_range = json_value(data, "dynatemp_range", default_sparams.dynatemp_range);
slot.sparams.dynatemp_exponent = json_value(data, "dynatemp_exponent", default_sparams.dynatemp_exponent);
slot.sparams.penalty_last_n = json_value(data, "repeat_last_n", default_sparams.penalty_last_n);
slot.sparams.penalty_repeat = json_value(data, "repeat_penalty", default_sparams.penalty_repeat);
slot.sparams.penalty_freq = json_value(data, "frequency_penalty", default_sparams.penalty_freq);
slot.sparams.penalty_present = json_value(data, "presence_penalty", default_sparams.penalty_present);
slot.sparams.mirostat = json_value(data, "mirostat", default_sparams.mirostat);
slot.sparams.mirostat_tau = json_value(data, "mirostat_tau", default_sparams.mirostat_tau);
slot.sparams.mirostat_eta = json_value(data, "mirostat_eta", default_sparams.mirostat_eta);
slot.sparams.penalize_nl = json_value(data, "penalize_nl", default_sparams.penalize_nl);
slot.params.n_keep = json_value(data, "n_keep", slot.params.n_keep);
slot.params.n_discard = json_value(data, "n_discard", default_params.n_discard);
slot.sparams.seed = json_value(data, "seed", default_sparams.seed);
slot.sparams.n_probs = json_value(data, "n_probs", default_sparams.n_probs);
slot.sparams.min_keep = json_value(data, "min_keep", default_sparams.min_keep);
// process "json_schema" and "grammar"
if (data.contains("json_schema") && !data.at("json_schema").is_null() && data.contains("grammar") && !data.at("grammar").is_null()) {
send_error(task, "Either \"json_schema\" or \"grammar\" can be specified, but not both", ERROR_TYPE_INVALID_REQUEST);
return false;
}
if (data.contains("json_schema") && !data.contains("grammar")) {
try {
auto schema = json_value(data, "json_schema", json::object());
slot.sparams.grammar = json_schema_to_grammar(schema);
} catch (const std::exception & e) {
send_error(task, std::string("\"json_schema\": ") + e.what(), ERROR_TYPE_INVALID_REQUEST);
return false;
}
} else {
slot.sparams.grammar = json_value(data, "grammar", default_sparams.grammar);
}
if (slot.params.cache_prompt && slot.ga_n != 1) {
LOG_WARNING("cache_prompt is not supported with group-attention", {});
slot.params.cache_prompt = false;
}
if (slot.n_predict > 0 && slot.params.n_predict > slot.n_predict) {
// Might be better to reject the request with a 400 ?
LOG_WARNING("Max tokens to predict exceeds server configuration", {
{"params.n_predict", slot.params.n_predict},
{"slot.n_predict", slot.n_predict},
});
slot.params.n_predict = slot.n_predict;
}
// infill
slot.params.input_prefix = json_value(data, "input_prefix", default_params.input_prefix);
slot.params.input_suffix = json_value(data, "input_suffix", default_params.input_suffix);
// get prompt
if (task.cmpl_type != SERVER_TASK_CMPL_TYPE_INFILL) {
const auto & prompt = data.find("prompt");
if (prompt == data.end()) {
send_error(task, "\"prompt\" must be provided", ERROR_TYPE_INVALID_REQUEST);
return false;
}
if ((prompt->is_string()) ||
(prompt->is_array() && prompt->size() == 1 && prompt->at(0).is_string()) ||
(prompt->is_array() && !prompt->empty() && prompt->at(0).is_number_integer())) {
slot.prompt = *prompt;
} else if (prompt->is_array() && prompt->size() == 1 && prompt->at(0).is_array()) {
slot.prompt = prompt->at(0);
} else {
send_error(task, "\"prompt\" must be a string or an array of integers", ERROR_TYPE_INVALID_REQUEST);
return false;
}
}
{
slot.sparams.logit_bias.clear();
if (json_value(data, "ignore_eos", false) && has_eos_token) {
slot.sparams.logit_bias.push_back({llama_token_eos(model), -INFINITY});
}
const auto & logit_bias = data.find("logit_bias");
if (logit_bias != data.end() && logit_bias->is_array()) {
const int n_vocab = llama_n_vocab(model);
for (const auto & el : *logit_bias) {
// TODO: we may want to throw errors here, in case "el" is incorrect
if (el.is_array() && el.size() == 2) {
float bias;
if (el[1].is_number()) {
bias = el[1].get<float>();
} else if (el[1].is_boolean() && !el[1].get<bool>()) {
bias = -INFINITY;
} else {
continue;
}
if (el[0].is_number_integer()) {
llama_token tok = el[0].get<llama_token>();
if (tok >= 0 && tok < n_vocab) {
slot.sparams.logit_bias.push_back({tok, bias});
}
} else if (el[0].is_string()) {
auto toks = llama_tokenize(model, el[0].get<std::string>(), false);
for (auto tok : toks) {
slot.sparams.logit_bias.push_back({tok, bias});
}
}
}
}
}
}
{
slot.params.antiprompt.clear();
const auto & stop = data.find("stop");
if (stop != data.end() && stop->is_array()) {
for (const auto & word : *stop) {
if (!word.empty()) {
slot.params.antiprompt.push_back(word);
}
}
}
}
{
const auto & samplers = data.find("samplers");
if (samplers != data.end() && samplers->is_array()) {
std::vector<std::string> sampler_names;
for (const auto & name : *samplers) {
if (name.is_string()) {
sampler_names.emplace_back(name);
}
}
slot.sparams.samplers = gpt_sampler_types_from_names(sampler_names, false);
} else {
slot.sparams.samplers = default_sparams.samplers;
}
}
{
if (slot.smpl != nullptr) {
gpt_sampler_free(slot.smpl);
}
slot.smpl = gpt_sampler_init(model, slot.sparams);
if (slot.smpl == nullptr) {
// for now, the only error that may happen here is invalid grammar
send_error(task, "Failed to parse grammar", ERROR_TYPE_INVALID_REQUEST);
return false;
}
}
slot.state = SLOT_STATE_PROCESSING_PROMPT;
slot.prompt_tokens.clear();
LOG_INFO("slot is processing task", {
{"id_slot", slot.id},
{"id_task", slot.id_task},
});
return true;
}
void kv_cache_clear() {
LOG_VERBOSE("clearing KV cache", {});
// clear the entire KV cache
llama_kv_cache_clear(ctx);
clean_kv_cache = false;
}
void system_prompt_update() {
LOG_VERBOSE("system prompt update", {
{"system_prompt", system_prompt},
});
kv_cache_clear();
system_tokens.clear();
if (!system_prompt.empty()) {
system_tokens = ::llama_tokenize(ctx, system_prompt, true);
const int32_t n_batch = llama_n_batch(ctx);
const int32_t n_tokens_prompt = system_tokens.size();
for (int32_t i = 0; i < n_tokens_prompt; i += n_batch) {
const int32_t n_tokens = std::min(n_batch, n_tokens_prompt - i);
llama_batch_clear(batch);
for (int32_t j = 0; j < n_tokens; ++j) {
llama_batch_add(batch, system_tokens[i + j], i + j, { 0 }, false);
}
if (llama_decode(ctx, batch) != 0) {
LOG_ERROR("llama_decode() failed", {});
return;
}
}
// assign the system KV cache to all parallel sequences
for (int32_t i = 1; i <= params.n_parallel; ++i) {
llama_kv_cache_seq_cp(ctx, 0, i, -1, -1);
}
}
system_need_update = false;
}
bool system_prompt_set(const std::string & sys_prompt) {
system_prompt = sys_prompt;
LOG_VERBOSE("system prompt process", {
{"system_prompt", system_prompt},
});
// release all slots
for (server_slot & slot : slots) {
slot.release();
}
system_need_update = true;
return true;
}
bool process_token(completion_token_output & result, server_slot & slot) {
// remember which tokens were sampled - used for repetition penalties during sampling
const std::string token_str = llama_token_to_piece(ctx, result.tok, params.special);
slot.sampled = result.tok;
// search stop word and delete it
slot.generated_text += token_str;
slot.has_next_token = true;
// check if there is incomplete UTF-8 character at the end
bool incomplete = false;
for (unsigned i = 1; i < 5 && i <= slot.generated_text.size(); ++i) {
unsigned char c = slot.generated_text[slot.generated_text.size() - i];
if ((c & 0xC0) == 0x80) {
// continuation byte: 10xxxxxx
continue;
}
if ((c & 0xE0) == 0xC0) {
// 2-byte character: 110xxxxx ...
incomplete = i < 2;
} else if ((c & 0xF0) == 0xE0) {
// 3-byte character: 1110xxxx ...
incomplete = i < 3;
} else if ((c & 0xF8) == 0xF0) {
// 4-byte character: 11110xxx ...
incomplete = i < 4;
}
// else 1-byte character or invalid byte
break;
}
if (!incomplete) {
size_t pos = std::min(slot.n_sent_text, slot.generated_text.size());
const std::string str_test = slot.generated_text.substr(pos);
bool is_stop_full = false;
size_t stop_pos = slot.find_stopping_strings(str_test, token_str.size(), STOP_TYPE_FULL);
if (stop_pos != std::string::npos) {
is_stop_full = true;
slot.generated_text.erase(
slot.generated_text.begin() + pos + stop_pos,
slot.generated_text.end());
pos = std::min(slot.n_sent_text, slot.generated_text.size());
} else {
is_stop_full = false;
stop_pos = slot.find_stopping_strings(str_test, token_str.size(), STOP_TYPE_PARTIAL);
}
// check if there is any token to predict
if (stop_pos == std::string::npos || (!slot.has_next_token && !is_stop_full && stop_pos > 0)) {
// no send the stop word in the response
result.text_to_send = slot.generated_text.substr(pos, std::string::npos);
slot.n_sent_text += result.text_to_send.size();
// add the token to slot queue and cache
}
slot.add_token_string(result);
if (slot.params.stream) {
send_partial_response(slot, result);
}
}
if (incomplete) {
slot.has_next_token = true;
}
// check the limits
if (slot.n_decoded > 0 && slot.has_next_token && !slot.has_budget(params)) {
slot.stopped_limit = true;
slot.has_next_token = false;
LOG_VERBOSE("stopped by limit", {
{"id_slot", slot.id},
{"id_task", slot.id_task},
{"n_decoded", slot.n_decoded},
{"n_predict", slot.params.n_predict},
});
}
if (llama_token_is_eog(model, result.tok)) {
slot.stopped_eos = true;
slot.has_next_token = false;
LOG_VERBOSE("eos token found", {});
}
auto n_ctx_train = llama_n_ctx_train(model);
if (slot.params.n_predict < 1 && slot.n_predict < 1 && slot.ga_n == 1
&& slot.n_prompt_tokens + slot.n_decoded >= n_ctx_train) {
LOG_WARNING("n_predict is not set and self-context extend is disabled."
" Limiting generated tokens to n_ctx_train to avoid EOS-less generation infinite loop", {
{ "id_slot", slot.id },
{ "params.n_predict", slot.params.n_predict },
{ "slot.n_prompt_tokens", slot.n_prompt_tokens },
{ "slot.n_decoded", slot.n_decoded },
{ "slot.n_predict", slot.n_predict },
{ "n_slots", params.n_parallel },
{ "slot.n_ctx", slot.n_ctx },
{ "n_ctx", n_ctx },
{ "n_ctx_train", n_ctx_train },
{ "ga_n", slot.ga_n },
});
slot.truncated = true;
slot.stopped_limit = true;
slot.has_next_token = false; // stop prediction
}
LOG_VERBOSE("next token", {
{"id_slot", slot.id},
{"id_task", slot.id_task},
{"token", result.tok},
{"token_text", tokens_to_output_formatted_string(ctx, result.tok)},
{"has_next_token", slot.has_next_token},
{"n_remain", slot.n_remaining},
{"n_decoded", slot.n_decoded},
{"stopped_eos", slot.stopped_eos},
{"stopped_word", slot.stopped_word},
{"stopped_limit", slot.stopped_limit},
{"stopping_word", slot.stopping_word},
});
return slot.has_next_token; // continue
}
json get_formated_generation(const server_slot & slot) const {
std::vector<std::string> samplers;
samplers.reserve(slot.sparams.samplers.size());
for (const auto & sampler : slot.sparams.samplers) {
samplers.emplace_back(gpt_sampler_type_to_str(sampler));
}
return json {
{"n_ctx", slot.n_ctx},
{"n_predict", slot.n_predict}, // Server configured n_predict
{"model", params.model_alias},
{"seed", slot.sparams.seed},
{"temperature", slot.sparams.temp},
{"dynatemp_range", slot.sparams.dynatemp_range},
{"dynatemp_exponent", slot.sparams.dynatemp_exponent},
{"top_k", slot.sparams.top_k},
{"top_p", slot.sparams.top_p},
{"min_p", slot.sparams.min_p},
{"tfs_z", slot.sparams.tfs_z},
{"typical_p", slot.sparams.typ_p},
{"repeat_last_n", slot.sparams.penalty_last_n},
{"repeat_penalty", slot.sparams.penalty_repeat},
{"presence_penalty", slot.sparams.penalty_present},
{"frequency_penalty", slot.sparams.penalty_freq},
{"mirostat", slot.sparams.mirostat},
{"mirostat_tau", slot.sparams.mirostat_tau},
{"mirostat_eta", slot.sparams.mirostat_eta},
{"penalize_nl", slot.sparams.penalize_nl},
{"stop", slot.params.antiprompt},
{"max_tokens", slot.params.n_predict}, // User configured n_predict
{"n_keep", slot.params.n_keep},
{"n_discard", slot.params.n_discard},
{"ignore_eos", slot.sparams.ignore_eos},
{"stream", slot.params.stream},
//{"logit_bias", slot.sparams.logit_bias},
{"n_probs", slot.sparams.n_probs},
{"min_keep", slot.sparams.min_keep},
{"grammar", slot.sparams.grammar},
{"samplers", samplers},
};
}
void send_error(const server_task & task, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
send_error(task.id, error, type);
}
void send_error(const server_slot & slot, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
send_error(slot.id_task, error, type);
}
void send_error(const int id_task, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
LOG_ERROR("task error", {
{"id_task", id_task},
{"error", error},
});
server_task_result res;
res.id = id_task;
res.stop = false;
res.error = true;
res.data = format_error_response(error, type);
queue_results.send(res);
}
void send_partial_response(server_slot & slot, completion_token_output tkn) {
server_task_result res;
res.id = slot.id_task;
res.error = false;
res.stop = false;
res.data = json {
{"content", tkn.text_to_send},
{"stop", false},
{"id_slot", slot.id},
{"multimodal", false},
{"index", slot.index},
};
if (slot.sparams.n_probs > 0) {
const std::vector<llama_token> to_send_toks = llama_tokenize(ctx, tkn.text_to_send, false);
const size_t probs_pos = std::min(slot.n_sent_token_probs, slot.generated_token_probs.size());
const size_t probs_stop_pos = std::min(slot.n_sent_token_probs + to_send_toks.size(), slot.generated_token_probs.size());
std::vector<completion_token_output> probs_output;
if (probs_pos < probs_stop_pos) {
probs_output = std::vector<completion_token_output>(
slot.generated_token_probs.begin() + probs_pos,
slot.generated_token_probs.begin() + probs_stop_pos);
}
slot.n_sent_token_probs = probs_stop_pos;
res.data["completion_probabilities"] = probs_vector_to_json(ctx, probs_output);
}
if (slot.oaicompat) {
res.data["oaicompat_token_ctr"] = slot.n_decoded;
res.data["model"] = slot.oaicompat_model;
}
queue_results.send(res);
}
void send_final_response(const server_slot & slot) {
server_task_result res;
res.id = slot.id_task;
res.error = false;
res.stop = true;
res.data = json {
{"content", !slot.params.stream ? slot.generated_text : ""},
{"id_slot", slot.id},
{"stop", true},
{"model", params.model_alias},
{"tokens_predicted", slot.n_decoded},
{"tokens_evaluated", slot.n_prompt_tokens},
{"generation_settings", get_formated_generation(slot)},
{"prompt", slot.prompt},
{"truncated", slot.truncated},
{"stopped_eos", slot.stopped_eos},
{"stopped_word", slot.stopped_word},
{"stopped_limit", slot.stopped_limit},
{"stopping_word", slot.stopping_word},
{"tokens_cached", slot.n_past},
{"timings", slot.get_formated_timings()},
{"index", slot.index},
};
if (slot.sparams.n_probs > 0) {
std::vector<completion_token_output> probs;
if (!slot.params.stream && slot.stopped_word) {
const std::vector<llama_token> stop_word_toks = llama_tokenize(ctx, slot.stopping_word, false);
size_t safe_offset = std::min(slot.generated_token_probs.size(), stop_word_toks.size());
probs = std::vector<completion_token_output>(
slot.generated_token_probs.begin(),
slot.generated_token_probs.end() - safe_offset);
} else {
probs = std::vector<completion_token_output>(
slot.generated_token_probs.begin(),
slot.generated_token_probs.end());
}
res.data["completion_probabilities"] = probs_vector_to_json(ctx, probs);
}
if (slot.oaicompat) {
res.data["oaicompat_token_ctr"] = slot.n_decoded;
res.data["model"] = slot.oaicompat_model;
}
queue_results.send(res);
}
void send_embedding(const server_slot & slot, const llama_batch & batch) {
server_task_result res;
res.id = slot.id_task;
res.error = false;
res.stop = true;
const int n_embd = llama_n_embd(model);
std::vector<float> embd_res(n_embd, 0.0f);
for (int i = 0; i < batch.n_tokens; ++i) {
if (!batch.logits[i] || batch.seq_id[i][0] != slot.id + 1) {
continue;
}
const float * embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]);
if (embd == NULL) {
embd = llama_get_embeddings_ith(ctx, i);
}
if (embd == NULL) {
LOG_ERROR("failed to get embeddings", {
{"token", batch.token [i]},
{"seq_id", batch.seq_id[i][0]}
});
res.data = json {
{"embedding", std::vector<float>(n_embd, 0.0f)},
};
continue;
}
llama_embd_normalize(embd, embd_res.data(), n_embd);
res.data = json {
{"embedding", embd_res},
{"index", slot.index},
};
}
queue_results.send(res);
}
//
// Functions to create new task(s) and receive result(s)
//
std::vector<server_task> create_tasks_cmpl(json data, server_task_cmpl_type cmpl_type) {
std::vector<server_task> tasks;
auto create_task = [&](json & task_data, bool replace_prompt, json prompt) {
server_task task;
task.id = queue_tasks.get_new_id();
task.cmpl_type = cmpl_type;
task.type = SERVER_TASK_TYPE_COMPLETION;
if (replace_prompt) {
task.data = task_data;
task.data["prompt"] = prompt;
} else {
task.data = std::move(task_data);
}
tasks.push_back(std::move(task));
};
static constexpr const char * error_msg = "\"prompt\" must be a string, an array of token ids or an array of prompts";
if (!data.contains("prompt")) {
throw std::runtime_error(error_msg);
}
json prompt = data.at("prompt");
// if the prompt is a singleton (i.e. a string or a list of tokens), we only need to create single task
if (prompt.is_string() || json_is_array_of_numbers(prompt)) {
data["index"] = 0;
create_task(data, false, nullptr);
}
// otherwise, it's a multiple-prompt task, we break it into smaller tasks
else if (prompt.is_array()) {
std::vector<json> prompts = prompt;
for (size_t i = 0; i < prompts.size(); i++) {
const auto & e = prompts[i];
if (e.is_string() || json_is_array_of_numbers(e)) {
data["index"] = i;
create_task(data, true, e);
} else {
throw std::runtime_error(error_msg);
}
}
}
// invalid case
else {
throw std::runtime_error(error_msg);
}
return tasks;
}
void cancel_tasks(const std::unordered_set<int> & id_tasks) {
std::vector<server_task> cancel_tasks;
cancel_tasks.reserve(id_tasks.size());
for (const auto & id_task : id_tasks) {
LOG_VERBOSE("cancel task", {{"id_task", id_task}});
server_task task;
task.type = SERVER_TASK_TYPE_CANCEL;
task.id_target = id_task;
cancel_tasks.push_back(task);
queue_results.remove_waiting_task_id(id_task);
}
// push to beginning of the queue, so it has highest priority
queue_tasks.post(cancel_tasks, true);
}
// receive the results from task(s) created by create_tasks_cmpl
void receive_cmpl_results(const std::unordered_set<int> & id_tasks, std::function<void(std::vector<server_task_result>&)> result_handler, std::function<void(json)> error_handler) {
// TODO: currently, there is no way to detect the client has cancelled the request
std::vector<server_task_result> results(id_tasks.size());
for (size_t i = 0; i < id_tasks.size(); i++) {
server_task_result result = queue_results.recv(id_tasks);
if (result.error) {
error_handler(result.data);
cancel_tasks(id_tasks);
break;
}
size_t idx = result.data["index"];
results[idx] = result;
}
result_handler(results);
}
// receive the results from task(s) created by create_tasks_cmpl, in stream mode
void receive_cmpl_results_stream(const std::unordered_set<int> & id_tasks, std::function<bool(server_task_result&)> result_handler, std::function<void(json)> error_handler) {
size_t n_finished = 0;
while (true) {
server_task_result result = queue_results.recv(id_tasks);
if (!result_handler(result)) {
cancel_tasks(id_tasks);
break;
}
if (result.error) {
error_handler(result.data);
cancel_tasks(id_tasks);
break;
}
if (result.stop) {
if (++n_finished == id_tasks.size()) {
break;
}
}
}
}
//
// Functions to process the task
//
void process_single_task(const server_task & task) {
switch (task.type) {
case SERVER_TASK_TYPE_COMPLETION:
{
const int id_slot = json_value(task.data, "id_slot", -1);
server_slot * slot;
if (id_slot != -1) {
slot = get_slot_by_id(id_slot);
} else {
std::string prompt;
if (task.data.contains("prompt") && task.data.at("prompt").is_string()) {
prompt = json_value(task.data, "prompt", std::string());
}
slot = get_available_slot(prompt);
}
if (slot == nullptr) {
// if no slot is available, we defer this task for processing later
LOG_VERBOSE("no slot is available", {{"id_task", task.id}});
queue_tasks.defer(task);
break;
}
if (slot->is_processing()) {
// if requested slot is unavailable, we defer this task for processing later
LOG_VERBOSE("requested slot is unavailable", {{"id_task", task.id}});
queue_tasks.defer(task);
break;
}
if (task.data.contains("system_prompt")) {
std::string sys_prompt = json_value(task.data, "system_prompt", std::string());
system_prompt_set(sys_prompt);
for (server_slot & slot : slots) {
slot.n_past = 0;
slot.n_past_se = 0;
}
}
slot->reset();
slot->id_task = task.id;
slot->cmpl_type = task.cmpl_type;
slot->index = json_value(task.data, "index", 0);
if (!launch_slot_with_task(*slot, task)) {
LOG_ERROR("error while launching slot", task.data);
break;
}
} break;
case SERVER_TASK_TYPE_CANCEL:
{
// release slot linked with the task id
for (auto & slot : slots) {
if (slot.id_task == task.id_target) {
slot.release();
break;
}
}
} break;
case SERVER_TASK_TYPE_NEXT_RESPONSE:
{
// do nothing
} break;
case SERVER_TASK_TYPE_METRICS:
{
json slots_data = json::array();
int n_idle_slots = 0;
int n_processing_slots = 0;
for (server_slot & slot : slots) {
json slot_data = get_formated_generation(slot);
slot_data["id"] = slot.id;
slot_data["id_task"] = slot.id_task;
slot_data["state"] = slot.state;
slot_data["prompt"] = slot.prompt;
slot_data["next_token"] = {
{"has_next_token", slot.has_next_token},
{"n_remain", slot.n_remaining},
{"n_decoded", slot.n_decoded},
{"stopped_eos", slot.stopped_eos},
{"stopped_word", slot.stopped_word},
{"stopped_limit", slot.stopped_limit},
{"stopping_word", slot.stopping_word},
};
if (slot_data["state"] == SLOT_STATE_IDLE) {
n_idle_slots++;
} else {
n_processing_slots++;
}
slots_data.push_back(slot_data);
}
LOG_INFO("slot data", {
{"id_task", task.id},
{"n_idle_slots", n_idle_slots},
{"n_processing_slots", n_processing_slots}
});
LOG_VERBOSE("slot data", {
{"id_task", task.id},
{"n_idle_slots", n_idle_slots},
{"n_processing_slots", n_processing_slots},
{"slots", slots_data}
});
server_task_result res;
res.id = task.id;
res.stop = true;
res.error = false;
res.data = {
{ "idle", n_idle_slots },
{ "processing", n_processing_slots },
{ "deferred", queue_tasks.queue_tasks_deferred.size() },
{ "t_start", metrics.t_start},
{ "n_prompt_tokens_processed_total", metrics.n_prompt_tokens_processed_total},
{ "t_tokens_generation_total", metrics.t_tokens_generation_total},
{ "n_tokens_predicted_total", metrics.n_tokens_predicted_total},
{ "t_prompt_processing_total", metrics.t_prompt_processing_total},
{ "n_prompt_tokens_processed", metrics.n_prompt_tokens_processed},
{ "t_prompt_processing", metrics.t_prompt_processing},
{ "n_tokens_predicted", metrics.n_tokens_predicted},
{ "t_tokens_generation", metrics.t_tokens_generation},
{ "n_decode_total", metrics.n_decode_total},
{ "n_busy_slots_total", metrics.n_busy_slots_total},
{ "kv_cache_tokens_count", llama_get_kv_cache_token_count(ctx)},
{ "kv_cache_used_cells", llama_get_kv_cache_used_cells(ctx)},
{ "slots", slots_data },
};
if (json_value(task.data, "reset_bucket", false)) {
metrics.reset_bucket();
}
queue_results.send(res);
} break;
case SERVER_TASK_TYPE_SLOT_SAVE:
{
int id_slot = task.data.at("id_slot");
server_slot * slot = get_slot_by_id(id_slot);
if (slot == nullptr) {
send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
break;
}
if (slot->is_processing()) {
// if requested slot is unavailable, we defer this task for processing later
LOG_VERBOSE("requested slot is unavailable", {{"id_task", task.id}});
queue_tasks.defer(task);
break;
}
const size_t token_count = slot->cache_tokens.size();
const int64_t t_start = ggml_time_us();
std::string filename = task.data.at("filename");
std::string filepath = task.data.at("filepath");
const size_t nwrite = llama_state_seq_save_file(ctx, filepath.c_str(), slot->id + 1, slot->cache_tokens.data(), token_count);
const int64_t t_end = ggml_time_us();
const double t_save_ms = (t_end - t_start) / 1000.0;
server_task_result result;
result.id = task.id;
result.stop = true;
result.error = false;
result.data = json {
{ "id_slot", id_slot },
{ "filename", filename },
{ "n_saved", token_count }, // tokens saved
{ "n_written", nwrite }, // bytes written
{ "timings", {
{ "save_ms", t_save_ms }
} }
};
queue_results.send(result);
} break;
case SERVER_TASK_TYPE_SLOT_RESTORE:
{
int id_slot = task.data.at("id_slot");
server_slot * slot = get_slot_by_id(id_slot);
if (slot == nullptr) {
send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
break;
}
if (slot->is_processing()) {
// if requested slot is unavailable, we defer this task for processing later
LOG_VERBOSE("requested slot is unavailable", {{"id_task", task.id}});
queue_tasks.defer(task);
break;
}
const int64_t t_start = ggml_time_us();
std::string filename = task.data.at("filename");
std::string filepath = task.data.at("filepath");
slot->cache_tokens.resize(slot->n_ctx);
size_t token_count = 0;
size_t nread = llama_state_seq_load_file(ctx, filepath.c_str(), slot->id + 1, slot->cache_tokens.data(), slot->cache_tokens.size(), &token_count);
if (nread == 0) {
slot->cache_tokens.resize(0);
send_error(task, "Unable to restore slot, no available space in KV cache or invalid slot save file", ERROR_TYPE_INVALID_REQUEST);
break;
}
slot->cache_tokens.resize(token_count);
const int64_t t_end = ggml_time_us();
const double t_restore_ms = (t_end - t_start) / 1000.0;
server_task_result result;
result.id = task.id;
result.stop = true;
result.error = false;
result.data = json {
{ "id_slot", id_slot },
{ "filename", filename },
{ "n_restored", token_count }, // tokens restored
{ "n_read", nread }, // bytes read
{ "timings", {
{ "restore_ms", t_restore_ms }
} }
};
queue_results.send(result);
} break;
case SERVER_TASK_TYPE_SLOT_ERASE:
{
int id_slot = task.data.at("id_slot");
server_slot * slot = get_slot_by_id(id_slot);
if (slot == nullptr) {
send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
break;
}
if (slot->is_processing()) {
// if requested slot is unavailable, we defer this task for processing later
LOG_VERBOSE("requested slot is unavailable", {{"id_task", task.id}});
queue_tasks.defer(task);
break;
}
// Erase token cache
const size_t n_erased = slot->cache_tokens.size();
llama_kv_cache_seq_rm(ctx, slot->id + 1, -1, -1);
slot->cache_tokens.clear();
server_task_result result;
result.id = task.id;
result.stop = true;
result.error = false;
result.data = json {
{ "id_slot", id_slot },
{ "n_erased", n_erased }
};
queue_results.send(result);
} break;
case SERVER_TASK_TYPE_SET_LORA:
{
llama_lora_adapters_apply(ctx, lora_adapters);
server_task_result result;
result.id = task.id;
result.stop = true;
result.error = false;
result.data = json{{ "success", true }};
queue_results.send(result);
} break;
}
}
void update_slots() {
if (system_need_update) {
system_prompt_update();
}
// check if all slots are idle
{
bool all_idle = true;
for (auto & slot : slots) {
if (slot.is_processing()) {
all_idle = false;
break;
}
}
if (all_idle) {
LOG_INFO("all slots are idle", {});
if (system_prompt.empty() && clean_kv_cache) {
kv_cache_clear();
}
return;
}
}
{
LOG_VERBOSE("posting NEXT_RESPONSE", {});
server_task task;
task.type = SERVER_TASK_TYPE_NEXT_RESPONSE;
task.id_target = -1;
queue_tasks.post(task);
}
// apply context-shift if needed
// TODO: simplify and improve
for (server_slot & slot : slots) {
if (slot.ga_n == 1) {
if (slot.is_processing() && (int) system_tokens.size() + slot.n_past >= slot.n_ctx - 1) {
// Shift context
const int n_keep = slot.params.n_keep + add_bos_token;
const int n_left = (int) system_tokens.size() + slot.n_past - n_keep;
const int n_discard = slot.params.n_discard ? slot.params.n_discard : (n_left / 2);
LOG_INFO("slot context shift", {
{"id_slot", slot.id},
{"id_task", slot.id_task},
{"n_keep", n_keep},
{"n_left", n_left},
{"n_discard", n_discard},
{"n_ctx", n_ctx},
{"n_past", slot.n_past},
{"n_system_tokens", system_tokens.size()},
{"n_cache_tokens", slot.cache_tokens.size()}
});
llama_kv_cache_seq_rm (ctx, slot.id + 1, n_keep , n_keep + n_discard);
llama_kv_cache_seq_add(ctx, slot.id + 1, n_keep + n_discard, system_tokens.size() + slot.n_past, -n_discard);
if (slot.params.cache_prompt) {
for (size_t i = n_keep + n_discard; i < slot.cache_tokens.size(); i++) {
slot.cache_tokens[i - n_discard] = slot.cache_tokens[i];
}
slot.cache_tokens.resize(slot.cache_tokens.size() - n_discard);
}
slot.n_past -= n_discard;
slot.truncated = true;
}
}
}
// start populating the batch for this iteration
llama_batch_clear(batch);
// frist, add sampled tokens from any ongoing sequences
for (auto & slot : slots) {
if (slot.state != SLOT_STATE_GENERATING) {
continue;
}
slot.i_batch = batch.n_tokens;
const int32_t slot_npast = slot.n_past_se > 0 ? slot.n_past_se : slot.n_past;
// TODO: we always have to take into account the "system_tokens"
// this is not great and needs to be improved somehow
llama_batch_add(batch, slot.sampled, system_tokens.size() + slot_npast, { slot.id + 1 }, true);
slot.n_past += 1;
if (slot.params.cache_prompt) {
slot.cache_tokens.push_back(slot.sampled);
}
LOG_VERBOSE("slot decode token", {
{"id_slot", slot.id},
{"id_task", slot.id_task},
{"n_ctx", n_ctx},
{"n_past", slot.n_past},
{"n_system_tokens", system_tokens.size()},
{"n_cache_tokens", slot.cache_tokens.size()},
{"truncated", slot.truncated}
});
}
// process in chunks of params.n_batch
int32_t n_batch = llama_n_batch(ctx);
int32_t n_ubatch = llama_n_ubatch(ctx);
// track if this is an embedding or non-embedding batch
// if we've added sampled tokens above, we are in non-embedding mode
// -1: none, 0: non-embedding, 1: embedding
int32_t batch_type = batch.n_tokens > 0 ? 0 : -1;
// next, batch any pending prompts without exceeding n_batch
if (params.cont_batching || batch.n_tokens == 0) {
for (auto & slot : slots) {
// this slot still has a prompt to be processed
if (slot.state == SLOT_STATE_PROCESSING_PROMPT) {
auto & prompt_tokens = slot.prompt_tokens;
// we haven't tokenized the prompt yet - do it now:
if (prompt_tokens.empty()) {
LOG_VERBOSE("tokenizing prompt", {
{"id_slot", slot.id},
{"id_task", slot.id_task}
});
slot.t_start_process_prompt = ggml_time_us();
slot.t_start_generation = 0;
if (slot.cmpl_type == SERVER_TASK_CMPL_TYPE_INFILL) {
const bool add_bos = llama_add_bos_token(model);
bool suff_rm_leading_spc = true;
if (params.input_suffix.find_first_of(' ') == 0 && params.input_suffix.size() > 1) {
params.input_suffix.erase(0, 1);
suff_rm_leading_spc = false;
}
auto prefix_tokens = tokenize(slot.params.input_prefix, false);
auto suffix_tokens = tokenize(slot.params.input_suffix, false);
const int space_token = 29871; // TODO: this should not be hardcoded
if (suff_rm_leading_spc && !suffix_tokens.empty() && suffix_tokens[0] == space_token) {
suffix_tokens.erase(suffix_tokens.begin());
}
prefix_tokens.insert(prefix_tokens.begin(), llama_token_prefix(model));
suffix_tokens.insert(suffix_tokens.begin(), llama_token_suffix(model));
auto embd_inp = params.spm_infill ? suffix_tokens : prefix_tokens;
auto embd_end = params.spm_infill ? prefix_tokens : suffix_tokens;
if (add_bos) {
embd_inp.insert(embd_inp.begin(), llama_token_bos(model));
}
embd_inp.insert(embd_inp.end(), embd_end.begin(), embd_end.end());
const llama_token middle_token = llama_token_middle(model);
if (middle_token >= 0) {
embd_inp.push_back(middle_token);
}
prompt_tokens = embd_inp;
} else {
prompt_tokens = tokenize(slot.prompt, system_prompt.empty()); // add BOS if there isn't system prompt
}
slot.n_past = 0;
slot.n_prompt_tokens = prompt_tokens.size();
LOG_VERBOSE("prompt tokenized", {
{"id_slot", slot.id},
{"id_task", slot.id_task},
{"n_ctx", slot.n_ctx},
{"n_keep", slot.params.n_keep},
{"n_prompt_tokens", slot.n_prompt_tokens},
{"prompt_tokens", tokens_to_str(ctx, prompt_tokens.cbegin(), prompt_tokens.cend())},
});
// empty prompt passed -> release the slot and send empty response
if (prompt_tokens.empty()) {
LOG_INFO("empty prompt - releasing slot", {
{"id_slot", slot.id},
{"id_task", slot.id_task}
});
slot.release();
slot.print_timings();
send_final_response(slot);
continue;
}
if (slot.cmpl_type == SERVER_TASK_CMPL_TYPE_EMBEDDING) {
// this prompt is too large to process - discard it
if (slot.n_prompt_tokens > n_ubatch) {
slot.release();
send_error(slot, "input is too large to process. increase the physical batch size", ERROR_TYPE_SERVER);
continue;
}
} else {
if (slot.params.n_keep < 0) {
slot.params.n_keep = slot.n_prompt_tokens;
}
slot.params.n_keep = std::min(slot.n_ctx - 4, slot.params.n_keep);
// if input prompt is too big, truncate it (if group attention self-extend is disabled)
if (slot.ga_n == 1 && slot.n_prompt_tokens >= slot.n_ctx) {
const int n_left = slot.n_ctx - slot.params.n_keep;
const int n_block_size = n_left / 2;
const int erased_blocks = (slot.n_prompt_tokens - slot.params.n_keep - n_block_size) / n_block_size;
std::vector<llama_token> new_tokens(
prompt_tokens.begin(),
prompt_tokens.begin() + slot.params.n_keep);
new_tokens.insert(
new_tokens.end(),
prompt_tokens.begin() + slot.params.n_keep + erased_blocks * n_block_size,
prompt_tokens.end());
prompt_tokens = std::move(new_tokens);
slot.truncated = true;
slot.n_prompt_tokens = prompt_tokens.size();
LOG_VERBOSE("input truncated", {
{"id_slot", slot.id},
{"id_task", slot.id_task},
{"n_ctx", slot.n_ctx},
{"n_keep", slot.params.n_keep},
{"n_left", n_left},
{"n_prompt_tokens", slot.n_prompt_tokens},
{"prompt_tokens", tokens_to_str(ctx, prompt_tokens.cbegin(), prompt_tokens.cend())},
});
GGML_ASSERT(slot.n_prompt_tokens < slot.n_ctx);
}
gpt_sampler_reset(slot.smpl);
if (!slot.params.cache_prompt) {
slot.n_past_se = 0;
slot.ga_i = 0;
} else {
GGML_ASSERT(slot.ga_n == 1);
// reuse any previously computed tokens that are common with the new prompt
slot.n_past = common_part(slot.cache_tokens, prompt_tokens);
// push the prompt into the sampling context (do not apply grammar)
for (int i = 0; i < slot.n_past; ++i) {
gpt_sampler_accept(slot.smpl, slot.cache_tokens[i], false);
}
}
}
if (slot.n_past == slot.n_prompt_tokens && slot.n_past > 0) {
// we have to evaluate at least 1 token to generate logits.
LOG_INFO("we have to evaluate at least 1 token to generate logits", {
{ "id_slot", slot.id },
{ "id_task", slot.id_task }
});
slot.n_past--;
if (slot.ga_i > 0) {
slot.n_past_se--;
}
}
slot.n_prompt_tokens_processed = 0;
}
if (slot.cmpl_type == SERVER_TASK_CMPL_TYPE_EMBEDDING) {
// cannot fit the prompt in the current batch - will try next iter
if (batch.n_tokens + slot.n_prompt_tokens > n_batch) {
continue;
}
}
// check that we are in the right batch_type, if not defer the slot
bool slot_type = slot.cmpl_type == SERVER_TASK_CMPL_TYPE_EMBEDDING ? 1 : 0;
if (batch_type == -1) {
batch_type = slot_type;
} else if (batch_type != slot_type) {
continue;
}
// keep only the common part
int p0 = (int) system_tokens.size() + slot.n_past;
if (!llama_kv_cache_seq_rm(ctx, slot.id + 1, p0, -1)) {
// could not partially delete (likely using a non-Transformer model)
llama_kv_cache_seq_rm(ctx, slot.id + 1, -1, -1);
p0 = (int) system_tokens.size();
if (p0 != 0) {
// copy over the system prompt when there is one
llama_kv_cache_seq_cp(ctx, 0, slot.id + 1, -1, -1);
}
// there is no common part left (except for the system prompt)
slot.n_past = 0;
slot.n_past_se = 0;
slot.ga_i = 0;
// TODO: is the system prompt ever in the sampling context?
gpt_sampler_reset(slot.smpl);
}
// remove the non-common part from the cache
slot.cache_tokens.resize(slot.n_past);
LOG_INFO("kv cache rm [p0, end)", {
{ "id_slot", slot.id },
{ "id_task", slot.id_task },
{ "p0", p0 }
});
int32_t slot_npast = slot.n_past_se > 0 ? slot.n_past_se : slot.n_past;
int32_t ga_i = slot.ga_i;
int32_t ga_n = slot.ga_n;
int32_t ga_w = slot.ga_w;
// add prompt tokens for processing in the current batch
// TODO: the self-extend stuff here is a mess - simplify and/or abstract it somehow
for (; slot.n_past < slot.n_prompt_tokens && batch.n_tokens < n_batch; ++slot.n_past) {
if (slot.ga_n != 1) {
while (slot_npast >= ga_i + ga_w) {
const int bd = (ga_w/ga_n)*(ga_n - 1);
slot_npast -= bd;
ga_i += ga_w/ga_n;
}
}
llama_batch_add(batch, prompt_tokens[slot.n_past], system_tokens.size() + slot_npast, { slot.id + 1 }, false);
if (slot.params.cache_prompt) {
slot.cache_tokens.push_back(prompt_tokens[slot.n_past]);
}
slot.n_prompt_tokens_processed++;
slot_npast++;
}
LOG_VERBOSE("prompt processing progress", {
{"id_slot", slot.id},
{"n_past", slot.n_past},
{"n_ctx", n_ctx},
{"n_tokens", batch.n_tokens},
{"progress", (float) slot.n_prompt_tokens_processed / slot.n_prompt_tokens},
});
// entire prompt has been processed
if (slot.n_past == slot.n_prompt_tokens) {
slot.state = SLOT_STATE_DONE_PROMPT;
GGML_ASSERT(batch.n_tokens > 0);
// extract the logits only for the last token
batch.logits[batch.n_tokens - 1] = true;
slot.n_decoded = 0;
slot.i_batch = batch.n_tokens - 1;
LOG_VERBOSE("prompt done", {
{"id_slot", slot.id},
{"n_past", slot.n_past},
{"n_ctx", n_ctx},
{"n_tokens", batch.n_tokens},
});
}
}
if (batch.n_tokens >= n_batch) {
break;
}
}
}
if (batch.n_tokens == 0) {
LOG_VERBOSE("no tokens to decode", {});
return;
}
LOG_VERBOSE("decoding batch", {
{"n_tokens", batch.n_tokens},
});
// make sure we're in the right embedding mode
llama_set_embeddings(ctx, batch_type == 1);
// process the created batch of tokens
for (int32_t i = 0; i < batch.n_tokens; i += n_batch) {
const int32_t n_tokens = std::min(n_batch, batch.n_tokens - i);
for (auto & slot : slots) {
if (slot.ga_n != 1) {
// context extension via Self-Extend
// TODO: simplify and/or abstract this
while (slot.n_past_se >= slot.ga_i + slot.ga_w) {
const int ib = (slot.ga_n * slot.ga_i) / slot.ga_w;
const int bd = (slot.ga_w / slot.ga_n) * (slot.ga_n - 1);
const int dd = (slot.ga_w / slot.ga_n) - ib * bd - slot.ga_w;
LOG_TEE("\n");
LOG_TEE("shift: [%6d, %6d] + %6d -> [%6d, %6d]\n", slot.ga_i, slot.n_past_se, ib * bd, slot.ga_i + ib * bd, slot.n_past_se + ib * bd);
LOG_TEE("div: [%6d, %6d] / %6d -> [%6d, %6d]\n", slot.ga_i + ib * bd, slot.ga_i + ib * bd + slot.ga_w, slot.ga_n, (slot.ga_i + ib * bd) / slot.ga_n, (slot.ga_i + ib * bd + slot.ga_w) / slot.ga_n);
LOG_TEE("shift: [%6d, %6d] + %6d -> [%6d, %6d]\n", slot.ga_i + ib * bd + slot.ga_w, slot.n_past_se + ib * bd, dd, slot.ga_i + ib * bd + slot.ga_w + dd, slot.n_past_se + ib * bd + dd);
llama_kv_cache_seq_add(ctx, slot.id + 1, slot.ga_i, slot.n_past_se, ib * bd);
llama_kv_cache_seq_div(ctx, slot.id + 1, slot.ga_i + ib * bd, slot.ga_i + ib * bd + slot.ga_w, slot.ga_n);
llama_kv_cache_seq_add(ctx, slot.id + 1, slot.ga_i + ib * bd + slot.ga_w, slot.n_past_se + ib * bd, dd);
slot.n_past_se -= bd;
slot.ga_i += slot.ga_w / slot.ga_n;
LOG_TEE("\nn_past_old = %d, n_past = %d, ga_i = %d\n\n", slot.n_past_se + bd, slot.n_past_se, slot.ga_i);
}
slot.n_past_se += n_tokens;
}
}
llama_batch batch_view = {
n_tokens,
batch.token + i,
nullptr,
batch.pos + i,
batch.n_seq_id + i,
batch.seq_id + i,
batch.logits + i,
0, 0, 0, // unused
};
const int ret = llama_decode(ctx, batch_view);
metrics.on_decoded(slots);
if (ret != 0) {
if (n_batch == 1 || ret < 0) {
// if you get here, it means the KV cache is full - try increasing it via the context size
LOG_ERROR("failed to decode the batch: KV cache is full - try increasing it via the context size", {
{"i", i},
{"n_batch", n_batch},
{"ret", ret},
});
for (auto & slot : slots) {
slot.release();
send_error(slot, "Input prompt is too big compared to KV size. Please try increasing KV size.");
}
break; // break loop of n_batch
}
// retry with half the batch size to try to find a free slot in the KV cache
n_batch /= 2;
i -= n_batch;
LOG_WARNING("failed to find free space in the KV cache, retrying with smaller batch size - try increasing it via the context size or enable defragmentation", {
{"i", i},
{"n_batch", n_batch},
{"ret", ret},
});
continue; // continue loop of n_batch
}
for (auto & slot : slots) {
if (slot.i_batch < (int) i || slot.i_batch >= (int) (i + n_tokens)) {
continue; // continue loop of slots
}
if (slot.state == SLOT_STATE_DONE_PROMPT) {
if (slot.cmpl_type == SERVER_TASK_CMPL_TYPE_EMBEDDING) {
// prompt evaluated for embedding
send_embedding(slot, batch_view);
slot.release();
slot.i_batch = -1;
continue; // continue loop of slots
}
// prompt evaluated for next-token prediction
slot.state = SLOT_STATE_GENERATING;
} else if (slot.state != SLOT_STATE_GENERATING) {
continue; // continue loop of slots
}
completion_token_output result;
const llama_token id = gpt_sampler_sample(slot.smpl, ctx, slot.i_batch - i);
gpt_sampler_accept(slot.smpl, id, true);
slot.n_decoded += 1;
if (slot.n_decoded == 1) {
slot.t_start_generation = ggml_time_us();
slot.t_prompt_processing = (slot.t_start_generation - slot.t_start_process_prompt) / 1e3;
metrics.on_prompt_eval(slot);
}
result.tok = id;
const auto * cur_p = gpt_sampler_get_candidates(slot.smpl);
for (size_t i = 0; i < (size_t) slot.sparams.n_probs; ++i) {
result.probs.push_back({
cur_p->data[i].id,
i >= cur_p->size ? 0.0f : cur_p->data[i].p,
});
}
if (!process_token(result, slot)) {
// release slot because of stop condition
slot.release();
slot.print_timings();
send_final_response(slot);
metrics.on_prediction(slot);
}
slot.i_batch = -1;
}
}
LOG_VERBOSE("run slots completed", {});
}
json model_meta() const {
return json {
{"vocab_type", llama_vocab_type (model)},
{"n_vocab", llama_n_vocab (model)},
{"n_ctx_train", llama_n_ctx_train (model)},
{"n_embd", llama_n_embd (model)},
{"n_params", llama_model_n_params(model)},
{"size", llama_model_size (model)},
};
}
};
static void log_server_request(const httplib::Request & req, const httplib::Response & res) {
// skip GH copilot requests when using default port
if (req.path == "/v1/health" || req.path == "/v1/completions") {
return;
}
LOG_INFO("request", {
{"remote_addr", req.remote_addr},
{"remote_port", req.remote_port},
{"status", res.status},
{"method", req.method},
{"path", req.path},
{"params", req.params},
});
LOG_VERBOSE("request", {
{"request", req.body},
{"response", res.body},
});
}
std::function<void(int)> shutdown_handler;
std::atomic_flag is_terminating = ATOMIC_FLAG_INIT;
inline void signal_handler(int signal) {
if (is_terminating.test_and_set()) {
// in case it hangs, we can force terminate the server by hitting Ctrl+C twice
// this is for better developer experience, we can remove when the server is stable enough
fprintf(stderr, "Received second interrupt, terminating immediately.\n");
exit(1);
}
shutdown_handler(signal);
}
int main(int argc, char ** argv) {
#if SERVER_VERBOSE != 1
log_disable();
#endif
// own arguments required by this example
gpt_params params;
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_SERVER)) {
return 1;
}
// TODO: not great to use extern vars
server_log_json = params.log_json;
server_verbose = params.verbosity > 0;
// struct that contains llama context and inference
server_context ctx_server;
if (!params.system_prompt.empty()) {
ctx_server.system_prompt_set(params.system_prompt);
}
if (params.model_alias == "unknown") {
params.model_alias = params.model;
}
llama_backend_init();
llama_numa_init(params.numa);
LOG_INFO("build info", {
{"build", LLAMA_BUILD_NUMBER},
{"commit", LLAMA_COMMIT}
});
LOG_INFO("system info", {
{"n_threads", params.cpuparams.n_threads},
{"n_threads_batch", params.cpuparams_batch.n_threads},
{"total_threads", std::thread::hardware_concurrency()},
{"system_info", llama_print_system_info()},
});
std::unique_ptr<httplib::Server> svr;
#ifdef CPPHTTPLIB_OPENSSL_SUPPORT
if (params.ssl_file_key != "" && params.ssl_file_cert != "") {
LOG_INFO("Running with SSL", {{"key", params.ssl_file_key}, {"cert", params.ssl_file_cert}});
svr.reset(
new httplib::SSLServer(params.ssl_file_cert.c_str(), params.ssl_file_key.c_str())
);
} else {
LOG_INFO("Running without SSL", {});
svr.reset(new httplib::Server());
}
#else
svr.reset(new httplib::Server());
#endif
std::atomic<server_state> state{SERVER_STATE_LOADING_MODEL};
svr->set_default_headers({{"Server", "llama.cpp"}});
// CORS preflight
svr->Options(R"(.*)", [](const httplib::Request &, httplib::Response & res) {
// Access-Control-Allow-Origin is already set by middleware
res.set_header("Access-Control-Allow-Credentials", "true");
res.set_header("Access-Control-Allow-Methods", "POST");
res.set_header("Access-Control-Allow-Headers", "*");
return res.set_content("", "text/html"); // blank response, no data
});
svr->set_logger(log_server_request);
auto res_error = [](httplib::Response & res, json error_data) {
json final_response {{"error", error_data}};
res.set_content(final_response.dump(-1, ' ', false, json::error_handler_t::replace), MIMETYPE_JSON);
res.status = json_value(error_data, "code", 500);
};
auto res_ok = [](httplib::Response & res, json data) {
res.set_content(data.dump(-1, ' ', false, json::error_handler_t::replace), MIMETYPE_JSON);
res.status = 200;
};
svr->set_exception_handler([&res_error](const httplib::Request &, httplib::Response & res, std::exception_ptr ep) {
std::string message;
try {
std::rethrow_exception(std::move(ep));
} catch (std::exception & e) {
message = e.what();
} catch (...) {
message = "Unknown Exception";
}
json formatted_error = format_error_response(message, ERROR_TYPE_SERVER);
LOG_VERBOSE("Got exception", formatted_error);
res_error(res, formatted_error);
});
svr->set_error_handler([&res_error](const httplib::Request &, httplib::Response & res) {
if (res.status == 404) {
res_error(res, format_error_response("File Not Found", ERROR_TYPE_NOT_FOUND));
}
// for other error codes, we skip processing here because it's already done by res_error()
});
// set timeouts and change hostname and port
svr->set_read_timeout (params.timeout_read);
svr->set_write_timeout(params.timeout_write);
std::unordered_map<std::string, std::string> log_data;
log_data["hostname"] = params.hostname;
log_data["port"] = std::to_string(params.port);
if (params.api_keys.size() == 1) {
auto key = params.api_keys[0];
log_data["api_key"] = "api_key: ****" + key.substr(std::max((int)(key.length() - 4), 0));
} else if (params.api_keys.size() > 1) {
log_data["api_key"] = "api_key: " + std::to_string(params.api_keys.size()) + " keys loaded";
}
// Necessary similarity of prompt for slot selection
ctx_server.slot_prompt_similarity = params.slot_prompt_similarity;
//
// Middlewares
//
auto middleware_validate_api_key = [&params, &res_error](const httplib::Request & req, httplib::Response & res) {
// TODO: should we apply API key to all endpoints, including "/health" and "/models"?
static const std::unordered_set<std::string> protected_endpoints = {
"/props",
"/completion",
"/completions",
"/v1/completions",
"/chat/completions",
"/v1/chat/completions",
"/infill",
"/tokenize",
"/detokenize",
"/embedding",
"/embeddings",
"/v1/embeddings",
};
// If API key is not set, skip validation
if (params.api_keys.empty()) {
return true;
}
// If path is not in protected_endpoints list, skip validation
if (protected_endpoints.find(req.path) == protected_endpoints.end()) {
return true;
}
// Check for API key in the header
auto auth_header = req.get_header_value("Authorization");
std::string prefix = "Bearer ";
if (auth_header.substr(0, prefix.size()) == prefix) {
std::string received_api_key = auth_header.substr(prefix.size());
if (std::find(params.api_keys.begin(), params.api_keys.end(), received_api_key) != params.api_keys.end()) {
return true; // API key is valid
}
}
// API key is invalid or not provided
res_error(res, format_error_response("Invalid API Key", ERROR_TYPE_AUTHENTICATION));
LOG_WARNING("Unauthorized: Invalid API Key", {});
return false;
};
auto middleware_server_state = [&res_error, &state](const httplib::Request &, httplib::Response & res) {
server_state current_state = state.load();
if (current_state == SERVER_STATE_LOADING_MODEL) {
res_error(res, format_error_response("Loading model", ERROR_TYPE_UNAVAILABLE));
return false;
}
return true;
};
// register server middlewares
svr->set_pre_routing_handler([&middleware_validate_api_key, &middleware_server_state](const httplib::Request & req, httplib::Response & res) {
res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
if (!middleware_server_state(req, res)) {
return httplib::Server::HandlerResponse::Handled;
}
if (!middleware_validate_api_key(req, res)) {
return httplib::Server::HandlerResponse::Handled;
}
return httplib::Server::HandlerResponse::Unhandled;
});
//
// Route handlers (or controllers)
//
const auto handle_health = [&](const httplib::Request &, httplib::Response & res) {
// error and loading states are handled by middleware
json health = {{"status", "ok"}};
res_ok(res, health);
};
const auto handle_slots = [&](const httplib::Request & req, httplib::Response & res) {
if (!params.endpoint_slots) {
res_error(res, format_error_response("This server does not support slots endpoint. Start it without `--no-slots`", ERROR_TYPE_NOT_SUPPORTED));
return;
}
// request slots data using task queue
server_task task;
task.id = ctx_server.queue_tasks.get_new_id();
task.type = SERVER_TASK_TYPE_METRICS;
ctx_server.queue_results.add_waiting_task_id(task.id);
ctx_server.queue_tasks.post(task, true); // high-priority task
// get the result
server_task_result result = ctx_server.queue_results.recv(task.id);
ctx_server.queue_results.remove_waiting_task_id(task.id);
// optionally return "fail_on_no_slot" error
const int n_idle_slots = result.data.at("idle");
if (req.has_param("fail_on_no_slot")) {
if (n_idle_slots == 0) {
res_error(res, format_error_response("no slot available", ERROR_TYPE_UNAVAILABLE));
return;
}
}
res_ok(res, result.data.at("slots"));
};
const auto handle_metrics = [&](const httplib::Request &, httplib::Response & res) {
if (!params.endpoint_metrics) {
res_error(res, format_error_response("This server does not support metrics endpoint. Start it with `--metrics`", ERROR_TYPE_NOT_SUPPORTED));
return;
}
// request slots data using task queue
server_task task;
task.id = ctx_server.queue_tasks.get_new_id();
task.id_target = -1;
task.type = SERVER_TASK_TYPE_METRICS;
task.data.push_back({{"reset_bucket", true}});
ctx_server.queue_results.add_waiting_task_id(task.id);
ctx_server.queue_tasks.post(task, true); // high-priority task
// get the result
server_task_result result = ctx_server.queue_results.recv(task.id);
ctx_server.queue_results.remove_waiting_task_id(task.id);
json data = result.data;
const uint64_t n_prompt_tokens_processed = data.at("n_prompt_tokens_processed");
const uint64_t t_prompt_processing = data.at("t_prompt_processing");
const uint64_t n_tokens_predicted = data.at("n_tokens_predicted");
const uint64_t t_tokens_generation = data.at("t_tokens_generation");
const uint64_t n_decode_total = data.at("n_decode_total");
const uint64_t n_busy_slots_total = data.at("n_busy_slots_total");
const int32_t kv_cache_used_cells = data.at("kv_cache_used_cells");
// metrics definition: https://prometheus.io/docs/practices/naming/#metric-names
json all_metrics_def = json {
{"counter", {{
{"name", "prompt_tokens_total"},
{"help", "Number of prompt tokens processed."},
{"value", (uint64_t) data.at("n_prompt_tokens_processed_total")}
}, {
{"name", "prompt_seconds_total"},
{"help", "Prompt process time"},
{"value", (uint64_t) data.at("t_prompt_processing_total") / 1.e3}
}, {
{"name", "tokens_predicted_total"},
{"help", "Number of generation tokens processed."},
{"value", (uint64_t) data.at("n_tokens_predicted_total")}
}, {
{"name", "tokens_predicted_seconds_total"},
{"help", "Predict process time"},
{"value", (uint64_t) data.at("t_tokens_generation_total") / 1.e3}
}, {
{"name", "n_decode_total"},
{"help", "Total number of llama_decode() calls"},
{"value", n_decode_total}
}, {
{"name", "n_busy_slots_per_decode"},
{"help", "Average number of busy slots per llama_decode() call"},
{"value", (float) n_busy_slots_total / (float) n_decode_total}
}}},
{"gauge", {{
{"name", "prompt_tokens_seconds"},
{"help", "Average prompt throughput in tokens/s."},
{"value", n_prompt_tokens_processed ? 1.e3 / t_prompt_processing * n_prompt_tokens_processed : 0.}
},{
{"name", "predicted_tokens_seconds"},
{"help", "Average generation throughput in tokens/s."},
{"value", n_tokens_predicted ? 1.e3 / t_tokens_generation * n_tokens_predicted : 0.}
},{
{"name", "kv_cache_usage_ratio"},
{"help", "KV-cache usage. 1 means 100 percent usage."},
{"value", 1. * kv_cache_used_cells / params.n_ctx}
},{
{"name", "kv_cache_tokens"},
{"help", "KV-cache tokens."},
{"value", (uint64_t) data.at("kv_cache_tokens_count")}
},{
{"name", "requests_processing"},
{"help", "Number of request processing."},
{"value", (uint64_t) data.at("processing")}
},{
{"name", "requests_deferred"},
{"help", "Number of request deferred."},
{"value", (uint64_t) data.at("deferred")}
}}}
};
std::stringstream prometheus;
for (const auto & el : all_metrics_def.items()) {
const auto & type = el.key();
const auto & metrics_def = el.value();
for (const auto & metric_def : metrics_def) {
const std::string name = metric_def.at("name");
const std::string help = metric_def.at("help");
auto value = json_value(metric_def, "value", 0.);
prometheus << "# HELP llamacpp:" << name << " " << help << "\n"
<< "# TYPE llamacpp:" << name << " " << type << "\n"
<< "llamacpp:" << name << " " << value << "\n";
}
}
const int64_t t_start = data.at("t_start");
res.set_header("Process-Start-Time-Unix", std::to_string(t_start));
res.set_content(prometheus.str(), "text/plain; version=0.0.4");
res.status = 200; // HTTP OK
};
const auto handle_slots_save = [&ctx_server, &res_error, &res_ok, &params](const httplib::Request & req, httplib::Response & res, int id_slot) {
json request_data = json::parse(req.body);
std::string filename = request_data.at("filename");
if (!fs_validate_filename(filename)) {
res_error(res, format_error_response("Invalid filename", ERROR_TYPE_INVALID_REQUEST));
return;
}
std::string filepath = params.slot_save_path + filename;
server_task task;
task.type = SERVER_TASK_TYPE_SLOT_SAVE;
task.data = {
{ "id_slot", id_slot },
{ "filename", filename },
{ "filepath", filepath },
};
const int id_task = ctx_server.queue_tasks.post(task);
ctx_server.queue_results.add_waiting_task_id(id_task);
server_task_result result = ctx_server.queue_results.recv(id_task);
ctx_server.queue_results.remove_waiting_task_id(id_task);
if (result.error) {
res_error(res, result.data);
} else {
res_ok(res, result.data);
}
};
const auto handle_slots_restore = [&ctx_server, &res_error, &res_ok, &params](const httplib::Request & req, httplib::Response & res, int id_slot) {
json request_data = json::parse(req.body);
std::string filename = request_data.at("filename");
if (!fs_validate_filename(filename)) {
res_error(res, format_error_response("Invalid filename", ERROR_TYPE_INVALID_REQUEST));
return;
}
std::string filepath = params.slot_save_path + filename;
server_task task;
task.type = SERVER_TASK_TYPE_SLOT_RESTORE;
task.data = {
{ "id_slot", id_slot },
{ "filename", filename },
{ "filepath", filepath },
};
const int id_task = ctx_server.queue_tasks.post(task);
ctx_server.queue_results.add_waiting_task_id(id_task);
server_task_result result = ctx_server.queue_results.recv(id_task);
ctx_server.queue_results.remove_waiting_task_id(id_task);
if (result.error) {
res_error(res, result.data);
} else {
res_ok(res, result.data);
}
};
const auto handle_slots_erase = [&ctx_server, &res_error, &res_ok](const httplib::Request & /* req */, httplib::Response & res, int id_slot) {
server_task task;
task.type = SERVER_TASK_TYPE_SLOT_ERASE;
task.data = {
{ "id_slot", id_slot },
};
const int id_task = ctx_server.queue_tasks.post(task);
ctx_server.queue_results.add_waiting_task_id(id_task);
server_task_result result = ctx_server.queue_results.recv(id_task);
ctx_server.queue_results.remove_waiting_task_id(id_task);
if (result.error) {
res_error(res, result.data);
} else {
res_ok(res, result.data);
}
};
const auto handle_slots_action = [&params, &res_error, &handle_slots_save, &handle_slots_restore, &handle_slots_erase](const httplib::Request & req, httplib::Response & res) {
if (params.slot_save_path.empty()) {
res_error(res, format_error_response("This server does not support slots action. Start it with `--slot-save-path`", ERROR_TYPE_NOT_SUPPORTED));
return;
}
std::string id_slot_str = req.path_params.at("id_slot");
int id_slot;
try {
id_slot = std::stoi(id_slot_str);
} catch (const std::exception &) {
res_error(res, format_error_response("Invalid slot ID", ERROR_TYPE_INVALID_REQUEST));
return;
}
std::string action = req.get_param_value("action");
if (action == "save") {
handle_slots_save(req, res, id_slot);
} else if (action == "restore") {
handle_slots_restore(req, res, id_slot);
} else if (action == "erase") {
handle_slots_erase(req, res, id_slot);
} else {
res_error(res, format_error_response("Invalid action", ERROR_TYPE_INVALID_REQUEST));
}
};
const auto handle_props = [&ctx_server, &res_ok](const httplib::Request &, httplib::Response & res) {
std::string template_key = "tokenizer.chat_template", curr_tmpl;
int32_t tlen = llama_model_meta_val_str(ctx_server.model, template_key.c_str(), nullptr, 0);
if (tlen > 0) {
std::vector<char> curr_tmpl_buf(tlen + 1, 0);
if (llama_model_meta_val_str(ctx_server.model, template_key.c_str(), curr_tmpl_buf.data(), curr_tmpl_buf.size()) == tlen) {
curr_tmpl = std::string(curr_tmpl_buf.data(), tlen);
}
}
json data = {
{ "system_prompt", ctx_server.system_prompt.c_str() },
{ "default_generation_settings", ctx_server.default_generation_settings_for_props },
{ "total_slots", ctx_server.params.n_parallel },
{ "chat_template", curr_tmpl.c_str() },
};
res_ok(res, data);
};
const auto handle_completions_generic = [&ctx_server, &res_error, &res_ok](server_task_cmpl_type cmpl_type, json & data, httplib::Response & res) {
if (ctx_server.params.embedding) {
res_error(res, format_error_response("This server does not support completions. Start it without `--embeddings`", ERROR_TYPE_NOT_SUPPORTED));
return;
}
std::vector<server_task> tasks = ctx_server.create_tasks_cmpl(data, cmpl_type);
ctx_server.queue_results.add_waiting_tasks(tasks);
ctx_server.queue_tasks.post(tasks);
bool stream = json_value(data, "stream", false);
const auto task_ids = server_task::get_list_id(tasks);
if (!stream) {
ctx_server.receive_cmpl_results(task_ids, [&](std::vector<server_task_result> & results) {
if (results.size() == 1) {
// single result
res_ok(res, results[0].data);
} else {
// multiple results (multitask)
json arr = json::array();
for (const auto & res : results) {
arr.push_back(res.data);
}
res_ok(res, arr);
}
}, [&](json error_data) {
res_error(res, error_data);
});
} else {
const auto chunked_content_provider = [task_ids, &ctx_server](size_t, httplib::DataSink & sink) {
ctx_server.receive_cmpl_results_stream(task_ids, [&](server_task_result result) -> bool {
return server_sent_event(sink, "data", result.data);
}, [&](json error_data) {
server_sent_event(sink, "error", error_data);
});
sink.done();
return false;
};
res.set_chunked_content_provider("text/event-stream", chunked_content_provider);
}
};
const auto handle_completions = [&handle_completions_generic](const httplib::Request & req, httplib::Response & res) {
json data = json::parse(req.body);
return handle_completions_generic(SERVER_TASK_CMPL_TYPE_NORMAL, data, res);
};
const auto handle_infill = [&handle_completions_generic](const httplib::Request & req, httplib::Response & res) {
json data = json::parse(req.body);
return handle_completions_generic(SERVER_TASK_CMPL_TYPE_INFILL, data, res);
};
// TODO: maybe merge this function with "handle_completions_generic"
const auto handle_chat_completions = [&ctx_server, &params, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res) {
if (ctx_server.params.embedding) {
res_error(res, format_error_response("This server does not support completions. Start it without `--embeddings`", ERROR_TYPE_NOT_SUPPORTED));
return;
}
json data = oaicompat_completion_params_parse(ctx_server.model, json::parse(req.body), params.chat_template);
std::vector<server_task> tasks = ctx_server.create_tasks_cmpl(data, SERVER_TASK_CMPL_TYPE_NORMAL);
ctx_server.queue_results.add_waiting_tasks(tasks);
ctx_server.queue_tasks.post(tasks);
bool stream = json_value(data, "stream", false);
const auto task_ids = server_task::get_list_id(tasks);
const auto completion_id = gen_chatcmplid();
if (!stream) {
ctx_server.receive_cmpl_results(task_ids, [&](std::vector<server_task_result> & results) {
// multitask is never support in chat completion, there is only one result
json result_oai = format_final_response_oaicompat(data, results[0].data, completion_id);
res_ok(res, result_oai);
}, [&](json error_data) {
res_error(res, error_data);
});
} else {
const auto chunked_content_provider = [task_ids, &ctx_server, completion_id](size_t, httplib::DataSink & sink) {
ctx_server.receive_cmpl_results_stream(task_ids, [&](server_task_result result) -> bool {
std::vector<json> result_array = format_partial_response_oaicompat(result.data, completion_id);
for (auto & event_data : result_array) {
if (event_data.empty()) {
continue; // skip the stop token
}
if (!server_sent_event(sink, "data", event_data)) {
return false; // connection is closed
}
}
return true; // ok
}, [&](json error_data) {
server_sent_event(sink, "error", error_data);
});
sink.done();
return true;
};
res.set_chunked_content_provider("text/event-stream", chunked_content_provider);
}
};
const auto handle_models = [&params, &ctx_server](const httplib::Request &, httplib::Response & res) {
json models = {
{"object", "list"},
{"data", {
{
{"id", params.model_alias},
{"object", "model"},
{"created", std::time(0)},
{"owned_by", "llamacpp"},
{"meta", ctx_server.model_meta()}
},
}}
};
res.set_content(models.dump(), MIMETYPE_JSON);
};
const auto handle_tokenize = [&ctx_server, &res_ok](const httplib::Request & req, httplib::Response & res) {
const json body = json::parse(req.body);
std::vector<llama_token> tokens;
if (body.count("content") != 0) {
const bool add_special = json_value(body, "add_special", false);
tokens = ctx_server.tokenize(body.at("content"), add_special);
}
const json data = format_tokenizer_response(tokens);
res_ok(res, data);
};
const auto handle_detokenize = [&ctx_server, &res_ok](const httplib::Request & req, httplib::Response & res) {
const json body = json::parse(req.body);
std::string content;
if (body.count("tokens") != 0) {
const std::vector<llama_token> tokens = body.at("tokens");
content = tokens_to_str(ctx_server.ctx, tokens.cbegin(), tokens.cend());
}
const json data = format_detokenized_response(content);
res_ok(res, data);
};
const auto handle_embeddings = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res) {
const json body = json::parse(req.body);
bool is_openai = false;
// an input prompt can be a string or a list of tokens (integer)
json prompt;
if (body.count("input") != 0) {
is_openai = true;
prompt = body.at("input");
} else if (body.count("content") != 0) {
// with "content", we only support single prompt
prompt = std::vector<std::string>{body.at("content")};
} else {
res_error(res, format_error_response("\"input\" or \"content\" must be provided", ERROR_TYPE_INVALID_REQUEST));
return;
}
// create and queue the task
json responses = json::array();
bool error = false;
{
std::vector<server_task> tasks = ctx_server.create_tasks_cmpl({{"prompt", prompt}}, SERVER_TASK_CMPL_TYPE_EMBEDDING);
ctx_server.queue_results.add_waiting_tasks(tasks);
ctx_server.queue_tasks.post(tasks);
// get the result
std::unordered_set<int> task_ids = server_task::get_list_id(tasks);
ctx_server.receive_cmpl_results(task_ids, [&](std::vector<server_task_result> & results) {
for (const auto & res : results) {
responses.push_back(res.data);
}
}, [&](json error_data) {
res_error(res, error_data);
error = true;
});
}
if (error) {
return;
}
// write JSON response
json root = is_openai
? format_embeddings_response_oaicompat(body, responses)
: responses[0];
res_ok(res, root);
};
const auto handle_lora_adapters_list = [&](const httplib::Request &, httplib::Response & res) {
json result = json::array();
for (size_t i = 0; i < ctx_server.lora_adapters.size(); ++i) {
auto & la = ctx_server.lora_adapters[i];
result.push_back({
{"id", i},
{"path", la.path},
{"scale", la.scale},
});
}
res_ok(res, result);
res.status = 200; // HTTP OK
};
const auto handle_lora_adapters_apply = [&](const httplib::Request & req, httplib::Response & res) {
const std::vector<json> body = json::parse(req.body);
int max_idx = ctx_server.lora_adapters.size();
// clear existing value
for (auto & la : ctx_server.lora_adapters) {
la.scale = 0.0f;
}
// set value
for (auto entry : body) {
int id = entry.at("id");
float scale = entry.at("scale");
if (0 <= id && id < max_idx) {
ctx_server.lora_adapters[id].scale = scale;
} else {
throw std::runtime_error("invalid adapter id");
}
}
server_task task;
task.type = SERVER_TASK_TYPE_SET_LORA;
const int id_task = ctx_server.queue_tasks.post(task);
ctx_server.queue_results.add_waiting_task_id(id_task);
server_task_result result = ctx_server.queue_results.recv(id_task);
ctx_server.queue_results.remove_waiting_task_id(id_task);
res_ok(res, result.data);
res.status = 200; // HTTP OK
};
auto handle_static_file = [](unsigned char * content, size_t len, const char * mime_type) {
return [content, len, mime_type](const httplib::Request &, httplib::Response & res) {
res.set_content(reinterpret_cast<const char*>(content), len, mime_type);
return false;
};
};
//
// Router
//
// register static assets routes
if (!params.public_path.empty()) {
// Set the base directory for serving static files
svr->set_base_dir(params.public_path);
}
// using embedded static files
svr->Get("/", handle_static_file(index_html, index_html_len, "text/html; charset=utf-8"));
svr->Get("/index.js", handle_static_file(index_js, index_js_len, "text/javascript; charset=utf-8"));
svr->Get("/completion.js", handle_static_file(completion_js, completion_js_len, "text/javascript; charset=utf-8"));
svr->Get("/json-schema-to-grammar.mjs", handle_static_file(json_schema_to_grammar_mjs, json_schema_to_grammar_mjs_len, "text/javascript; charset=utf-8"));
// add new-ui files
svr->Get("/colorthemes.css", handle_static_file(colorthemes_css, colorthemes_css_len, "text/css; charset=utf-8"));
svr->Get("/style.css", handle_static_file(style_css, style_css_len, "text/css; charset=utf-8"));
svr->Get("/theme-beeninorder.css", handle_static_file(theme_beeninorder_css, theme_beeninorder_css_len, "text/css; charset=utf-8"));
svr->Get("/theme-ketivah.css", handle_static_file(theme_ketivah_css, theme_ketivah_css_len, "text/css; charset=utf-8"));
svr->Get("/theme-mangotango.css", handle_static_file(theme_mangotango_css, theme_mangotango_css_len, "text/css; charset=utf-8"));
svr->Get("/theme-playground.css", handle_static_file(theme_playground_css, theme_playground_css_len, "text/css; charset=utf-8"));
svr->Get("/theme-polarnight.css", handle_static_file(theme_polarnight_css, theme_polarnight_css_len, "text/css; charset=utf-8"));
svr->Get("/theme-snowstorm.css", handle_static_file(theme_snowstorm_css, theme_snowstorm_css_len, "text/css; charset=utf-8"));
svr->Get("/index-new.html", handle_static_file(index_new_html, index_new_html_len, "text/html; charset=utf-8"));
svr->Get("/system-prompts.js", handle_static_file(system_prompts_js, system_prompts_js_len, "text/javascript; charset=utf-8"));
svr->Get("/prompt-formats.js", handle_static_file(prompt_formats_js, prompt_formats_js_len, "text/javascript; charset=utf-8"));
// register API routes
svr->Get ("/health", handle_health);
svr->Get ("/metrics", handle_metrics);
svr->Get ("/props", handle_props);
svr->Get ("/v1/models", handle_models);
svr->Post("/completion", handle_completions); // legacy
svr->Post("/completions", handle_completions);
svr->Post("/v1/completions", handle_completions);
svr->Post("/chat/completions", handle_chat_completions);
svr->Post("/v1/chat/completions", handle_chat_completions);
svr->Post("/infill", handle_infill);
svr->Post("/embedding", handle_embeddings); // legacy
svr->Post("/embeddings", handle_embeddings);
svr->Post("/v1/embeddings", handle_embeddings);
svr->Post("/tokenize", handle_tokenize);
svr->Post("/detokenize", handle_detokenize);
// LoRA adapters hotswap
svr->Get ("/lora-adapters", handle_lora_adapters_list);
svr->Post("/lora-adapters", handle_lora_adapters_apply);
// Save & load slots
svr->Get ("/slots", handle_slots);
svr->Post("/slots/:id_slot", handle_slots_action);
//
// Start the server
//
if (params.n_threads_http < 1) {
// +2 threads for monitoring endpoints
params.n_threads_http = std::max(params.n_parallel + 2, (int32_t) std::thread::hardware_concurrency() - 1);
}
log_data["n_threads_http"] = std::to_string(params.n_threads_http);
svr->new_task_queue = [&params] { return new httplib::ThreadPool(params.n_threads_http); };
// clean up function, to be called before exit
auto clean_up = [&svr]() {
svr->stop();
llama_backend_free();
};
// bind HTTP listen port, run the HTTP server in a thread
if (!svr->bind_to_port(params.hostname, params.port)) {
LOG_ERROR("couldn't bind HTTP server socket", {
{"hostname", params.hostname},
{"port", params.port},
});
clean_up();
LOG_ERROR("exiting due to HTTP server error", {});
return 1;
}
std::thread t([&]() { svr->listen_after_bind(); });
svr->wait_until_ready();
LOG_INFO("HTTP server is listening", log_data);
// load the model
LOG_INFO("loading model", log_data);
if (!ctx_server.load_model(params)) {
clean_up();
t.join();
LOG_ERROR("exiting due to model loading error", {});
return 1;
} else {
ctx_server.init();
state.store(SERVER_STATE_READY);
LOG_INFO("model loaded", {});
// if a custom chat template is not supplied, we will use the one that comes with the model (if any)
if (params.chat_template.empty()) {
if (!ctx_server.validate_model_chat_template()) {
LOG_WARNING("The chat template that comes with this model is not yet supported, falling back to chatml. This may cause the model to output suboptimal responses", {});
params.chat_template = "chatml";
}
}
// print sample chat example to make it clear which template is used
{
LOG_INFO("chat template", {
{"chat_example", llama_chat_format_example(ctx_server.model, params.chat_template)},
{"built_in", params.chat_template.empty()},
});
}
ctx_server.queue_tasks.on_new_task(std::bind(
&server_context::process_single_task, &ctx_server, std::placeholders::_1));
ctx_server.queue_tasks.on_update_slots(std::bind(
&server_context::update_slots, &ctx_server));
shutdown_handler = [&](int) {
ctx_server.queue_tasks.terminate();
};
ctx_server.queue_tasks.start_loop();
}
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
struct sigaction sigint_action;
sigint_action.sa_handler = signal_handler;
sigemptyset (&sigint_action.sa_mask);
sigint_action.sa_flags = 0;
sigaction(SIGINT, &sigint_action, NULL);
sigaction(SIGTERM, &sigint_action, NULL);
#elif defined (_WIN32)
auto console_ctrl_handler = +[](DWORD ctrl_type) -> BOOL {
return (ctrl_type == CTRL_C_EVENT) ? (signal_handler(SIGINT), true) : false;
};
SetConsoleCtrlHandler(reinterpret_cast<PHANDLER_ROUTINE>(console_ctrl_handler), true);
#endif
clean_up();
t.join();
return 0;
}