mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-12-30 13:24:35 +00:00
41 lines
1.7 KiB
Plaintext
41 lines
1.7 KiB
Plaintext
#include "diagmask.cuh"
|
|
|
|
static __global__ void diag_mask_inf_f32(const float * x, float * dst, const int ncols, const int rows_per_channel, const int n_past) {
|
|
const int col = blockDim.y*blockIdx.y + threadIdx.y;
|
|
const int row = blockDim.x*blockIdx.x + threadIdx.x;
|
|
|
|
if (col >= ncols) {
|
|
return;
|
|
}
|
|
|
|
const int i = row*ncols + col;
|
|
//dst[i] = col > (n_past + row % rows_per_channel) ? -INFINITY : x[i];
|
|
//dst[i] = x[i] - (col > n_past + row % rows_per_channel) * INT_MAX; // equivalent within rounding error but slightly faster on GPU
|
|
dst[i] = x[i] - (col > n_past + row % rows_per_channel) * FLT_MAX;
|
|
}
|
|
|
|
static void diag_mask_inf_f32_cuda(const float * x, float * dst, const int ncols_x, const int nrows_x, const int rows_per_channel, const int n_past, cudaStream_t stream) {
|
|
const dim3 block_dims(1, CUDA_DIAG_MASK_INF_BLOCK_SIZE, 1);
|
|
const int block_num_x = (ncols_x + CUDA_DIAG_MASK_INF_BLOCK_SIZE - 1) / CUDA_DIAG_MASK_INF_BLOCK_SIZE;
|
|
const dim3 block_nums(nrows_x, block_num_x, 1);
|
|
diag_mask_inf_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols_x, rows_per_channel, n_past);
|
|
}
|
|
|
|
void ggml_cuda_op_diag_mask_inf(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
const float * src0_d = (const float *)src0->data;
|
|
float * dst_d = (float *)dst->data;
|
|
cudaStream_t stream = ctx.stream();
|
|
|
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
|
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
|
|
|
const int64_t ne00 = src0->ne[0];
|
|
const int64_t ne01 = src0->ne[1];
|
|
const int nrows0 = ggml_nrows(src0);
|
|
|
|
const int n_past = ((int32_t *) dst->op_params)[0];
|
|
|
|
diag_mask_inf_f32_cuda(src0_d, dst_d, ne00, nrows0, ne01, n_past, stream);
|
|
}
|