llama.cpp/examples/llama-bench/llama-bench.cpp
Diego Devesa cb13ef85a4
remove CMAKE_WINDOWS_EXPORT_ALL_SYMBOLS (#10797)
other windows build fixes
2024-12-12 19:02:49 +01:00

1643 lines
60 KiB
C++

#include <algorithm>
#include <array>
#include <cassert>
#include <chrono>
#include <cinttypes>
#include <clocale>
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <ctime>
#include <iterator>
#include <map>
#include <numeric>
#include <regex>
#include <sstream>
#include <string>
#include <thread>
#include <vector>
#include "common.h"
#include "ggml.h"
#include "llama.h"
#ifdef _WIN32
# define WIN32_LEAN_AND_MEAN
# ifndef NOMINMAX
# define NOMINMAX
# endif
# include <windows.h>
#endif
// utils
static uint64_t get_time_ns() {
using clock = std::chrono::high_resolution_clock;
return std::chrono::nanoseconds(clock::now().time_since_epoch()).count();
}
template <class T> static std::string join(const std::vector<T> & values, const std::string & delim) {
std::ostringstream str;
for (size_t i = 0; i < values.size(); i++) {
str << values[i];
if (i < values.size() - 1) {
str << delim;
}
}
return str.str();
}
template <typename T, typename F> static std::vector<std::string> transform_to_str(const std::vector<T> & values, F f) {
std::vector<std::string> str_values;
std::transform(values.begin(), values.end(), std::back_inserter(str_values), f);
return str_values;
}
template <typename T> static T avg(const std::vector<T> & v) {
if (v.empty()) {
return 0;
}
T sum = std::accumulate(v.begin(), v.end(), T(0));
return sum / (T) v.size();
}
template <typename T> static T stdev(const std::vector<T> & v) {
if (v.size() <= 1) {
return 0;
}
T mean = avg(v);
T sq_sum = std::inner_product(v.begin(), v.end(), v.begin(), T(0));
T stdev = std::sqrt(sq_sum / (T) (v.size() - 1) - mean * mean * (T) v.size() / (T) (v.size() - 1));
return stdev;
}
static std::string get_cpu_info() {
std::vector<std::string> cpu_list;
for (size_t i = 0; i < ggml_backend_dev_count(); i++) {
auto * dev = ggml_backend_dev_get(i);
auto dev_type = ggml_backend_dev_type(dev);
if (dev_type == GGML_BACKEND_DEVICE_TYPE_CPU || dev_type == GGML_BACKEND_DEVICE_TYPE_ACCEL) {
cpu_list.push_back(ggml_backend_dev_description(dev));
}
}
return join(cpu_list, ", ");
}
static std::string get_gpu_info() {
std::vector<std::string> gpu_list;
for (size_t i = 0; i < ggml_backend_dev_count(); i++) {
auto * dev = ggml_backend_dev_get(i);
auto dev_type = ggml_backend_dev_type(dev);
if (dev_type == GGML_BACKEND_DEVICE_TYPE_GPU) {
gpu_list.push_back(ggml_backend_dev_description(dev));
}
}
return join(gpu_list, ", ");
}
// command line params
enum output_formats { NONE, CSV, JSON, JSONL, MARKDOWN, SQL };
static const char * output_format_str(output_formats format) {
switch (format) {
case NONE:
return "none";
case CSV:
return "csv";
case JSON:
return "json";
case JSONL:
return "jsonl";
case MARKDOWN:
return "md";
case SQL:
return "sql";
default:
GGML_ABORT("invalid output format");
}
}
static bool output_format_from_str(const std::string & s, output_formats & format) {
if (s == "none") {
format = NONE;
} else if (s == "csv") {
format = CSV;
} else if (s == "json") {
format = JSON;
} else if (s == "jsonl") {
format = JSONL;
} else if (s == "md") {
format = MARKDOWN;
} else if (s == "sql") {
format = SQL;
} else {
return false;
}
return true;
}
static const char * split_mode_str(llama_split_mode mode) {
switch (mode) {
case LLAMA_SPLIT_MODE_NONE:
return "none";
case LLAMA_SPLIT_MODE_LAYER:
return "layer";
case LLAMA_SPLIT_MODE_ROW:
return "row";
default:
GGML_ABORT("invalid split mode");
}
}
static std::string pair_str(const std::pair<int, int> & p) {
static char buf[32];
snprintf(buf, sizeof(buf), "%d,%d", p.first, p.second);
return buf;
}
struct cmd_params {
std::vector<std::string> model;
std::vector<int> n_prompt;
std::vector<int> n_gen;
std::vector<std::pair<int, int>> n_pg;
std::vector<int> n_batch;
std::vector<int> n_ubatch;
std::vector<ggml_type> type_k;
std::vector<ggml_type> type_v;
std::vector<int> n_threads;
std::vector<std::string> cpu_mask;
std::vector<bool> cpu_strict;
std::vector<int> poll;
std::vector<int> n_gpu_layers;
std::vector<std::string> rpc_servers;
std::vector<llama_split_mode> split_mode;
std::vector<int> main_gpu;
std::vector<bool> no_kv_offload;
std::vector<bool> flash_attn;
std::vector<std::vector<float>> tensor_split;
std::vector<bool> use_mmap;
std::vector<bool> embeddings;
ggml_numa_strategy numa;
int reps;
ggml_sched_priority prio;
int delay;
bool verbose;
bool progress;
output_formats output_format;
output_formats output_format_stderr;
};
static const cmd_params cmd_params_defaults = {
/* model */ { "models/7B/ggml-model-q4_0.gguf" },
/* n_prompt */ { 512 },
/* n_gen */ { 128 },
/* n_pg */ {},
/* n_batch */ { 2048 },
/* n_ubatch */ { 512 },
/* type_k */ { GGML_TYPE_F16 },
/* type_v */ { GGML_TYPE_F16 },
/* n_threads */ { cpu_get_num_math() },
/* cpu_mask */ { "0x0" },
/* cpu_strict */ { false },
/* poll */ { 50 },
/* n_gpu_layers */ { 99 },
/* rpc_servers */ { "" },
/* split_mode */ { LLAMA_SPLIT_MODE_LAYER },
/* main_gpu */ { 0 },
/* no_kv_offload */ { false },
/* flash_attn */ { false },
/* tensor_split */ { std::vector<float>(llama_max_devices(), 0.0f) },
/* use_mmap */ { true },
/* embeddings */ { false },
/* numa */ GGML_NUMA_STRATEGY_DISABLED,
/* reps */ 5,
/* prio */ GGML_SCHED_PRIO_NORMAL,
/* delay */ 0,
/* verbose */ false,
/* progress */ false,
/* output_format */ MARKDOWN,
/* output_format_stderr */ NONE,
};
static void print_usage(int /* argc */, char ** argv) {
printf("usage: %s [options]\n", argv[0]);
printf("\n");
printf("options:\n");
printf(" -h, --help\n");
printf(" -m, --model <filename> (default: %s)\n", join(cmd_params_defaults.model, ",").c_str());
printf(" -p, --n-prompt <n> (default: %s)\n",
join(cmd_params_defaults.n_prompt, ",").c_str());
printf(" -n, --n-gen <n> (default: %s)\n", join(cmd_params_defaults.n_gen, ",").c_str());
printf(" -pg <pp,tg> (default: %s)\n",
join(transform_to_str(cmd_params_defaults.n_pg, pair_str), ",").c_str());
printf(" -b, --batch-size <n> (default: %s)\n",
join(cmd_params_defaults.n_batch, ",").c_str());
printf(" -ub, --ubatch-size <n> (default: %s)\n",
join(cmd_params_defaults.n_ubatch, ",").c_str());
printf(" -ctk, --cache-type-k <t> (default: %s)\n",
join(transform_to_str(cmd_params_defaults.type_k, ggml_type_name), ",").c_str());
printf(" -ctv, --cache-type-v <t> (default: %s)\n",
join(transform_to_str(cmd_params_defaults.type_v, ggml_type_name), ",").c_str());
printf(" -t, --threads <n> (default: %s)\n",
join(cmd_params_defaults.n_threads, ",").c_str());
printf(" -C, --cpu-mask <hex,hex> (default: %s)\n",
join(cmd_params_defaults.cpu_mask, ",").c_str());
printf(" --cpu-strict <0|1> (default: %s)\n",
join(cmd_params_defaults.cpu_strict, ",").c_str());
printf(" --poll <0...100> (default: %s)\n", join(cmd_params_defaults.poll, ",").c_str());
printf(" -ngl, --n-gpu-layers <n> (default: %s)\n",
join(cmd_params_defaults.n_gpu_layers, ",").c_str());
if (llama_supports_rpc()) {
printf(" -rpc, --rpc <rpc_servers> (default: %s)\n",
join(cmd_params_defaults.rpc_servers, ",").c_str());
}
printf(" -sm, --split-mode <none|layer|row> (default: %s)\n",
join(transform_to_str(cmd_params_defaults.split_mode, split_mode_str), ",").c_str());
printf(" -mg, --main-gpu <i> (default: %s)\n",
join(cmd_params_defaults.main_gpu, ",").c_str());
printf(" -nkvo, --no-kv-offload <0|1> (default: %s)\n",
join(cmd_params_defaults.no_kv_offload, ",").c_str());
printf(" -fa, --flash-attn <0|1> (default: %s)\n",
join(cmd_params_defaults.flash_attn, ",").c_str());
printf(" -mmp, --mmap <0|1> (default: %s)\n",
join(cmd_params_defaults.use_mmap, ",").c_str());
printf(" --numa <distribute|isolate|numactl> (default: disabled)\n");
printf(" -embd, --embeddings <0|1> (default: %s)\n",
join(cmd_params_defaults.embeddings, ",").c_str());
printf(" -ts, --tensor-split <ts0/ts1/..> (default: 0)\n");
printf(" -r, --repetitions <n> (default: %d)\n", cmd_params_defaults.reps);
printf(" --prio <0|1|2|3> (default: %d)\n", cmd_params_defaults.prio);
printf(" --delay <0...N> (seconds) (default: %d)\n", cmd_params_defaults.delay);
printf(" -o, --output <csv|json|jsonl|md|sql> (default: %s)\n",
output_format_str(cmd_params_defaults.output_format));
printf(" -oe, --output-err <csv|json|jsonl|md|sql> (default: %s)\n",
output_format_str(cmd_params_defaults.output_format_stderr));
printf(" -v, --verbose (default: %s)\n", cmd_params_defaults.verbose ? "1" : "0");
printf(" --progress (default: %s)\n", cmd_params_defaults.progress ? "1" : "0");
printf("\n");
printf(
"Multiple values can be given for each parameter by separating them with ',' or by specifying the parameter "
"multiple times.\n");
}
static ggml_type ggml_type_from_name(const std::string & s) {
if (s == "f16") {
return GGML_TYPE_F16;
}
if (s == "bf16") {
return GGML_TYPE_BF16;
}
if (s == "q8_0") {
return GGML_TYPE_Q8_0;
}
if (s == "q4_0") {
return GGML_TYPE_Q4_0;
}
if (s == "q4_1") {
return GGML_TYPE_Q4_1;
}
if (s == "q5_0") {
return GGML_TYPE_Q5_0;
}
if (s == "q5_1") {
return GGML_TYPE_Q5_1;
}
if (s == "iq4_nl") {
return GGML_TYPE_IQ4_NL;
}
return GGML_TYPE_COUNT;
}
static cmd_params parse_cmd_params(int argc, char ** argv) {
cmd_params params;
std::string arg;
bool invalid_param = false;
const std::string arg_prefix = "--";
const char split_delim = ',';
params.verbose = cmd_params_defaults.verbose;
params.output_format = cmd_params_defaults.output_format;
params.output_format_stderr = cmd_params_defaults.output_format_stderr;
params.reps = cmd_params_defaults.reps;
params.numa = cmd_params_defaults.numa;
params.prio = cmd_params_defaults.prio;
params.delay = cmd_params_defaults.delay;
params.progress = cmd_params_defaults.progress;
for (int i = 1; i < argc; i++) {
arg = argv[i];
if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
std::replace(arg.begin(), arg.end(), '_', '-');
}
if (arg == "-h" || arg == "--help") {
print_usage(argc, argv);
exit(0);
} else if (arg == "-m" || arg == "--model") {
if (++i >= argc) {
invalid_param = true;
break;
}
auto p = string_split<std::string>(argv[i], split_delim);
params.model.insert(params.model.end(), p.begin(), p.end());
} else if (arg == "-p" || arg == "--n-prompt") {
if (++i >= argc) {
invalid_param = true;
break;
}
auto p = string_split<int>(argv[i], split_delim);
params.n_prompt.insert(params.n_prompt.end(), p.begin(), p.end());
} else if (arg == "-n" || arg == "--n-gen") {
if (++i >= argc) {
invalid_param = true;
break;
}
auto p = string_split<int>(argv[i], split_delim);
params.n_gen.insert(params.n_gen.end(), p.begin(), p.end());
} else if (arg == "-pg") {
if (++i >= argc) {
invalid_param = true;
break;
}
auto p = string_split<std::string>(argv[i], ',');
if (p.size() != 2) {
invalid_param = true;
break;
}
params.n_pg.push_back({ std::stoi(p[0]), std::stoi(p[1]) });
} else if (arg == "-b" || arg == "--batch-size") {
if (++i >= argc) {
invalid_param = true;
break;
}
auto p = string_split<int>(argv[i], split_delim);
params.n_batch.insert(params.n_batch.end(), p.begin(), p.end());
} else if (arg == "-ub" || arg == "--ubatch-size") {
if (++i >= argc) {
invalid_param = true;
break;
}
auto p = string_split<int>(argv[i], split_delim);
params.n_ubatch.insert(params.n_ubatch.end(), p.begin(), p.end());
} else if (arg == "-ctk" || arg == "--cache-type-k") {
if (++i >= argc) {
invalid_param = true;
break;
}
auto p = string_split<std::string>(argv[i], split_delim);
std::vector<ggml_type> types;
for (const auto & t : p) {
ggml_type gt = ggml_type_from_name(t);
if (gt == GGML_TYPE_COUNT) {
invalid_param = true;
break;
}
types.push_back(gt);
}
if (invalid_param) {
break;
}
params.type_k.insert(params.type_k.end(), types.begin(), types.end());
} else if (arg == "-ctv" || arg == "--cache-type-v") {
if (++i >= argc) {
invalid_param = true;
break;
}
auto p = string_split<std::string>(argv[i], split_delim);
std::vector<ggml_type> types;
for (const auto & t : p) {
ggml_type gt = ggml_type_from_name(t);
if (gt == GGML_TYPE_COUNT) {
invalid_param = true;
break;
}
types.push_back(gt);
}
if (invalid_param) {
break;
}
params.type_v.insert(params.type_v.end(), types.begin(), types.end());
} else if (arg == "-t" || arg == "--threads") {
if (++i >= argc) {
invalid_param = true;
break;
}
auto p = string_split<int>(argv[i], split_delim);
params.n_threads.insert(params.n_threads.end(), p.begin(), p.end());
} else if (arg == "-C" || arg == "--cpu-mask") {
if (++i >= argc) {
invalid_param = true;
break;
}
auto p = string_split<std::string>(argv[i], split_delim);
params.cpu_mask.insert(params.cpu_mask.end(), p.begin(), p.end());
} else if (arg == "--cpu-strict") {
if (++i >= argc) {
invalid_param = true;
break;
}
auto p = string_split<bool>(argv[i], split_delim);
params.cpu_strict.insert(params.cpu_strict.end(), p.begin(), p.end());
} else if (arg == "--poll") {
if (++i >= argc) {
invalid_param = true;
break;
}
auto p = string_split<int>(argv[i], split_delim);
params.poll.insert(params.poll.end(), p.begin(), p.end());
} else if (arg == "-ngl" || arg == "--n-gpu-layers") {
if (++i >= argc) {
invalid_param = true;
break;
}
auto p = string_split<int>(argv[i], split_delim);
params.n_gpu_layers.insert(params.n_gpu_layers.end(), p.begin(), p.end());
} else if (llama_supports_rpc() && (arg == "-rpc" || arg == "--rpc")) {
if (++i >= argc) {
invalid_param = true;
break;
}
params.rpc_servers.push_back(argv[i]);
} else if (arg == "-sm" || arg == "--split-mode") {
if (++i >= argc) {
invalid_param = true;
break;
}
auto p = string_split<std::string>(argv[i], split_delim);
std::vector<llama_split_mode> modes;
for (const auto & m : p) {
llama_split_mode mode;
if (m == "none") {
mode = LLAMA_SPLIT_MODE_NONE;
} else if (m == "layer") {
mode = LLAMA_SPLIT_MODE_LAYER;
} else if (m == "row") {
mode = LLAMA_SPLIT_MODE_ROW;
} else {
invalid_param = true;
break;
}
modes.push_back(mode);
}
if (invalid_param) {
break;
}
params.split_mode.insert(params.split_mode.end(), modes.begin(), modes.end());
} else if (arg == "-mg" || arg == "--main-gpu") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.main_gpu = string_split<int>(argv[i], split_delim);
} else if (arg == "-nkvo" || arg == "--no-kv-offload") {
if (++i >= argc) {
invalid_param = true;
break;
}
auto p = string_split<bool>(argv[i], split_delim);
params.no_kv_offload.insert(params.no_kv_offload.end(), p.begin(), p.end());
} else if (arg == "--numa") {
if (++i >= argc) {
invalid_param = true;
break;
} else {
std::string value(argv[i]);
/**/ if (value == "distribute" || value == "") {
params.numa = GGML_NUMA_STRATEGY_DISTRIBUTE;
} else if (value == "isolate") {
params.numa = GGML_NUMA_STRATEGY_ISOLATE;
} else if (value == "numactl") {
params.numa = GGML_NUMA_STRATEGY_NUMACTL;
} else {
invalid_param = true;
break;
}
}
} else if (arg == "-fa" || arg == "--flash-attn") {
if (++i >= argc) {
invalid_param = true;
break;
}
auto p = string_split<bool>(argv[i], split_delim);
params.flash_attn.insert(params.flash_attn.end(), p.begin(), p.end());
} else if (arg == "-mmp" || arg == "--mmap") {
if (++i >= argc) {
invalid_param = true;
break;
}
auto p = string_split<bool>(argv[i], split_delim);
params.use_mmap.insert(params.use_mmap.end(), p.begin(), p.end());
} else if (arg == "-embd" || arg == "--embeddings") {
if (++i >= argc) {
invalid_param = true;
break;
}
auto p = string_split<bool>(argv[i], split_delim);
params.embeddings.insert(params.embeddings.end(), p.begin(), p.end());
} else if (arg == "-ts" || arg == "--tensor-split") {
if (++i >= argc) {
invalid_param = true;
break;
}
for (auto ts : string_split<std::string>(argv[i], split_delim)) {
// split string by ; and /
const std::regex regex{ R"([;/]+)" };
std::sregex_token_iterator it{ ts.begin(), ts.end(), regex, -1 };
std::vector<std::string> split_arg{ it, {} };
GGML_ASSERT(split_arg.size() <= llama_max_devices());
std::vector<float> tensor_split(llama_max_devices());
for (size_t i = 0; i < llama_max_devices(); ++i) {
if (i < split_arg.size()) {
tensor_split[i] = std::stof(split_arg[i]);
} else {
tensor_split[i] = 0.0f;
}
}
params.tensor_split.push_back(tensor_split);
}
} else if (arg == "-r" || arg == "--repetitions") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.reps = std::stoi(argv[i]);
} else if (arg == "--prio") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.prio = (enum ggml_sched_priority) std::stoi(argv[i]);
} else if (arg == "--delay") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.delay = std::stoi(argv[i]);
} else if (arg == "-o" || arg == "--output") {
if (++i >= argc) {
invalid_param = true;
break;
}
invalid_param = !output_format_from_str(argv[i], params.output_format);
} else if (arg == "-oe" || arg == "--output-err") {
if (++i >= argc) {
invalid_param = true;
break;
}
invalid_param = !output_format_from_str(argv[i], params.output_format_stderr);
} else if (arg == "-v" || arg == "--verbose") {
params.verbose = true;
} else if (arg == "--progress") {
params.progress = true;
} else {
invalid_param = true;
break;
}
}
if (invalid_param) {
fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
print_usage(argc, argv);
exit(1);
}
// set defaults
if (params.model.empty()) {
params.model = cmd_params_defaults.model;
}
if (params.n_prompt.empty()) {
params.n_prompt = cmd_params_defaults.n_prompt;
}
if (params.n_gen.empty()) {
params.n_gen = cmd_params_defaults.n_gen;
}
if (params.n_pg.empty()) {
params.n_pg = cmd_params_defaults.n_pg;
}
if (params.n_batch.empty()) {
params.n_batch = cmd_params_defaults.n_batch;
}
if (params.n_ubatch.empty()) {
params.n_ubatch = cmd_params_defaults.n_ubatch;
}
if (params.type_k.empty()) {
params.type_k = cmd_params_defaults.type_k;
}
if (params.type_v.empty()) {
params.type_v = cmd_params_defaults.type_v;
}
if (params.n_gpu_layers.empty()) {
params.n_gpu_layers = cmd_params_defaults.n_gpu_layers;
}
if (params.rpc_servers.empty()) {
params.rpc_servers = cmd_params_defaults.rpc_servers;
}
if (params.split_mode.empty()) {
params.split_mode = cmd_params_defaults.split_mode;
}
if (params.main_gpu.empty()) {
params.main_gpu = cmd_params_defaults.main_gpu;
}
if (params.no_kv_offload.empty()) {
params.no_kv_offload = cmd_params_defaults.no_kv_offload;
}
if (params.flash_attn.empty()) {
params.flash_attn = cmd_params_defaults.flash_attn;
}
if (params.tensor_split.empty()) {
params.tensor_split = cmd_params_defaults.tensor_split;
}
if (params.use_mmap.empty()) {
params.use_mmap = cmd_params_defaults.use_mmap;
}
if (params.embeddings.empty()) {
params.embeddings = cmd_params_defaults.embeddings;
}
if (params.n_threads.empty()) {
params.n_threads = cmd_params_defaults.n_threads;
}
if (params.cpu_mask.empty()) {
params.cpu_mask = cmd_params_defaults.cpu_mask;
}
if (params.cpu_strict.empty()) {
params.cpu_strict = cmd_params_defaults.cpu_strict;
}
if (params.poll.empty()) {
params.poll = cmd_params_defaults.poll;
}
return params;
}
struct cmd_params_instance {
std::string model;
int n_prompt;
int n_gen;
int n_batch;
int n_ubatch;
ggml_type type_k;
ggml_type type_v;
int n_threads;
std::string cpu_mask;
bool cpu_strict;
int poll;
int n_gpu_layers;
std::string rpc_servers;
llama_split_mode split_mode;
int main_gpu;
bool no_kv_offload;
bool flash_attn;
std::vector<float> tensor_split;
bool use_mmap;
bool embeddings;
llama_model_params to_llama_mparams() const {
llama_model_params mparams = llama_model_default_params();
mparams.n_gpu_layers = n_gpu_layers;
if (!rpc_servers.empty()) {
mparams.rpc_servers = rpc_servers.c_str();
}
mparams.split_mode = split_mode;
mparams.main_gpu = main_gpu;
mparams.tensor_split = tensor_split.data();
mparams.use_mmap = use_mmap;
return mparams;
}
bool equal_mparams(const cmd_params_instance & other) const {
return model == other.model && n_gpu_layers == other.n_gpu_layers && rpc_servers == other.rpc_servers &&
split_mode == other.split_mode && main_gpu == other.main_gpu && use_mmap == other.use_mmap &&
tensor_split == other.tensor_split;
}
llama_context_params to_llama_cparams() const {
llama_context_params cparams = llama_context_default_params();
cparams.n_ctx = n_prompt + n_gen;
cparams.n_batch = n_batch;
cparams.n_ubatch = n_ubatch;
cparams.type_k = type_k;
cparams.type_v = type_v;
cparams.offload_kqv = !no_kv_offload;
cparams.flash_attn = flash_attn;
cparams.embeddings = embeddings;
return cparams;
}
};
static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_params & params) {
std::vector<cmd_params_instance> instances;
// this ordering minimizes the number of times that each model needs to be reloaded
// clang-format off
for (const auto & m : params.model)
for (const auto & nl : params.n_gpu_layers)
for (const auto & rpc : params.rpc_servers)
for (const auto & sm : params.split_mode)
for (const auto & mg : params.main_gpu)
for (const auto & ts : params.tensor_split)
for (const auto & mmp : params.use_mmap)
for (const auto & embd : params.embeddings)
for (const auto & nb : params.n_batch)
for (const auto & nub : params.n_ubatch)
for (const auto & tk : params.type_k)
for (const auto & tv : params.type_v)
for (const auto & nkvo : params.no_kv_offload)
for (const auto & fa : params.flash_attn)
for (const auto & nt : params.n_threads)
for (const auto & cm : params.cpu_mask)
for (const auto & cs : params.cpu_strict)
for (const auto & pl : params.poll) {
for (const auto & n_prompt : params.n_prompt) {
if (n_prompt == 0) {
continue;
}
cmd_params_instance instance = {
/* .model = */ m,
/* .n_prompt = */ n_prompt,
/* .n_gen = */ 0,
/* .n_batch = */ nb,
/* .n_ubatch = */ nub,
/* .type_k = */ tk,
/* .type_v = */ tv,
/* .n_threads = */ nt,
/* .cpu_mask = */ cm,
/* .cpu_strict = */ cs,
/* .poll = */ pl,
/* .n_gpu_layers = */ nl,
/* .rpc_servers = */ rpc,
/* .split_mode = */ sm,
/* .main_gpu = */ mg,
/* .no_kv_offload= */ nkvo,
/* .flash_attn = */ fa,
/* .tensor_split = */ ts,
/* .use_mmap = */ mmp,
/* .embeddings = */ embd,
};
instances.push_back(instance);
}
for (const auto & n_gen : params.n_gen) {
if (n_gen == 0) {
continue;
}
cmd_params_instance instance = {
/* .model = */ m,
/* .n_prompt = */ 0,
/* .n_gen = */ n_gen,
/* .n_batch = */ nb,
/* .n_ubatch = */ nub,
/* .type_k = */ tk,
/* .type_v = */ tv,
/* .n_threads = */ nt,
/* .cpu_mask = */ cm,
/* .cpu_strict = */ cs,
/* .poll = */ pl,
/* .n_gpu_layers = */ nl,
/* .rpc_servers = */ rpc,
/* .split_mode = */ sm,
/* .main_gpu = */ mg,
/* .no_kv_offload= */ nkvo,
/* .flash_attn = */ fa,
/* .tensor_split = */ ts,
/* .use_mmap = */ mmp,
/* .embeddings = */ embd,
};
instances.push_back(instance);
}
for (const auto & n_pg : params.n_pg) {
if (n_pg.first == 0 && n_pg.second == 0) {
continue;
}
cmd_params_instance instance = {
/* .model = */ m,
/* .n_prompt = */ n_pg.first,
/* .n_gen = */ n_pg.second,
/* .n_batch = */ nb,
/* .n_ubatch = */ nub,
/* .type_k = */ tk,
/* .type_v = */ tv,
/* .n_threads = */ nt,
/* .cpu_mask = */ cm,
/* .cpu_strict = */ cs,
/* .poll = */ pl,
/* .n_gpu_layers = */ nl,
/* .rpc_servers = */ rpc,
/* .split_mode = */ sm,
/* .main_gpu = */ mg,
/* .no_kv_offload= */ nkvo,
/* .flash_attn = */ fa,
/* .tensor_split = */ ts,
/* .use_mmap = */ mmp,
/* .embeddings = */ embd,
};
instances.push_back(instance);
}
}
// clang-format on
return instances;
}
struct test {
static const std::string build_commit;
static const int build_number;
static const std::string cpu_info;
static const std::string gpu_info;
std::string model_filename;
std::string model_type;
uint64_t model_size;
uint64_t model_n_params;
int n_batch;
int n_ubatch;
int n_threads;
std::string cpu_mask;
bool cpu_strict;
int poll;
ggml_type type_k;
ggml_type type_v;
int n_gpu_layers;
llama_split_mode split_mode;
int main_gpu;
bool no_kv_offload;
bool flash_attn;
std::vector<float> tensor_split;
bool use_mmap;
bool embeddings;
int n_prompt;
int n_gen;
std::string test_time;
std::vector<uint64_t> samples_ns;
test(const cmd_params_instance & inst, const llama_model * lmodel, const llama_context * ctx) {
model_filename = inst.model;
char buf[128];
llama_model_desc(lmodel, buf, sizeof(buf));
model_type = buf;
model_size = llama_model_size(lmodel);
model_n_params = llama_model_n_params(lmodel);
n_batch = inst.n_batch;
n_ubatch = inst.n_ubatch;
n_threads = inst.n_threads;
cpu_mask = inst.cpu_mask;
cpu_strict = inst.cpu_strict;
poll = inst.poll;
type_k = inst.type_k;
type_v = inst.type_v;
n_gpu_layers = inst.n_gpu_layers;
split_mode = inst.split_mode;
main_gpu = inst.main_gpu;
no_kv_offload = inst.no_kv_offload;
flash_attn = inst.flash_attn;
tensor_split = inst.tensor_split;
use_mmap = inst.use_mmap;
embeddings = inst.embeddings;
n_prompt = inst.n_prompt;
n_gen = inst.n_gen;
// RFC 3339 date-time format
time_t t = time(NULL);
std::strftime(buf, sizeof(buf), "%FT%TZ", gmtime(&t));
test_time = buf;
(void) ctx;
}
uint64_t avg_ns() const { return ::avg(samples_ns); }
uint64_t stdev_ns() const { return ::stdev(samples_ns); }
std::vector<double> get_ts() const {
int n_tokens = n_prompt + n_gen;
std::vector<double> ts;
std::transform(samples_ns.begin(), samples_ns.end(), std::back_inserter(ts),
[n_tokens](uint64_t t) { return 1e9 * n_tokens / t; });
return ts;
}
double avg_ts() const { return ::avg(get_ts()); }
double stdev_ts() const { return ::stdev(get_ts()); }
static std::string get_backend() {
std::vector<std::string> backends;
for (size_t i = 0; i < ggml_backend_reg_count(); i++) {
auto * reg = ggml_backend_reg_get(i);
std::string name = ggml_backend_reg_name(reg);
if (name != "CPU") {
backends.push_back(ggml_backend_reg_name(reg));
}
}
return backends.empty() ? "CPU" : join(backends, ",");
}
static const std::vector<std::string> & get_fields() {
static const std::vector<std::string> fields = {
"build_commit", "build_number", "cpu_info", "gpu_info", "backends", "model_filename",
"model_type", "model_size", "model_n_params", "n_batch", "n_ubatch", "n_threads",
"cpu_mask", "cpu_strict", "poll", "type_k", "type_v", "n_gpu_layers",
"split_mode", "main_gpu", "no_kv_offload", "flash_attn", "tensor_split", "use_mmap",
"embeddings", "n_prompt", "n_gen", "test_time", "avg_ns", "stddev_ns",
"avg_ts", "stddev_ts",
};
return fields;
}
enum field_type { STRING, BOOL, INT, FLOAT };
static field_type get_field_type(const std::string & field) {
if (field == "build_number" || field == "n_batch" || field == "n_ubatch" || field == "n_threads" ||
field == "poll" || field == "model_size" || field == "model_n_params" || field == "n_gpu_layers" ||
field == "main_gpu" || field == "n_prompt" || field == "n_gen" || field == "avg_ns" ||
field == "stddev_ns") {
return INT;
}
if (field == "f16_kv" || field == "no_kv_offload" || field == "cpu_strict" || field == "flash_attn" ||
field == "use_mmap" || field == "embeddings") {
return BOOL;
}
if (field == "avg_ts" || field == "stddev_ts") {
return FLOAT;
}
return STRING;
}
std::vector<std::string> get_values() const {
std::string tensor_split_str;
int max_nonzero = 0;
for (size_t i = 0; i < llama_max_devices(); i++) {
if (tensor_split[i] > 0) {
max_nonzero = i;
}
}
for (int i = 0; i <= max_nonzero; i++) {
char buf[32];
snprintf(buf, sizeof(buf), "%.2f", tensor_split[i]);
tensor_split_str += buf;
if (i < max_nonzero) {
tensor_split_str += "/";
}
}
std::vector<std::string> values = { build_commit,
std::to_string(build_number),
cpu_info,
gpu_info,
get_backend(),
model_filename,
model_type,
std::to_string(model_size),
std::to_string(model_n_params),
std::to_string(n_batch),
std::to_string(n_ubatch),
std::to_string(n_threads),
cpu_mask,
std::to_string(cpu_strict),
std::to_string(poll),
ggml_type_name(type_k),
ggml_type_name(type_v),
std::to_string(n_gpu_layers),
split_mode_str(split_mode),
std::to_string(main_gpu),
std::to_string(no_kv_offload),
std::to_string(flash_attn),
tensor_split_str,
std::to_string(use_mmap),
std::to_string(embeddings),
std::to_string(n_prompt),
std::to_string(n_gen),
test_time,
std::to_string(avg_ns()),
std::to_string(stdev_ns()),
std::to_string(avg_ts()),
std::to_string(stdev_ts()) };
return values;
}
std::map<std::string, std::string> get_map() const {
std::map<std::string, std::string> map;
auto fields = get_fields();
auto values = get_values();
std::transform(fields.begin(), fields.end(), values.begin(), std::inserter(map, map.end()),
std::make_pair<const std::string &, const std::string &>);
return map;
}
};
const std::string test::build_commit = LLAMA_COMMIT;
const int test::build_number = LLAMA_BUILD_NUMBER;
const std::string test::cpu_info = get_cpu_info();
const std::string test::gpu_info = get_gpu_info();
struct printer {
virtual ~printer() {}
FILE * fout;
virtual void print_header(const cmd_params & params) { (void) params; }
virtual void print_test(const test & t) = 0;
virtual void print_footer() {}
};
struct csv_printer : public printer {
static std::string escape_csv(const std::string & field) {
std::string escaped = "\"";
for (auto c : field) {
if (c == '"') {
escaped += "\"";
}
escaped += c;
}
escaped += "\"";
return escaped;
}
void print_header(const cmd_params & params) override {
std::vector<std::string> fields = test::get_fields();
fprintf(fout, "%s\n", join(fields, ",").c_str());
(void) params;
}
void print_test(const test & t) override {
std::vector<std::string> values = t.get_values();
std::transform(values.begin(), values.end(), values.begin(), escape_csv);
fprintf(fout, "%s\n", join(values, ",").c_str());
}
};
static std::string escape_json(const std::string & value) {
std::string escaped;
for (auto c : value) {
if (c == '"') {
escaped += "\\\"";
} else if (c == '\\') {
escaped += "\\\\";
} else if (c <= 0x1f) {
char buf[8];
snprintf(buf, sizeof(buf), "\\u%04x", c);
escaped += buf;
} else {
escaped += c;
}
}
return escaped;
}
static std::string format_json_value(const std::string & field, const std::string & value) {
switch (test::get_field_type(field)) {
case test::STRING:
return "\"" + escape_json(value) + "\"";
case test::BOOL:
return value == "0" ? "false" : "true";
default:
return value;
}
}
struct json_printer : public printer {
bool first = true;
void print_header(const cmd_params & params) override {
fprintf(fout, "[\n");
(void) params;
}
void print_fields(const std::vector<std::string> & fields, const std::vector<std::string> & values) {
assert(fields.size() == values.size());
for (size_t i = 0; i < fields.size(); i++) {
fprintf(fout, " \"%s\": %s,\n", fields.at(i).c_str(),
format_json_value(fields.at(i), values.at(i)).c_str());
}
}
void print_test(const test & t) override {
if (first) {
first = false;
} else {
fprintf(fout, ",\n");
}
fprintf(fout, " {\n");
print_fields(test::get_fields(), t.get_values());
fprintf(fout, " \"samples_ns\": [ %s ],\n", join(t.samples_ns, ", ").c_str());
fprintf(fout, " \"samples_ts\": [ %s ]\n", join(t.get_ts(), ", ").c_str());
fprintf(fout, " }");
fflush(fout);
}
void print_footer() override { fprintf(fout, "\n]\n"); }
};
struct jsonl_printer : public printer {
void print_fields(const std::vector<std::string> & fields, const std::vector<std::string> & values) {
assert(fields.size() == values.size());
for (size_t i = 0; i < fields.size(); i++) {
fprintf(fout, "\"%s\": %s, ", fields.at(i).c_str(), format_json_value(fields.at(i), values.at(i)).c_str());
}
}
void print_test(const test & t) override {
fprintf(fout, "{");
print_fields(test::get_fields(), t.get_values());
fprintf(fout, "\"samples_ns\": [ %s ],", join(t.samples_ns, ", ").c_str());
fprintf(fout, "\"samples_ts\": [ %s ]", join(t.get_ts(), ", ").c_str());
fprintf(fout, "}\n");
fflush(fout);
}
};
struct markdown_printer : public printer {
std::vector<std::string> fields;
static int get_field_width(const std::string & field) {
if (field == "model") {
return -30;
}
if (field == "t/s") {
return 20;
}
if (field == "size" || field == "params") {
return 10;
}
if (field == "n_gpu_layers") {
return 3;
}
if (field == "n_threads") {
return 7;
}
if (field == "n_batch") {
return 7;
}
if (field == "n_ubatch") {
return 8;
}
if (field == "type_k" || field == "type_v") {
return 6;
}
if (field == "split_mode") {
return 5;
}
if (field == "flash_attn") {
return 2;
}
if (field == "use_mmap") {
return 4;
}
if (field == "test") {
return 13;
}
int width = std::max((int) field.length(), 10);
if (test::get_field_type(field) == test::STRING) {
return -width;
}
return width;
}
static std::string get_field_display_name(const std::string & field) {
if (field == "n_gpu_layers") {
return "ngl";
}
if (field == "split_mode") {
return "sm";
}
if (field == "n_threads") {
return "threads";
}
if (field == "no_kv_offload") {
return "nkvo";
}
if (field == "flash_attn") {
return "fa";
}
if (field == "use_mmap") {
return "mmap";
}
if (field == "embeddings") {
return "embd";
}
if (field == "tensor_split") {
return "ts";
}
return field;
}
void print_header(const cmd_params & params) override {
// select fields to print
fields.emplace_back("model");
fields.emplace_back("size");
fields.emplace_back("params");
fields.emplace_back("backend");
bool is_cpu_backend = test::get_backend().find("CPU") != std::string::npos ||
test::get_backend().find("BLAS") != std::string::npos;
if (!is_cpu_backend) {
fields.emplace_back("n_gpu_layers");
}
if (params.n_threads.size() > 1 || params.n_threads != cmd_params_defaults.n_threads || is_cpu_backend) {
fields.emplace_back("n_threads");
}
if (params.cpu_mask.size() > 1 || params.cpu_mask != cmd_params_defaults.cpu_mask) {
fields.emplace_back("cpu_mask");
}
if (params.cpu_strict.size() > 1 || params.cpu_strict != cmd_params_defaults.cpu_strict) {
fields.emplace_back("cpu_strict");
}
if (params.poll.size() > 1 || params.poll != cmd_params_defaults.poll) {
fields.emplace_back("poll");
}
if (params.n_batch.size() > 1 || params.n_batch != cmd_params_defaults.n_batch) {
fields.emplace_back("n_batch");
}
if (params.n_ubatch.size() > 1 || params.n_ubatch != cmd_params_defaults.n_ubatch) {
fields.emplace_back("n_ubatch");
}
if (params.type_k.size() > 1 || params.type_k != cmd_params_defaults.type_k) {
fields.emplace_back("type_k");
}
if (params.type_v.size() > 1 || params.type_v != cmd_params_defaults.type_v) {
fields.emplace_back("type_v");
}
if (params.main_gpu.size() > 1 || params.main_gpu != cmd_params_defaults.main_gpu) {
fields.emplace_back("main_gpu");
}
if (params.split_mode.size() > 1 || params.split_mode != cmd_params_defaults.split_mode) {
fields.emplace_back("split_mode");
}
if (params.no_kv_offload.size() > 1 || params.no_kv_offload != cmd_params_defaults.no_kv_offload) {
fields.emplace_back("no_kv_offload");
}
if (params.flash_attn.size() > 1 || params.flash_attn != cmd_params_defaults.flash_attn) {
fields.emplace_back("flash_attn");
}
if (params.tensor_split.size() > 1 || params.tensor_split != cmd_params_defaults.tensor_split) {
fields.emplace_back("tensor_split");
}
if (params.use_mmap.size() > 1 || params.use_mmap != cmd_params_defaults.use_mmap) {
fields.emplace_back("use_mmap");
}
if (params.embeddings.size() > 1 || params.embeddings != cmd_params_defaults.embeddings) {
fields.emplace_back("embeddings");
}
fields.emplace_back("test");
fields.emplace_back("t/s");
fprintf(fout, "|");
for (const auto & field : fields) {
fprintf(fout, " %*s |", get_field_width(field), get_field_display_name(field).c_str());
}
fprintf(fout, "\n");
fprintf(fout, "|");
for (const auto & field : fields) {
int width = get_field_width(field);
fprintf(fout, " %s%s |", std::string(std::abs(width) - 1, '-').c_str(), width > 0 ? ":" : "-");
}
fprintf(fout, "\n");
}
void print_test(const test & t) override {
std::map<std::string, std::string> vmap = t.get_map();
fprintf(fout, "|");
for (const auto & field : fields) {
std::string value;
char buf[128];
if (field == "model") {
value = t.model_type;
} else if (field == "size") {
if (t.model_size < 1024 * 1024 * 1024) {
snprintf(buf, sizeof(buf), "%.2f MiB", t.model_size / 1024.0 / 1024.0);
} else {
snprintf(buf, sizeof(buf), "%.2f GiB", t.model_size / 1024.0 / 1024.0 / 1024.0);
}
value = buf;
} else if (field == "params") {
if (t.model_n_params < 1000 * 1000 * 1000) {
snprintf(buf, sizeof(buf), "%.2f M", t.model_n_params / 1e6);
} else {
snprintf(buf, sizeof(buf), "%.2f B", t.model_n_params / 1e9);
}
value = buf;
} else if (field == "backend") {
value = test::get_backend();
} else if (field == "test") {
if (t.n_prompt > 0 && t.n_gen == 0) {
snprintf(buf, sizeof(buf), "pp%d", t.n_prompt);
} else if (t.n_gen > 0 && t.n_prompt == 0) {
snprintf(buf, sizeof(buf), "tg%d", t.n_gen);
} else {
snprintf(buf, sizeof(buf), "pp%d+tg%d", t.n_prompt, t.n_gen);
}
value = buf;
} else if (field == "t/s") {
snprintf(buf, sizeof(buf), "%.2f ± %.2f", t.avg_ts(), t.stdev_ts());
value = buf;
} else if (vmap.find(field) != vmap.end()) {
value = vmap.at(field);
} else {
assert(false);
exit(1);
}
int width = get_field_width(field);
if (field == "t/s") {
// HACK: the utf-8 character is 2 bytes
width += 1;
}
fprintf(fout, " %*s |", width, value.c_str());
}
fprintf(fout, "\n");
}
void print_footer() override {
fprintf(fout, "\nbuild: %s (%d)\n", test::build_commit.c_str(), test::build_number);
}
};
struct sql_printer : public printer {
static std::string get_sql_field_type(const std::string & field) {
switch (test::get_field_type(field)) {
case test::STRING:
return "TEXT";
case test::BOOL:
case test::INT:
return "INTEGER";
case test::FLOAT:
return "REAL";
default:
assert(false);
exit(1);
}
}
void print_header(const cmd_params & params) override {
std::vector<std::string> fields = test::get_fields();
fprintf(fout, "CREATE TABLE IF NOT EXISTS test (\n");
for (size_t i = 0; i < fields.size(); i++) {
fprintf(fout, " %s %s%s\n", fields.at(i).c_str(), get_sql_field_type(fields.at(i)).c_str(),
i < fields.size() - 1 ? "," : "");
}
fprintf(fout, ");\n");
fprintf(fout, "\n");
(void) params;
}
void print_test(const test & t) override {
fprintf(fout, "INSERT INTO test (%s) ", join(test::get_fields(), ", ").c_str());
fprintf(fout, "VALUES (");
std::vector<std::string> values = t.get_values();
for (size_t i = 0; i < values.size(); i++) {
fprintf(fout, "'%s'%s", values.at(i).c_str(), i < values.size() - 1 ? ", " : "");
}
fprintf(fout, ");\n");
}
};
static void test_prompt(llama_context * ctx, int n_prompt, int n_batch, int n_threads) {
llama_set_n_threads(ctx, n_threads, n_threads);
const llama_model * model = llama_get_model(ctx);
const int32_t n_vocab = llama_n_vocab(model);
std::vector<llama_token> tokens(n_batch);
int n_processed = 0;
while (n_processed < n_prompt) {
int n_tokens = std::min(n_prompt - n_processed, n_batch);
tokens[0] = n_processed == 0 && llama_add_bos_token(model) ? llama_token_bos(model) : std::rand() % n_vocab;
for (int i = 1; i < n_tokens; i++) {
tokens[i] = std::rand() % n_vocab;
}
llama_decode(ctx, llama_batch_get_one(tokens.data(), n_tokens));
n_processed += n_tokens;
}
llama_synchronize(ctx);
}
static void test_gen(llama_context * ctx, int n_gen, int n_threads) {
llama_set_n_threads(ctx, n_threads, n_threads);
const llama_model * model = llama_get_model(ctx);
const int32_t n_vocab = llama_n_vocab(model);
llama_token token = llama_add_bos_token(model) ? llama_token_bos(model) : std::rand() % n_vocab;
for (int i = 0; i < n_gen; i++) {
llama_decode(ctx, llama_batch_get_one(&token, 1));
llama_synchronize(ctx);
token = std::rand() % n_vocab;
}
}
static void llama_null_log_callback(enum ggml_log_level level, const char * text, void * user_data) {
(void) level;
(void) text;
(void) user_data;
}
static std::unique_ptr<printer> create_printer(output_formats format) {
switch (format) {
case NONE:
return nullptr;
case CSV:
return std::unique_ptr<printer>(new csv_printer());
case JSON:
return std::unique_ptr<printer>(new json_printer());
case JSONL:
return std::unique_ptr<printer>(new jsonl_printer());
case MARKDOWN:
return std::unique_ptr<printer>(new markdown_printer());
case SQL:
return std::unique_ptr<printer>(new sql_printer());
}
GGML_ABORT("fatal error");
}
int main(int argc, char ** argv) {
// try to set locale for unicode characters in markdown
setlocale(LC_CTYPE, ".UTF-8");
#if !defined(NDEBUG)
fprintf(stderr, "warning: asserts enabled, performance may be affected\n");
#endif
#if (defined(_MSC_VER) && defined(_DEBUG)) || (!defined(_MSC_VER) && !defined(__OPTIMIZE__))
fprintf(stderr, "warning: debug build, performance may be affected\n");
#endif
#if defined(__SANITIZE_ADDRESS__) || defined(__SANITIZE_THREAD__)
fprintf(stderr, "warning: sanitizer enabled, performance may be affected\n");
#endif
cmd_params params = parse_cmd_params(argc, argv);
// initialize backends
ggml_backend_load_all();
auto * cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
if (!cpu_dev) {
fprintf(stderr, "%s: error: CPU backend is not loaded\n", __func__);
return 1;
}
auto * cpu_reg = ggml_backend_dev_backend_reg(cpu_dev);
auto * ggml_threadpool_new_fn = (decltype(ggml_threadpool_new) *) ggml_backend_reg_get_proc_address(cpu_reg, "ggml_threadpool_new");
auto * ggml_threadpool_free_fn = (decltype(ggml_threadpool_free) *) ggml_backend_reg_get_proc_address(cpu_reg, "ggml_threadpool_free");
// initialize llama.cpp
if (!params.verbose) {
llama_log_set(llama_null_log_callback, NULL);
}
llama_backend_init();
llama_numa_init(params.numa);
set_process_priority(params.prio);
// initialize printer
std::unique_ptr<printer> p = create_printer(params.output_format);
std::unique_ptr<printer> p_err = create_printer(params.output_format_stderr);
if (p) {
p->fout = stdout;
p->print_header(params);
}
if (p_err) {
p_err->fout = stderr;
p_err->print_header(params);
}
std::vector<cmd_params_instance> params_instances = get_cmd_params_instances(params);
llama_model * lmodel = nullptr;
const cmd_params_instance * prev_inst = nullptr;
int params_idx = 0;
auto params_count = params_instances.size();
for (const auto & inst : params_instances) {
params_idx++;
if (params.progress) {
fprintf(stderr, "llama-bench: benchmark %d/%zu: starting\n", params_idx, params_count);
}
// keep the same model between tests when possible
if (!lmodel || !prev_inst || !inst.equal_mparams(*prev_inst)) {
if (lmodel) {
llama_free_model(lmodel);
}
lmodel = llama_load_model_from_file(inst.model.c_str(), inst.to_llama_mparams());
if (lmodel == NULL) {
fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, inst.model.c_str());
return 1;
}
prev_inst = &inst;
}
llama_context * ctx = llama_new_context_with_model(lmodel, inst.to_llama_cparams());
if (ctx == NULL) {
fprintf(stderr, "%s: error: failed to create context with model '%s'\n", __func__, inst.model.c_str());
llama_free_model(lmodel);
return 1;
}
test t(inst, lmodel, ctx);
llama_kv_cache_clear(ctx);
// cool off before the test
if (params.delay) {
std::this_thread::sleep_for(std::chrono::seconds(params.delay));
}
struct ggml_threadpool_params tpp = ggml_threadpool_params_default(t.n_threads);
if (!parse_cpu_mask(t.cpu_mask, tpp.cpumask)) {
fprintf(stderr, "%s: failed to parse cpu-mask: %s\n", __func__, t.cpu_mask.c_str());
exit(1);
}
tpp.strict_cpu = t.cpu_strict;
tpp.poll = t.poll;
tpp.prio = params.prio;
struct ggml_threadpool * threadpool = ggml_threadpool_new_fn(&tpp);
if (!threadpool) {
fprintf(stderr, "%s: threadpool create failed : n_threads %d\n", __func__, tpp.n_threads);
exit(1);
}
llama_attach_threadpool(ctx, threadpool, NULL);
// warmup run
if (t.n_prompt > 0) {
if (params.progress) {
fprintf(stderr, "llama-bench: benchmark %d/%zu: warmup prompt run\n", params_idx, params_count);
}
//test_prompt(ctx, std::min(t.n_batch, std::min(t.n_prompt, 32)), 0, t.n_batch, t.n_threads);
test_prompt(ctx, t.n_prompt, t.n_batch, t.n_threads);
}
if (t.n_gen > 0) {
if (params.progress) {
fprintf(stderr, "llama-bench: benchmark %d/%zu: warmup generation run\n", params_idx, params_count);
}
test_gen(ctx, 1, t.n_threads);
}
for (int i = 0; i < params.reps; i++) {
llama_kv_cache_clear(ctx);
uint64_t t_start = get_time_ns();
if (t.n_prompt > 0) {
if (params.progress) {
fprintf(stderr, "llama-bench: benchmark %d/%zu: prompt run %d/%d\n", params_idx, params_count,
i + 1, params.reps);
}
test_prompt(ctx, t.n_prompt, t.n_batch, t.n_threads);
}
if (t.n_gen > 0) {
if (params.progress) {
fprintf(stderr, "llama-bench: benchmark %d/%zu: generation run %d/%d\n", params_idx, params_count,
i + 1, params.reps);
}
test_gen(ctx, t.n_gen, t.n_threads);
}
uint64_t t_ns = get_time_ns() - t_start;
t.samples_ns.push_back(t_ns);
}
if (p) {
p->print_test(t);
fflush(p->fout);
}
if (p_err) {
p_err->print_test(t);
fflush(p_err->fout);
}
llama_perf_context_print(ctx);
llama_free(ctx);
ggml_threadpool_free_fn(threadpool);
}
llama_free_model(lmodel);
if (p) {
p->print_footer();
}
if (p_err) {
p_err->print_footer();
}
llama_backend_free();
return 0;
}