llama.cpp/main.cpp
tjohnman 305ba6f0e6
Don't force immediate interactive without -i (#354)
* Don't force immediate interactive without -i

Sometimes we might want to use a reverse prompt but we want to let the
model generate tokens right after the initial prompt. So we don't force
user input mode if the -i flag wasn't specified and instead let it run
until we encounter the reverse prompt.

This gives use some more flexibility, since it doesn't force the user to
enter a newline if they want to let the model generate text right after
the initial prompt and only be asked for input if the reverse prompt is
encountered.

The `--interactive-first` flag is reintroduced to force the old
behavior. `-r` behaves like `-i` plus introduces a reverse prompt (it
can be specified more than once).

* Update help output.

---------

Co-authored-by: Johnman <tjohnman@github>
2023-03-22 19:16:35 +02:00

481 lines
17 KiB
C++

#include "utils.h"
#include "ggml.h"
#include "llama.h"
#include <cassert>
#include <cinttypes>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <fstream>
#include <iostream>
#include <string>
#include <vector>
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
#include <signal.h>
#include <unistd.h>
#elif defined (_WIN32)
#include <signal.h>
#endif
#if defined (_WIN32)
#pragma comment(lib,"kernel32.lib")
extern "C" __declspec(dllimport) void* __stdcall GetStdHandle(unsigned long nStdHandle);
extern "C" __declspec(dllimport) int __stdcall GetConsoleMode(void* hConsoleHandle, unsigned long* lpMode);
extern "C" __declspec(dllimport) int __stdcall SetConsoleMode(void* hConsoleHandle, unsigned long dwMode);
#endif
#define ANSI_COLOR_RED "\x1b[31m"
#define ANSI_COLOR_GREEN "\x1b[32m"
#define ANSI_COLOR_YELLOW "\x1b[33m"
#define ANSI_COLOR_BLUE "\x1b[34m"
#define ANSI_COLOR_MAGENTA "\x1b[35m"
#define ANSI_COLOR_CYAN "\x1b[36m"
#define ANSI_COLOR_RESET "\x1b[0m"
#define ANSI_BOLD "\x1b[1m"
/* Keep track of current color of output, and emit ANSI code if it changes. */
enum console_state {
CONSOLE_STATE_DEFAULT=0,
CONSOLE_STATE_PROMPT,
CONSOLE_STATE_USER_INPUT
};
static console_state con_st = CONSOLE_STATE_DEFAULT;
static bool con_use_color = false;
void set_console_state(console_state new_st)
{
if (!con_use_color) return;
// only emit color code if state changed
if (new_st != con_st) {
con_st = new_st;
switch(con_st) {
case CONSOLE_STATE_DEFAULT:
printf(ANSI_COLOR_RESET);
return;
case CONSOLE_STATE_PROMPT:
printf(ANSI_COLOR_YELLOW);
return;
case CONSOLE_STATE_USER_INPUT:
printf(ANSI_BOLD ANSI_COLOR_GREEN);
return;
}
}
}
std::vector<double> softmax(const std::vector<float>& logits) {
std::vector<double> probs(logits.size());
float max_logit = logits[0];
for (float v : logits) max_logit = std::max(max_logit, v);
double sum_exp = 0.0;
for (size_t i = 0; i < logits.size(); i++) {
// Subtract the maximum logit value from the current logit value for numerical stability
float logit = logits[i] - max_logit;
double exp_logit = std::exp(logit);
sum_exp += exp_logit;
probs[i] = exp_logit;
}
for (size_t i = 0; i < probs.size(); i++) probs[i] /= sum_exp;
return probs;
}
void perplexity(llama_context * ctx, const gpt_params & params) {
// Download: https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-raw-v1.zip?ref=salesforce-research
// Run `./main --perplexity -m models/7B/ggml-model-q4_0.bin -f wiki.test.raw`
// Output: `perplexity: 13.5106 [114/114]`
auto tokens = ::llama_tokenize(ctx, params.prompt, true);
int count = 0;
double nll = 0.0;
int seq_count = tokens.size() / params.n_ctx;
fprintf(stderr, "%s : calculating perplexity over %d chunks\n", __func__, seq_count);
for (int i = 0; i < seq_count; ++i) {
int start = i * params.n_ctx;
int end = start + params.n_ctx - 1;
std::vector<llama_token> embd(tokens.begin() + start, tokens.begin() + end);
auto start_t = std::chrono::high_resolution_clock::now();
if (llama_eval(ctx, embd.data(), embd.size(), 0, params.n_threads)) {
fprintf(stderr, "%s : failed to eval\n", __func__);
return;
}
auto end_t = std::chrono::high_resolution_clock::now();
if (i == 0) {
double seconds = std::chrono::duration<double>(end_t - start_t).count();
printf("%.2f seconds per pass - ETA %.2f hours\n", seconds, (seconds * seq_count) / (60.0*60.0));
}
// We get the logits for all the tokens in the context window (params.n_ctx)
// from llama_eval above. Now, based on https://huggingface.co/docs/transformers/perplexity,
// calculate the perplexity over the last half the window (so the model always has
// some context to predict the token).
//
// We rely on the fact that attention in the forward pass only looks at previous
// tokens here, so the logits returned for each token are an accurate representation
// of what the model would have predicted at that point.
//
// Example, we have a context window of 512, we will compute perplexity for each of the
// last 256 tokens. Then, we split the input up into context window size chunks to
// process the entire prompt.
auto logits = llama_get_logits(ctx);
for (int j = params.n_ctx / 2; j < params.n_ctx - 1; ++j) {
// Calculate probability of next token, given the previous ones.
int n_vocab = llama_n_vocab(ctx);
std::vector<float> tok_logits(
logits + j * n_vocab,
logits + (j + 1) * n_vocab);
double prob = softmax(tok_logits)[tokens[start + j + 1]];
nll += -std::log(prob);
++count;
}
// perplexity is e^(average negative log-likelihood)
printf("[%d]%.4lf,", i + 1, std::exp(nll / count));
fflush(stdout);
}
printf("\n");
}
static bool is_interacting = false;
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32)
void sigint_handler(int signo) {
set_console_state(CONSOLE_STATE_DEFAULT);
printf("\n"); // this also force flush stdout.
if (signo == SIGINT) {
if (!is_interacting) {
is_interacting=true;
} else {
_exit(130);
}
}
}
#endif
int main(int argc, char ** argv) {
// has to be called once at the start of the program to init ggml stuff
ggml_time_init();
gpt_params params;
params.model = "models/llama-7B/ggml-model.bin";
if (gpt_params_parse(argc, argv, params) == false) {
return 1;
}
if (params.n_ctx > 2048) {
fprintf(stderr, "%s: warning: model does not support context sizes greater than 2048 tokens (%d specified);"
"expect poor results\n", __func__, params.n_ctx);
}
if (params.seed <= 0) {
params.seed = time(NULL);
}
fprintf(stderr, "%s: seed = %d\n", __func__, params.seed);
std::mt19937 rng(params.seed);
if (params.random_prompt) {
params.prompt = gpt_random_prompt(rng);
}
// save choice to use color for later
// (note for later: this is a slightly awkward choice)
con_use_color = params.use_color;
// params.prompt = R"(// this function checks if the number n is prime
//bool is_prime(int n) {)";
llama_context * ctx;
// load the model
{
auto lparams = llama_context_default_params();
lparams.n_ctx = params.n_ctx;
lparams.n_parts = params.n_parts;
lparams.seed = params.seed;
lparams.f16_kv = params.memory_f16;
lparams.logits_all = params.perplexity;
ctx = llama_init_from_file(params.model.c_str(), lparams);
if (ctx == NULL) {
fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, params.model.c_str());
return 1;
}
}
// print system information
{
fprintf(stderr, "\n");
fprintf(stderr, "system_info: n_threads = %d / %d | %s\n",
params.n_threads, std::thread::hardware_concurrency(), llama_print_system_info());
}
// determine the required inference memory per token:
// TODO: better way to do that
{
const std::vector<llama_token> tmp = { 0, 1, 2, 3 };
llama_eval(ctx, tmp.data(), tmp.size(), 0, params.n_threads);
}
if (params.perplexity) {
perplexity(ctx, params);
exit(0);
}
int n_past = 0;
// Add a space in front of the first character to match OG llama tokenizer behavior
params.prompt.insert(0, 1, ' ');
// tokenize the prompt
auto embd_inp = ::llama_tokenize(ctx, params.prompt, true);
const int n_ctx = llama_n_ctx(ctx);
params.n_predict = std::min(params.n_predict, n_ctx - (int) embd_inp.size());
// prefix & suffix for instruct mode
const auto inp_pfx = ::llama_tokenize(ctx, "\n\n### Instruction:\n\n", true);
const auto inp_sfx = ::llama_tokenize(ctx, "\n\n### Response:\n\n", false);
// in instruct mode, we inject a prefix and a suffix to each input by the user
if (params.instruct) {
params.interactive = true;
params.antiprompt.push_back("### Instruction:\n\n");
}
// enable interactive mode if reverse prompt is specified
if (params.antiprompt.size() != 0) {
params.interactive = true;
}
if (params.interactive_start) {
params.interactive = true;
}
fprintf(stderr, "\n");
fprintf(stderr, "%s: prompt: '%s'\n", __func__, params.prompt.c_str());
fprintf(stderr, "%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size());
for (int i = 0; i < (int) embd_inp.size(); i++) {
fprintf(stderr, "%6d -> '%s'\n", embd_inp[i], llama_token_to_str(ctx, embd_inp[i]));
}
fprintf(stderr, "\n");
if (params.interactive) {
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
struct sigaction sigint_action;
sigint_action.sa_handler = sigint_handler;
sigemptyset (&sigint_action.sa_mask);
sigint_action.sa_flags = 0;
sigaction(SIGINT, &sigint_action, NULL);
#elif defined (_WIN32)
signal(SIGINT, sigint_handler);
#endif
fprintf(stderr, "%s: interactive mode on.\n", __func__);
if(params.antiprompt.size()) {
for (auto antiprompt : params.antiprompt) {
fprintf(stderr, "Reverse prompt: '%s'\n", antiprompt.c_str());
}
}
}
fprintf(stderr, "sampling parameters: temp = %f, top_k = %d, top_p = %f, repeat_last_n = %i, repeat_penalty = %f\n", params.temp, params.top_k, params.top_p, params.repeat_last_n, params.repeat_penalty);
fprintf(stderr, "\n\n");
std::vector<llama_token> embd;
int last_n_size = params.repeat_last_n;
std::vector<llama_token> last_n_tokens(last_n_size);
std::fill(last_n_tokens.begin(), last_n_tokens.end(), 0);
if (params.interactive) {
fprintf(stderr, "== Running in interactive mode. ==\n"
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32)
" - Press Ctrl+C to interject at any time.\n"
#endif
" - Press Return to return control to LLaMa.\n"
" - If you want to submit another line, end your input in '\\'.\n\n");
is_interacting = params.interactive_start;
}
int input_consumed = 0;
bool input_noecho = false;
int remaining_tokens = params.n_predict;
#if defined (_WIN32)
if (params.use_color) {
// Enable ANSI colors on Windows 10+
unsigned long dwMode = 0;
void* hConOut = GetStdHandle((unsigned long)-11); // STD_OUTPUT_HANDLE (-11)
if (hConOut && hConOut != (void*)-1 && GetConsoleMode(hConOut, &dwMode) && !(dwMode & 0x4)) {
SetConsoleMode(hConOut, dwMode | 0x4); // ENABLE_VIRTUAL_TERMINAL_PROCESSING (0x4)
}
}
#endif
// the first thing we will do is to output the prompt, so set color accordingly
set_console_state(CONSOLE_STATE_PROMPT);
while (remaining_tokens > 0 || params.interactive) {
// predict
if (embd.size() > 0) {
if (llama_eval(ctx, embd.data(), embd.size(), n_past, params.n_threads)) {
fprintf(stderr, "%s : failed to eval\n", __func__);
return 1;
}
}
n_past += embd.size();
embd.clear();
if ((int) embd_inp.size() <= input_consumed) {
// out of user input, sample next token
const float top_k = params.top_k;
const float top_p = params.top_p;
const float temp = params.temp;
const float repeat_penalty = params.repeat_penalty;
llama_token id = 0;
{
auto logits = llama_get_logits(ctx);
if (params.ignore_eos) {
// set the logit of the eos token to zero to avoid sampling it
//logits[logits.size() - n_vocab + EOS_TOKEN_ID] = 0;
// TODO: this does not work of params.logits_all == true
assert(params.perplexity == false);
logits[llama_token_eos()] = 0;
}
id = llama_sample_top_p_top_k(ctx, last_n_tokens.data(), last_n_tokens.size(), top_k, top_p, temp, repeat_penalty);
last_n_tokens.erase(last_n_tokens.begin());
last_n_tokens.push_back(id);
}
// add it to the context
embd.push_back(id);
// echo this to console
input_noecho = false;
// decrement remaining sampling budget
--remaining_tokens;
} else {
// some user input remains from prompt or interaction, forward it to processing
while ((int) embd_inp.size() > input_consumed) {
embd.push_back(embd_inp[input_consumed]);
last_n_tokens.erase(last_n_tokens.begin());
last_n_tokens.push_back(embd_inp[input_consumed]);
++input_consumed;
if ((int) embd.size() >= params.n_batch) {
break;
}
}
}
// display text
if (!input_noecho) {
for (auto id : embd) {
printf("%s", llama_token_to_str(ctx, id));
}
fflush(stdout);
}
// reset color to default if we there is no pending user input
if (!input_noecho && (int)embd_inp.size() == input_consumed) {
set_console_state(CONSOLE_STATE_DEFAULT);
}
// in interactive mode, and not currently processing queued inputs;
// check if we should prompt the user for more
if (params.interactive && (int) embd_inp.size() <= input_consumed) {
// check for reverse prompt
std::string last_output;
for (auto id : last_n_tokens) {
last_output += llama_token_to_str(ctx, id);
}
// Check if each of the reverse prompts appears at the end of the output.
for (std::string antiprompt : params.antiprompt) {
if (last_output.find(antiprompt.c_str(), last_output.length() - antiprompt.length(), antiprompt.length()) != std::string::npos) {
is_interacting = true;
break;
}
}
if (is_interacting) {
// potentially set color to indicate we are taking user input
set_console_state(CONSOLE_STATE_USER_INPUT);
if (params.instruct) {
input_consumed = embd_inp.size();
embd_inp.insert(embd_inp.end(), inp_pfx.begin(), inp_pfx.end());
printf("\n> ");
}
std::string buffer;
std::string line;
bool another_line = true;
do {
std::getline(std::cin, line);
if (line.empty() || line.back() != '\\') {
another_line = false;
} else {
line.pop_back(); // Remove the continue character
}
buffer += line + '\n'; // Append the line to the result
} while (another_line);
// done taking input, reset color
set_console_state(CONSOLE_STATE_DEFAULT);
auto line_inp = ::llama_tokenize(ctx, buffer, false);
embd_inp.insert(embd_inp.end(), line_inp.begin(), line_inp.end());
if (params.instruct) {
embd_inp.insert(embd_inp.end(), inp_sfx.begin(), inp_sfx.end());
}
remaining_tokens -= line_inp.size();
input_noecho = true; // do not echo this again
}
is_interacting = false;
}
// end of text token
if (embd.back() == llama_token_eos()) {
if (params.interactive) {
is_interacting = true;
} else {
fprintf(stderr, " [end of text]\n");
break;
}
}
// In interactive mode, respect the maximum number of tokens and drop back to user input when reached.
if (params.interactive && remaining_tokens <= 0) {
remaining_tokens = params.n_predict;
is_interacting = true;
}
}
#if defined (_WIN32)
signal(SIGINT, SIG_DFL);
#endif
llama_print_timings(ctx);
llama_free(ctx);
set_console_state(CONSOLE_STATE_DEFAULT);
return 0;
}