turtle-wow-source-kinda/Dumps/Source Code/16 - Development_server/temp_perfUpdate/tools/TGAtoPNG/decoder.cpp

358 lines
9.0 KiB
C++
Raw Normal View History

2024-08-06 16:06:40 +00:00
// Aseprite TGA Library
// Copyright (C) 2020-2022 Igara Studio S.A.
//
// This file is released under the terms of the MIT license.
// Read LICENSE.txt for more information.
#include "tga.h"
#include <cassert>
namespace tga {
static inline uint8_t scale_5bits_to_8bits(uint8_t v) {
assert(v >= 0 && v < 32);
return (v << 3) | (v >> 2);
}
Decoder::Decoder(FileInterface* file)
: m_file(file)
{
}
bool Decoder::readHeader(Header& header)
{
header.idLength = read8();
header.colormapType = read8();
header.imageType = read8();
header.colormapOrigin = read16();
header.colormapLength = read16();
header.colormapDepth = read8();
header.xOrigin = read16();
header.yOrigin = read16();
header.width = read16();
header.height = read16();
header.bitsPerPixel = read8();
header.imageDescriptor = read8();
// Invalid image size
if (header.width == 0 ||
header.height == 0)
return false;
// Skip ID string (idLength bytes)
if (header.idLength > 0) {
uint8_t i = header.idLength;
while (i--) {
uint8_t chr = m_file->read8();
header.imageId.push_back(chr);
}
}
#if 0
// In the best case the "alphaBits" should be valid, but there are
// invalid TGA files out there which don't indicate the
// "alphaBits" correctly, so they could be 0 and use the alpha
// channel anyway on each pixel.
int alphaBits = (header.imageDescriptor & 15);
m_hasAlpha =
(header.bitsPerPixel == 32 && alphaBits == 8) ||
(header.bitsPerPixel == 16 && alphaBits == 1);
#else
// So to detect if a 32bpp or 16bpp TGA image has alpha, we'll use
// the "alpha histogram" in postProcessImage() to check if there are
// different alpha values. If there is only one alpha value (all 0
// or all 255), we create an opaque image anyway. The only exception
// to this rule is when all pixels are black and transparent
// (RGBA=0), that is the only case when an image is fully
// transparent.
//
// Note: This same heuristic is used in apps like macOS Preview:
// https://twitter.com/davidcapello/status/1242803110868893697
m_hasAlpha =
(header.bitsPerPixel == 32) ||
(header.bitsPerPixel == 16);
#endif
// Read colormap
if (header.colormapType == 1)
readColormap(header);
return (header.validColormapType() &&
header.valid());
}
void Decoder::readColormap(Header& header)
{
header.colormap = Colormap(header.colormapLength);
for (int i=0; i<header.colormapLength; ++i) {
switch (header.colormapDepth) {
case 15:
case 16: {
const uint16_t c = read16();
header.colormap[i] =
rgba(scale_5bits_to_8bits((c >> 10) & 0x1F),
scale_5bits_to_8bits((c >> 5) & 0x1F),
scale_5bits_to_8bits(c & 0x1F));
break;
}
case 24:
case 32: {
const uint8_t b = read8();
const uint8_t g = read8();
const uint8_t r = read8();
uint8_t a;
if (header.colormapDepth == 32)
a = read8();
else
a = 255;
header.colormap[i] = rgba(r, g, b, a);
break;
}
}
}
}
bool Decoder::readImage(const Header& header,
Image& image,
Delegate* delegate)
{
// Bit 4 means right-to-left, else left-to-right
// Bit 5 means top-to-bottom, else bottom-to-top
m_iterator = details::ImageIterator(header, image);
for (int y=0; y<header.height; ++y) {
switch (header.imageType) {
case UncompressedIndexed:
assert(header.bitsPerPixel == 8);
if (readUncompressedData<uint8_t>(header.width, &Decoder::read8Color))
return true;
break;
case UncompressedRgb:
switch (header.bitsPerPixel) {
case 15:
case 16:
if (readUncompressedData<uint32_t>(header.width, &Decoder::read16AsRgb))
return true;
break;
case 24:
if (readUncompressedData<uint32_t>(header.width, &Decoder::read24AsRgb))
return true;
break;
case 32:
if (readUncompressedData<uint32_t>(header.width, &Decoder::read32AsRgb))
return true;
break;
default:
assert(false);
break;
}
break;
case UncompressedGray:
assert(header.bitsPerPixel == 8);
if (readUncompressedData<uint8_t>(header.width, &Decoder::read8Color))
return true;
break;
case RleIndexed:
assert(header.bitsPerPixel == 8);
if (readRleData<uint8_t>(header.width, &Decoder::read8Color))
return true;
break;
case RleRgb:
switch (header.bitsPerPixel) {
case 15:
case 16:
if (readRleData<uint32_t>(header.width, &Decoder::read16AsRgb))
return true;
break;
case 24:
if (readRleData<uint32_t>(header.width, &Decoder::read24AsRgb))
return true;
break;
case 32:
if (readRleData<uint32_t>(header.width, &Decoder::read32AsRgb))
return true;
break;
default:
assert(false);
break;
}
break;
case RleGray:
assert(header.bitsPerPixel == 8);
if (readRleData<uint8_t>(header.width, &Decoder::read8Color))
return true;
break;
}
if (delegate &&
!delegate->notifyProgress(float(y) / float(header.height))) {
break;
}
}
return true;
}
void Decoder::postProcessImage(const Header& header,
Image& image)
{
// The post-processing is only for RGB images with possible invalid
// alpha information.
if (!header.isRgb() || !m_hasAlpha)
return;
bool transparentImage = true;
bool blackImage = true;
for (int y=0; y<header.height; ++y) {
auto p = (uint32_t*)(image.pixels + y*image.rowstride);
for (int x=0; x<header.width; ++x, ++p) {
color_t c = *p;
if (transparentImage &&
geta(c) != 0) {
transparentImage = false;
}
if (blackImage &&
(getr(c) != 0 ||
getg(c) != 0 ||
getb(c) != 0)) {
blackImage = false;
}
}
}
// If the image is fully transparent (all pixels with alpha=0) and
// there are pixels with RGB != 0 (!blackImage), we have to make the
// image completely opaque (alpha=255).
if (transparentImage && !blackImage) {
for (int y=0; y<header.height; ++y) {
auto p = (uint32_t*)(image.pixels + y*image.rowstride);
for (int x=0; x<header.width; ++x, ++p) {
color_t c = *p;
*p = rgba(getr(c),
getg(c),
getb(c), 255);
}
}
}
}
template<typename T>
bool Decoder::readUncompressedData(const int w, color_t (Decoder::*readPixel)())
{
for (int x=0; x<w && m_file->ok(); ++x) {
if (m_iterator.putPixel<T>(static_cast<T>((this->*readPixel)())))
return true;
}
return false;
}
// In the best case (TGA 2.0 spec) this should read just one
// scanline, but in old TGA versions (1.0) it was possible to save
// several scanlines with the same RLE data.
//
// Returns true when are are done.
template<typename T>
bool Decoder::readRleData(const int w, color_t (Decoder::*readPixel)())
{
for (int x=0; x<w && m_file->ok(); ) {
int c = read8();
if (c & 0x80) {
c = (c & 0x7f) + 1;
x += c;
const T pixel = static_cast<T>((this->*readPixel)());
while (c-- > 0)
if (m_iterator.putPixel<T>(pixel))
return true;
}
else {
++c;
x += c;
while (c-- > 0) {
if (m_iterator.putPixel<T>(static_cast<T>((this->*readPixel)())))
return true;
}
}
}
return false;
}
uint8_t Decoder::read8()
{
return m_file->read8();
}
// Reads a WORD (16 bits) using in little-endian byte ordering.
uint16_t Decoder::read16()
{
uint8_t b1 = m_file->read8();
uint8_t b2 = m_file->read8();
if (m_file->ok()) {
return ((b2 << 8) | b1); // Little endian
}
else
return 0;
}
// Reads a DWORD (32 bits) using in little-endian byte ordering.
uint32_t Decoder::read32()
{
const uint8_t b1 = m_file->read8();
const uint8_t b2 = m_file->read8();
const uint8_t b3 = m_file->read8();
const uint8_t b4 = m_file->read8();
if (m_file->ok()) {
// Little endian
return ((b4 << 24) | (b3 << 16) | (b2 << 8) | b1);
}
else
return 0;
}
color_t Decoder::read32AsRgb()
{
const uint8_t b = read8();
const uint8_t g = read8();
const uint8_t r = read8();
uint8_t a = read8();
if (!m_hasAlpha)
a = 255;
return rgba(r, g, b, a);
}
color_t Decoder::read24AsRgb()
{
const uint8_t b = read8();
const uint8_t g = read8();
const uint8_t r = read8();
return rgba(r, g, b, 255);
}
color_t Decoder::read16AsRgb()
{
const uint16_t v = read16();
uint8_t a = 255;
if (m_hasAlpha) {
if ((v & 0x8000) == 0) // Transparent bit
a = 0;
}
return rgba(scale_5bits_to_8bits((v >> 10) & 0x1F),
scale_5bits_to_8bits((v >> 5) & 0x1F),
scale_5bits_to_8bits(v & 0x1F),
a);
}
} // namespace tga