mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-11-15 07:19:53 +00:00
139 lines
4.6 KiB
C++
139 lines
4.6 KiB
C++
|
#include <sycl/sycl.hpp>
|
||
|
#include "wkv6.hpp"
|
||
|
|
||
|
constexpr int WKV_BLOCK_SIZE = 64; // Matching CUDA_WKV_BLOCK_SIZE
|
||
|
|
||
|
// Helper function for the main kernel
|
||
|
static void rwkv_wkv_f32_kernel(
|
||
|
const int B, const int T, const int C, const int H,
|
||
|
const float* k, const float* v, const float* r,
|
||
|
const float* tf, const float* td, const float* s,
|
||
|
float* dst, const sycl::nd_item<3>& item_ct1, float* shared_mem) {
|
||
|
|
||
|
const int tid = item_ct1.get_local_id(2);
|
||
|
const int bid = item_ct1.get_group(2);
|
||
|
|
||
|
const int head_size = WKV_BLOCK_SIZE;
|
||
|
const int batch_i = bid / H;
|
||
|
const int head_i = bid % H;
|
||
|
const int state_size = C * head_size;
|
||
|
const int n_seq_tokens = T / B;
|
||
|
|
||
|
// Set up shared memory pointers
|
||
|
float* _k = shared_mem;
|
||
|
float* _r = _k + head_size;
|
||
|
float* _tf = _r + head_size;
|
||
|
float* _td = _tf + head_size;
|
||
|
|
||
|
// Local state array
|
||
|
float state[WKV_BLOCK_SIZE];
|
||
|
|
||
|
// Load initial state
|
||
|
#pragma unroll
|
||
|
for (int i = 0; i < head_size; i++) {
|
||
|
state[i] = s[batch_i * state_size + head_i * head_size * head_size + i * head_size + tid];
|
||
|
}
|
||
|
|
||
|
// Sync threads before shared memory operations
|
||
|
item_ct1.barrier(sycl::access::fence_space::local_space);
|
||
|
|
||
|
// Load time-mixing parameters
|
||
|
_tf[tid] = tf[head_i * head_size + tid];
|
||
|
item_ct1.barrier(sycl::access::fence_space::local_space);
|
||
|
|
||
|
// Main sequence processing loop
|
||
|
for (int t = batch_i * n_seq_tokens * C + head_i * head_size + tid;
|
||
|
t < (batch_i + 1) * n_seq_tokens * C + head_i * head_size + tid;
|
||
|
t += C) {
|
||
|
|
||
|
item_ct1.barrier(sycl::access::fence_space::local_space);
|
||
|
|
||
|
// Load current timestep data to shared memory
|
||
|
_k[tid] = k[t];
|
||
|
_r[tid] = r[t];
|
||
|
_td[tid] = td[t];
|
||
|
|
||
|
item_ct1.barrier(sycl::access::fence_space::local_space);
|
||
|
|
||
|
const float _v = v[t];
|
||
|
float y = 0;
|
||
|
|
||
|
// Process in chunks of 4 for better vectorization
|
||
|
sycl::float4 k4, r4, tf4, td4, s4, kv4;
|
||
|
#pragma unroll
|
||
|
for (int j = 0; j < head_size; j += 4) {
|
||
|
// Load data in vec4 chunks
|
||
|
k4 = sycl::float4(_k[j], _k[j+1], _k[j+2], _k[j+3]);
|
||
|
r4 = sycl::float4(_r[j], _r[j+1], _r[j+2], _r[j+3]);
|
||
|
tf4 = sycl::float4(_tf[j], _tf[j+1], _tf[j+2], _tf[j+3]);
|
||
|
td4 = sycl::float4(_td[j], _td[j+1], _td[j+2], _td[j+3]);
|
||
|
s4 = sycl::float4(state[j], state[j+1], state[j+2], state[j+3]);
|
||
|
|
||
|
// Compute key-value product
|
||
|
sycl::float4 kv4 = k4 * _v;
|
||
|
|
||
|
// Accumulate weighted sum
|
||
|
y += sycl::dot(r4, tf4 * kv4 + s4);
|
||
|
|
||
|
// Update state
|
||
|
s4 = s4 * td4 + kv4;
|
||
|
|
||
|
// Store updated state
|
||
|
state[j] = s4.x();
|
||
|
state[j+1] = s4.y();
|
||
|
state[j+2] = s4.z();
|
||
|
state[j+3] = s4.w();
|
||
|
}
|
||
|
|
||
|
dst[t] = y;
|
||
|
}
|
||
|
|
||
|
// Save final state
|
||
|
#pragma unroll
|
||
|
for (int i = 0; i < head_size; i++) {
|
||
|
dst[T * C + batch_i * state_size + head_i * head_size * head_size + i * head_size + tid] = state[i];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void ggml_sycl_op_rwkv_wkv6(ggml_backend_sycl_context& ctx, const ggml_tensor* src0,
|
||
|
const ggml_tensor* src1, ggml_tensor* dst) {
|
||
|
|
||
|
const float* k_d = (const float*)dst->src[0]->data;
|
||
|
const float* v_d = (const float*)dst->src[1]->data;
|
||
|
const float* r_d = (const float*)dst->src[2]->data;
|
||
|
const float* tf_d = (const float*)dst->src[3]->data;
|
||
|
const float* td_d = (const float*)dst->src[4]->data;
|
||
|
const float* s_d = (const float*)dst->src[5]->data;
|
||
|
float* dst_d = (float*)dst->data;
|
||
|
|
||
|
const int64_t B = dst->src[5]->ne[1];
|
||
|
const int64_t T = dst->src[0]->ne[3];
|
||
|
const int64_t C = dst->ne[0];
|
||
|
const int64_t H = dst->src[0]->ne[2];
|
||
|
|
||
|
GGML_ASSERT(dst->src[5]->type == GGML_TYPE_F32);
|
||
|
GGML_ASSERT(C % H == 0);
|
||
|
GGML_ASSERT(C / H == WKV_BLOCK_SIZE); // The current sycl kernel is designed for RWKV6, HEAD_SIZE == 64
|
||
|
|
||
|
dpct::queue_ptr stream = ctx.stream();
|
||
|
|
||
|
// Calculate execution configuration
|
||
|
const size_t shared_mem_size = WKV_BLOCK_SIZE * 4 * sizeof(float); // For k, r, tf, td
|
||
|
sycl::range<3> block_dims(1, 1, C / H);
|
||
|
sycl::range<3> grid_dims(1, 1, B * H);
|
||
|
|
||
|
// Submit kernel
|
||
|
stream->submit([&](sycl::handler& cgh) {
|
||
|
sycl::local_accessor<float, 1> shared_mem_acc(shared_mem_size, cgh);
|
||
|
|
||
|
cgh.parallel_for(
|
||
|
sycl::nd_range<3>(grid_dims * block_dims, block_dims),
|
||
|
[=](sycl::nd_item<3> item_ct1) {
|
||
|
rwkv_wkv_f32_kernel(
|
||
|
B, T, C, H, k_d, v_d, r_d, tf_d, td_d, s_d, dst_d,
|
||
|
item_ct1, shared_mem_acc.get_pointer()
|
||
|
);
|
||
|
});
|
||
|
});
|
||
|
}
|