2024-07-23 10:10:17 +00:00
# include "llama-sampling.h"
2024-09-07 12:16:19 +00:00
# include "llama-vocab.h"
# include "llama-grammar.h"
# include <cassert>
2024-07-23 10:10:17 +00:00
# include <algorithm>
# include <cstring>
# include <ctime>
# include <cfloat>
# include <numeric>
2024-09-07 12:16:19 +00:00
# include <random>
2024-07-23 10:10:17 +00:00
# include <unordered_map>
2024-09-07 12:16:19 +00:00
static int llama_sample_dist ( llama_token_data_array * cur_p , std : : mt19937 & rng , std : : vector < float > & probs ) {
probs . resize ( cur_p - > size ) ;
for ( size_t i = 0 ; i < cur_p - > size ; + + i ) {
probs [ i ] = cur_p - > data [ i ] . p ;
}
std : : discrete_distribution < size_t > dist ( probs . begin ( ) , probs . end ( ) ) ;
return dist ( rng ) ;
}
2024-07-23 10:10:17 +00:00
static void llama_log_softmax ( float * array , size_t size ) {
float max_l = * std : : max_element ( array , array + size ) ;
float sum = 0.f ;
for ( size_t i = 0 ; i < size ; + + i ) {
float p = expf ( array [ i ] - max_l ) ;
sum + = p ;
array [ i ] = p ;
}
for ( size_t i = 0 ; i < size ; + + i ) {
array [ i ] = logf ( array [ i ] / sum ) ;
}
}
2024-09-07 12:16:19 +00:00
static void llama_sampler_softmax_impl ( llama_token_data_array * cur_p ) {
GGML_ASSERT ( cur_p - > size > 0 ) ;
2024-07-23 10:10:17 +00:00
// Sort the logits in descending order
2024-09-07 12:16:19 +00:00
if ( ! cur_p - > sorted ) {
std : : sort ( cur_p - > data , cur_p - > data + cur_p - > size , [ ] ( const llama_token_data & a , const llama_token_data & b ) {
2024-07-23 10:10:17 +00:00
return a . logit > b . logit ;
} ) ;
2024-09-07 12:16:19 +00:00
cur_p - > sorted = true ;
2024-07-23 10:10:17 +00:00
}
2024-09-07 12:16:19 +00:00
float max_l = cur_p - > data [ 0 ] . logit ;
2024-07-23 10:10:17 +00:00
float cum_sum = 0.0f ;
2024-09-07 12:16:19 +00:00
for ( size_t i = 0 ; i < cur_p - > size ; + + i ) {
float p = expf ( cur_p - > data [ i ] . logit - max_l ) ;
cur_p - > data [ i ] . p = p ;
2024-07-23 10:10:17 +00:00
cum_sum + = p ;
}
2024-09-07 12:16:19 +00:00
for ( size_t i = 0 ; i < cur_p - > size ; + + i ) {
cur_p - > data [ i ] . p / = cum_sum ;
2024-07-23 10:10:17 +00:00
}
}
2024-09-07 12:16:19 +00:00
static void llama_sampler_top_k_impl ( llama_token_data_array * cur_p , int32_t k ) {
2024-07-23 10:10:17 +00:00
// TODO: move bucket sort to separate function so that top_p/tail_free/typical/softmax first is equally fast
2024-09-07 12:16:19 +00:00
// if (k >= (int32_t)cur_p->size) {
2024-07-23 10:10:17 +00:00
// return;
// }
if ( k < = 0 ) {
2024-09-07 12:16:19 +00:00
k = cur_p - > size ;
2024-07-23 10:10:17 +00:00
}
2024-09-07 12:16:19 +00:00
k = std : : min ( k , ( int ) cur_p - > size ) ;
2024-07-23 10:10:17 +00:00
// Sort scores in descending order
2024-09-07 12:16:19 +00:00
if ( ! cur_p - > sorted ) {
2024-07-23 10:10:17 +00:00
auto comp = [ ] ( const llama_token_data & a , const llama_token_data & b ) {
return a . logit > b . logit ;
} ;
if ( k < = 128 ) {
2024-09-07 12:16:19 +00:00
std : : partial_sort ( cur_p - > data , cur_p - > data + k , cur_p - > data + cur_p - > size , comp ) ;
2024-07-23 10:10:17 +00:00
} else {
constexpr int nbuckets = 128 ;
constexpr float bucket_low = - 10.0f ;
constexpr float bucket_high = 10.0f ;
constexpr float bucket_scale = nbuckets / ( bucket_high - bucket_low ) ;
2024-08-12 09:46:03 +00:00
constexpr float bucket_inter = - bucket_low * bucket_scale ;
2024-07-23 10:10:17 +00:00
2024-09-07 12:16:19 +00:00
std : : vector < int > bucket_idx ( cur_p - > size ) ;
2024-07-23 10:10:17 +00:00
std : : vector < int > histo ( nbuckets , 0 ) ;
2024-09-07 12:16:19 +00:00
for ( int i = 0 ; i < ( int ) cur_p - > size ; + + i ) {
const float val = cur_p - > data [ i ] . logit ;
2024-08-12 09:46:03 +00:00
int ib = int ( bucket_scale * val + bucket_inter ) ; //nbuckets * (val - bucket_low) / (bucket_high - bucket_low);
2024-07-23 10:10:17 +00:00
ib = std : : max ( 0 , std : : min ( nbuckets - 1 , ib ) ) ;
bucket_idx [ i ] = ib ;
+ + histo [ ib ] ;
}
int nhave = 0 ;
int ib = nbuckets - 1 ;
for ( ; ib > = 0 ; - - ib ) {
nhave + = histo [ ib ] ;
2024-09-07 12:16:19 +00:00
if ( nhave > = k ) {
break ;
}
2024-07-23 10:10:17 +00:00
}
std : : vector < llama_token_data > tmp_tokens ( nhave ) ;
2024-09-07 12:16:19 +00:00
auto * ptr = tmp_tokens . data ( ) ;
2024-07-23 10:10:17 +00:00
std : : vector < llama_token_data * > bucket_ptrs ;
bucket_ptrs . reserve ( nbuckets - ib ) ;
for ( int j = nbuckets - 1 ; j > = ib ; - - j ) {
bucket_ptrs . push_back ( ptr ) ;
ptr + = histo [ j ] ;
}
2024-09-07 12:16:19 +00:00
for ( int i = 0 ; i < ( int ) cur_p - > size ; + + i ) {
2024-07-23 10:10:17 +00:00
int j = bucket_idx [ i ] ;
if ( j > = ib ) {
2024-09-07 12:16:19 +00:00
* bucket_ptrs [ nbuckets - 1 - j ] + + = cur_p - > data [ i ] ;
2024-07-23 10:10:17 +00:00
}
}
ptr = tmp_tokens . data ( ) ;
int ndone = 0 ;
for ( int j = nbuckets - 1 ; j > ib ; - - j ) {
std : : sort ( ptr , ptr + histo [ j ] , comp ) ;
ptr + = histo [ j ] ;
ndone + = histo [ j ] ;
}
std : : partial_sort ( ptr , ptr + k - ndone , ptr + histo [ ib ] , comp ) ;
2024-09-07 12:16:19 +00:00
std : : memcpy ( cur_p - > data , tmp_tokens . data ( ) , k * sizeof ( llama_token_data ) ) ;
2024-07-23 10:10:17 +00:00
}
2024-09-07 12:16:19 +00:00
cur_p - > sorted = true ;
2024-07-23 10:10:17 +00:00
}
2024-09-07 12:16:19 +00:00
cur_p - > size = k ;
2024-07-23 10:10:17 +00:00
}
2024-09-07 12:16:19 +00:00
static void llama_sampler_top_p_impl ( llama_token_data_array * cur_p , float p , size_t min_keep ) {
2024-07-23 10:10:17 +00:00
if ( p > = 1.0f ) {
return ;
}
2024-09-07 12:16:19 +00:00
llama_sampler_softmax_impl ( cur_p ) ;
2024-07-23 10:10:17 +00:00
// Compute the cumulative probabilities
float cum_sum = 0.0f ;
2024-09-07 12:16:19 +00:00
size_t last_idx = cur_p - > size ;
2024-07-23 10:10:17 +00:00
2024-09-07 12:16:19 +00:00
for ( size_t i = 0 ; i < cur_p - > size ; + + i ) {
cum_sum + = cur_p - > data [ i ] . p ;
2024-07-23 10:10:17 +00:00
// Check if the running sum is at least p or if we have kept at least min_keep tokens
// we set the last index to i+1 to indicate that the current iterate should be included in the set
if ( cum_sum > = p & & i + 1 > = min_keep ) {
last_idx = i + 1 ;
break ;
}
}
// Resize the output vector to keep only the top-p tokens
2024-09-07 12:16:19 +00:00
cur_p - > size = last_idx ;
2024-07-23 10:10:17 +00:00
}
2024-09-07 12:16:19 +00:00
static void llama_sampler_min_p_impl ( llama_token_data_array * cur_p , float p , size_t min_keep ) {
if ( p < = 0.0f | | ! cur_p - > size ) {
2024-07-23 10:10:17 +00:00
return ;
}
bool min_p_applied = false ;
2024-09-07 12:16:19 +00:00
// if the cur_p aren't sorted, try the unsorted implementation first
if ( ! cur_p - > sorted ) {
2024-07-23 10:10:17 +00:00
std : : vector < llama_token_data > filtered_tokens ;
float max_logit = - FLT_MAX ;
2024-09-07 12:16:19 +00:00
for ( size_t i = 0 ; i < cur_p - > size ; + + i ) {
max_logit = std : : max ( max_logit , cur_p - > data [ i ] . logit ) ;
2024-07-23 10:10:17 +00:00
}
const float min_logit = max_logit + logf ( p ) ; // min logit for p_i >= p * p_max
2024-09-07 12:16:19 +00:00
for ( size_t i = 0 ; i < cur_p - > size ; + + i ) {
if ( cur_p - > data [ i ] . logit > = min_logit ) {
filtered_tokens . push_back ( cur_p - > data [ i ] ) ;
2024-07-23 10:10:17 +00:00
}
}
// if we have enough values the operation was a success
if ( filtered_tokens . size ( ) > = min_keep ) {
2024-09-07 12:16:19 +00:00
memcpy ( cur_p - > data , filtered_tokens . data ( ) , filtered_tokens . size ( ) * sizeof ( llama_token_data ) ) ;
cur_p - > size = filtered_tokens . size ( ) ;
2024-07-23 10:10:17 +00:00
min_p_applied = true ;
}
}
2024-09-07 12:16:19 +00:00
// if the cur_p are sorted or the unsorted implementation failed, use this implementation
2024-07-23 10:10:17 +00:00
if ( ! min_p_applied ) {
// Sort the logits in descending order
2024-09-07 12:16:19 +00:00
if ( ! cur_p - > sorted ) {
std : : sort ( cur_p - > data , cur_p - > data + cur_p - > size , [ ] ( const llama_token_data & a , const llama_token_data & b ) {
2024-07-23 10:10:17 +00:00
return a . logit > b . logit ;
} ) ;
2024-09-07 12:16:19 +00:00
cur_p - > sorted = true ;
2024-07-23 10:10:17 +00:00
}
2024-09-07 12:16:19 +00:00
const float min_logit = cur_p - > data [ 0 ] . logit + logf ( p ) ; // min logit for p_i >= p * p_max
2024-07-23 10:10:17 +00:00
size_t i = 1 ; // first token always matches
2024-09-07 12:16:19 +00:00
for ( ; i < cur_p - > size ; + + i ) {
if ( cur_p - > data [ i ] . logit < min_logit & & i > = min_keep ) {
2024-07-23 10:10:17 +00:00
break ; // prob too small
}
}
// Resize the output vector to keep only the matching tokens
2024-09-07 12:16:19 +00:00
cur_p - > size = i ;
2024-07-23 10:10:17 +00:00
}
}
2024-09-07 12:16:19 +00:00
static void llama_sampler_tail_free_impl ( llama_token_data_array * cur_p , float z , size_t min_keep ) {
if ( z > = 1.0f | | cur_p - > size < = 2 ) {
2024-07-23 10:10:17 +00:00
return ;
}
2024-09-07 12:16:19 +00:00
llama_sampler_softmax_impl ( cur_p ) ;
2024-07-23 10:10:17 +00:00
// Compute the first and second derivatives
2024-09-07 12:16:19 +00:00
std : : vector < float > first_derivatives ( cur_p - > size - 1 ) ;
std : : vector < float > second_derivatives ( cur_p - > size - 2 ) ;
2024-07-23 10:10:17 +00:00
for ( size_t i = 0 ; i < first_derivatives . size ( ) ; + + i ) {
2024-09-07 12:16:19 +00:00
first_derivatives [ i ] = cur_p - > data [ i ] . p - cur_p - > data [ i + 1 ] . p ;
2024-07-23 10:10:17 +00:00
}
for ( size_t i = 0 ; i < second_derivatives . size ( ) ; + + i ) {
second_derivatives [ i ] = first_derivatives [ i ] - first_derivatives [ i + 1 ] ;
}
// Calculate absolute value of second derivatives
for ( size_t i = 0 ; i < second_derivatives . size ( ) ; + + i ) {
second_derivatives [ i ] = std : : abs ( second_derivatives [ i ] ) ;
}
// Normalize the second derivatives
{
const float second_derivatives_sum = std : : accumulate ( second_derivatives . begin ( ) , second_derivatives . end ( ) , 0.0f ) ;
if ( second_derivatives_sum > 1e-6 f ) {
for ( float & value : second_derivatives ) {
value / = second_derivatives_sum ;
}
} else {
for ( float & value : second_derivatives ) {
value = 1.0f / second_derivatives . size ( ) ;
}
}
}
float cum_sum = 0.0f ;
2024-09-07 12:16:19 +00:00
size_t last_idx = cur_p - > size ;
2024-07-23 10:10:17 +00:00
for ( size_t i = 0 ; i < second_derivatives . size ( ) ; + + i ) {
cum_sum + = second_derivatives [ i ] ;
// Check if the running sum is greater than z or if we have kept at least min_keep tokens
if ( cum_sum > z & & i > = min_keep ) {
last_idx = i ;
break ;
}
}
// Resize the output vector to keep only the tokens above the tail location
2024-09-07 12:16:19 +00:00
cur_p - > size = last_idx ;
2024-07-23 10:10:17 +00:00
}
2024-09-07 12:16:19 +00:00
static void llama_sampler_typical_impl ( llama_token_data_array * cur_p , float p , size_t min_keep ) {
2024-07-23 10:10:17 +00:00
// Reference implementation:
// https://github.com/huggingface/transformers/compare/main...cimeister:typical-sampling:typical-pr
if ( p > = 1.0f ) {
return ;
}
// Compute the softmax of logits and calculate entropy
2024-09-07 12:16:19 +00:00
llama_sampler_softmax_impl ( cur_p ) ;
2024-07-23 10:10:17 +00:00
float entropy = 0.0f ;
2024-09-07 12:16:19 +00:00
for ( size_t i = 0 ; i < cur_p - > size ; + + i ) {
entropy + = - cur_p - > data [ i ] . p * logf ( cur_p - > data [ i ] . p ) ;
2024-07-23 10:10:17 +00:00
}
// Compute the absolute difference between negative log probability and entropy for each candidate
std : : vector < float > shifted_scores ;
2024-09-07 12:16:19 +00:00
for ( size_t i = 0 ; i < cur_p - > size ; + + i ) {
float shifted_score = fabsf ( - logf ( cur_p - > data [ i ] . p ) - entropy ) ;
2024-07-23 10:10:17 +00:00
shifted_scores . push_back ( shifted_score ) ;
}
// Sort tokens based on the shifted_scores and their corresponding indices
2024-09-07 12:16:19 +00:00
std : : vector < size_t > indices ( cur_p - > size ) ;
2024-07-23 10:10:17 +00:00
std : : iota ( indices . begin ( ) , indices . end ( ) , 0 ) ;
std : : sort ( indices . begin ( ) , indices . end ( ) , [ & ] ( size_t a , size_t b ) {
return shifted_scores [ a ] < shifted_scores [ b ] ;
} ) ;
// Compute the cumulative probabilities
float cum_sum = 0.0f ;
size_t last_idx = indices . size ( ) ;
for ( size_t i = 0 ; i < indices . size ( ) ; + + i ) {
size_t idx = indices [ i ] ;
2024-09-07 12:16:19 +00:00
cum_sum + = cur_p - > data [ idx ] . p ;
2024-07-23 10:10:17 +00:00
// Check if the running sum is greater than typical or if we have kept at least min_keep tokens
if ( cum_sum > p & & i > = min_keep - 1 ) {
last_idx = i + 1 ;
break ;
}
}
// Resize the output vector to keep only the locally typical tokens
2024-09-07 12:16:19 +00:00
std : : vector < llama_token_data > cur_p_new ;
2024-07-23 10:10:17 +00:00
for ( size_t i = 0 ; i < last_idx ; + + i ) {
size_t idx = indices [ i ] ;
2024-09-07 12:16:19 +00:00
cur_p_new . push_back ( cur_p - > data [ idx ] ) ;
2024-07-23 10:10:17 +00:00
}
2024-09-07 12:16:19 +00:00
// Replace the data in cur_p with the cur_p_new data
std : : copy ( cur_p_new . begin ( ) , cur_p_new . end ( ) , cur_p - > data ) ;
cur_p - > size = cur_p_new . size ( ) ;
cur_p - > sorted = false ;
2024-07-23 10:10:17 +00:00
}
2024-09-07 12:16:19 +00:00
static void llama_sampler_entropy_impl ( llama_token_data_array * cur_p , float min_temp , float max_temp , float exponent_val ) {
2024-07-23 10:10:17 +00:00
// no need to do anything if there is only one (or zero) candidates
2024-09-07 12:16:19 +00:00
if ( cur_p - > size < = 1 ) {
2024-07-23 10:10:17 +00:00
return ;
}
// Calculate maximum possible entropy
2024-09-07 12:16:19 +00:00
float max_entropy = - logf ( 1.0f / cur_p - > size ) ;
2024-07-23 10:10:17 +00:00
2024-09-07 12:16:19 +00:00
llama_sampler_softmax_impl ( cur_p ) ;
2024-07-23 10:10:17 +00:00
// Calculate entropy of the softmax probabilities
float entropy = 0.0f ;
2024-09-07 12:16:19 +00:00
for ( size_t i = 0 ; i < cur_p - > size ; + + i ) {
float prob = cur_p - > data [ i ] . p ;
2024-07-23 10:10:17 +00:00
if ( prob > 0.0f ) { // Ensure no log(0)
entropy - = prob * logf ( prob ) ;
}
}
2024-09-07 12:16:19 +00:00
// Normalize the entropy (max_entropy cannot be 0 here because we checked cur_p->size != 1 above)
2024-07-23 10:10:17 +00:00
float normalized_entropy = entropy / max_entropy ;
// Map the normalized entropy to the desired temperature range using the power function
float dyn_temp = min_temp + ( max_temp - min_temp ) * powf ( normalized_entropy , exponent_val ) ;
# ifdef DEBUG
LLAMA_LOG_INFO ( " Your text maxtemp value is: %f \n " , max_temp ) ;
LLAMA_LOG_INFO ( " Entropy: %f \n " , entropy ) ;
LLAMA_LOG_INFO ( " Max Possible Entropy: %f \n " , max_entropy ) ;
LLAMA_LOG_INFO ( " Normalized Entropy: %f \n " , normalized_entropy ) ;
LLAMA_LOG_INFO ( " Exponent: %f \n " , exponent_val ) ;
LLAMA_LOG_INFO ( " Dynamic Temperature (dyn_temp): %f \n " , dyn_temp ) ;
# endif
// Apply the dynamically calculated temperature scaling
2024-09-07 12:16:19 +00:00
for ( size_t i = 0 ; i < cur_p - > size ; + + i ) {
cur_p - > data [ i ] . logit / = dyn_temp ;
2024-07-23 10:10:17 +00:00
}
// Re-compute softmax probabilities after scaling logits with dynamic temperature
2024-09-07 12:16:19 +00:00
const double max_l_double = cur_p - > data [ 0 ] . logit ;
2024-07-23 10:10:17 +00:00
double cum_sum_double = 0.0 ;
2024-09-07 12:16:19 +00:00
for ( size_t i = 0 ; i < cur_p - > size ; + + i ) {
double p = exp ( cur_p - > data [ i ] . logit - max_l_double ) ;
cur_p - > data [ i ] . p = p ; // Store the scaled probability
2024-07-23 10:10:17 +00:00
cum_sum_double + = p ;
}
2024-09-07 12:16:19 +00:00
for ( size_t i = 0 ; i < cur_p - > size ; + + i ) {
cur_p - > data [ i ] . p / = cum_sum_double ; // Re-normalize the probabilities
2024-07-23 10:10:17 +00:00
}
# ifdef DEBUG
// Print the updated top 25 probabilities after temperature scaling
LLAMA_LOG_INFO ( " \n Updated Top 25 Probabilities After Dynamic Temperature Scaling (in percentages): \n " ) ;
2024-09-07 12:16:19 +00:00
for ( size_t i = 0 ; i < 25 & & i < cur_p - > size ; + + i ) {
LLAMA_LOG_INFO ( " Token %zu: %f%% \n " , i + 1 , cur_p - > data [ i ] . p * 100.0f ) ;
2024-07-23 10:10:17 +00:00
}
# endif
}
2024-09-07 12:16:19 +00:00
static void llama_sampler_temp_impl ( llama_token_data_array * cur_p , float temp ) {
for ( size_t i = 0 ; i < cur_p - > size ; + + i ) {
cur_p - > data [ i ] . logit / = temp ;
2024-07-23 10:10:17 +00:00
}
}
2024-09-07 12:16:19 +00:00
static void llama_sampler_grammar_impl ( llama_token_data_array * cur_p , const struct llama_grammar & grammar ) {
llama_grammar_apply_impl ( grammar , cur_p ) ;
}
2024-07-23 10:10:17 +00:00
2024-09-07 12:16:19 +00:00
void llama_sampler_penalties_impl (
llama_token_data_array * cur_p ,
const llama_token_cnt & token_count ,
float penalty_repeat ,
float penalty_freq ,
float penalty_present ) {
// Apply frequency and presence penalties to the cur_p
for ( size_t i = 0 ; i < cur_p - > size ; + + i ) {
const auto token_iter = token_count . find ( cur_p - > data [ i ] . id ) ;
2024-07-23 10:10:17 +00:00
if ( token_iter = = token_count . end ( ) ) {
continue ;
}
const int count = token_iter - > second ;
// The academic publication that described this technique actually just only divided, but that would cause tokens with negative logits to become more likely, which is obviously wrong.
// This is common fix for this problem, which is to multiply by the penalty instead of dividing.
2024-09-07 12:16:19 +00:00
if ( cur_p - > data [ i ] . logit < = 0 ) {
cur_p - > data [ i ] . logit * = penalty_repeat ;
2024-07-23 10:10:17 +00:00
} else {
2024-09-07 12:16:19 +00:00
cur_p - > data [ i ] . logit / = penalty_repeat ;
2024-07-23 10:10:17 +00:00
}
2024-09-07 12:16:19 +00:00
cur_p - > data [ i ] . logit - = float ( count ) * penalty_freq + float ( count > 0 ) * penalty_present ;
}
cur_p - > sorted = false ;
}
// llama_sampler API
const char * llama_sampler_name ( const struct llama_sampler * smpl ) {
if ( ! smpl - > iface ) {
return " (null) " ;
}
return smpl - > iface - > name ( smpl ) ;
}
void llama_sampler_accept ( struct llama_sampler * smpl , llama_token token ) {
if ( smpl - > iface - > accept ) {
smpl - > iface - > accept ( smpl , token ) ;
}
}
void llama_sampler_apply ( struct llama_sampler * smpl , struct llama_token_data_array * cur_p ) {
GGML_ASSERT ( smpl - > iface - > apply ) ;
smpl - > iface - > apply ( smpl , cur_p ) ;
}
void llama_sampler_reset ( struct llama_sampler * smpl ) {
if ( smpl - > iface - > reset ) {
smpl - > iface - > reset ( smpl ) ;
2024-07-23 10:10:17 +00:00
}
2024-09-07 12:16:19 +00:00
}
2024-07-23 10:10:17 +00:00
2024-09-07 12:16:19 +00:00
struct llama_sampler * llama_sampler_clone ( const struct llama_sampler * smpl ) {
if ( smpl - > iface - > clone ) {
return smpl - > iface - > clone ( smpl ) ;
}
2024-07-23 10:10:17 +00:00
2024-09-07 12:16:19 +00:00
if ( smpl - > ctx = = nullptr ) {
return new llama_sampler {
/* .iface = */ smpl - > iface ,
/* .ctx = */ nullptr ,
} ;
2024-07-23 10:10:17 +00:00
}
2024-09-07 12:16:19 +00:00
GGML_ABORT ( " the sampler does not support cloning " ) ;
2024-07-23 10:10:17 +00:00
}
2024-09-07 12:16:19 +00:00
void llama_sampler_free ( struct llama_sampler * smpl ) {
if ( smpl = = nullptr ) {
return ;
}
if ( smpl - > iface - > free ) {
smpl - > iface - > free ( smpl ) ;
}
2024-07-23 10:10:17 +00:00
2024-09-07 12:16:19 +00:00
delete smpl ;
}
2024-07-23 10:10:17 +00:00
2024-09-07 12:16:19 +00:00
llama_token llama_sampler_sample ( struct llama_sampler * smpl , struct llama_context * ctx , int32_t idx ) {
const auto * logits = llama_get_logits_ith ( ctx , idx ) ;
2024-07-23 10:10:17 +00:00
2024-09-07 12:16:19 +00:00
const int n_vocab = llama_n_vocab ( llama_get_model ( ctx ) ) ;
2024-07-23 10:10:17 +00:00
2024-09-07 12:16:19 +00:00
// TODO: do not allocate each time
std : : vector < llama_token_data > cur ( n_vocab ) ;
for ( llama_token token_id = 0 ; token_id < n_vocab ; token_id + + ) {
cur [ token_id ] = llama_token_data { token_id , logits [ token_id ] , 0.0f } ;
2024-07-23 10:10:17 +00:00
}
2024-09-07 12:16:19 +00:00
llama_token_data_array cur_p = { cur . data ( ) , cur . size ( ) , - 1 , false } ;
llama_sampler_apply ( smpl , & cur_p ) ;
return cur_p . data [ cur_p . selected ] . id ;
2024-07-23 10:10:17 +00:00
}
2024-09-07 12:16:19 +00:00
// sampler chain
static struct llama_sampler_i llama_sampler_chain_i = {
/* .name = */ [ ] ( const struct llama_sampler * /*smpl*/ ) { return " chain " ; } ,
/* .accept = */ [ ] ( struct llama_sampler * smpl , llama_token token ) {
auto * chain = ( llama_sampler_chain * ) smpl - > ctx ;
time_meas tm ( chain - > t_sample_us , chain - > params . no_perf ) ;
for ( auto * smpl : chain - > samplers ) {
llama_sampler_accept ( smpl , token ) ;
}
chain - > n_sample + + ;
} ,
/* .apply = */ [ ] ( struct llama_sampler * smpl , llama_token_data_array * cur_p ) {
auto * chain = ( llama_sampler_chain * ) smpl - > ctx ;
time_meas tm ( chain - > t_sample_us , chain - > params . no_perf ) ;
for ( auto * smpl : chain - > samplers ) {
llama_sampler_apply ( smpl , cur_p ) ;
}
} ,
/* .reset = */ [ ] ( struct llama_sampler * smpl ) {
auto * chain = ( llama_sampler_chain * ) smpl - > ctx ;
for ( auto * smpl : chain - > samplers ) {
llama_sampler_reset ( smpl ) ;
}
chain - > t_sample_us = 0 ;
chain - > n_sample = 0 ;
} ,
/* .clone = */ [ ] ( const struct llama_sampler * smpl ) {
const auto * chain_src = ( const llama_sampler_chain * ) smpl - > ctx ;
2024-07-23 10:10:17 +00:00
2024-09-07 12:16:19 +00:00
auto * result = llama_sampler_chain_init ( chain_src - > params ) ;
2024-07-23 10:10:17 +00:00
2024-09-07 12:16:19 +00:00
for ( auto * smpl : chain_src - > samplers ) {
llama_sampler_chain_add ( result , llama_sampler_clone ( smpl ) ) ;
}
return result ;
} ,
/* .free = */ [ ] ( struct llama_sampler * smpl ) {
auto * chain = ( llama_sampler_chain * ) smpl - > ctx ;
for ( auto * smpl : chain - > samplers ) {
llama_sampler_free ( smpl ) ;
}
2024-07-23 10:10:17 +00:00
2024-09-07 12:16:19 +00:00
delete chain ;
} ,
} ;
struct llama_sampler * llama_sampler_chain_init ( struct llama_sampler_chain_params params ) {
return new llama_sampler {
/* .iface = */ & llama_sampler_chain_i ,
/* .ctx = */ new llama_sampler_chain {
/* .params = */ params ,
/* .samplers = */ { } ,
/* .t_sample_us = */ 0 ,
/* .n_sample = */ 0 ,
} ,
} ;
}
void llama_sampler_chain_add ( struct llama_sampler * chain , struct llama_sampler * smpl ) {
auto * p = ( llama_sampler_chain * ) chain - > ctx ;
p - > samplers . push_back ( smpl ) ;
}
2024-07-23 10:10:17 +00:00
2024-09-07 12:16:19 +00:00
struct llama_sampler * llama_sampler_chain_get ( const struct llama_sampler * chain , int32_t i ) {
const auto * p = ( const llama_sampler_chain * ) chain - > ctx ;
if ( i < 0 | | i > = ( int32_t ) p - > samplers . size ( ) ) {
return nullptr ;
2024-07-23 10:10:17 +00:00
}
2024-09-07 12:16:19 +00:00
return p - > samplers [ i ] ;
}
int llama_sampler_chain_n ( const struct llama_sampler * chain ) {
const auto * p = ( const llama_sampler_chain * ) chain - > ctx ;
2024-07-23 10:10:17 +00:00
2024-09-07 12:16:19 +00:00
return p - > samplers . size ( ) ;
}
2024-07-23 10:10:17 +00:00
2024-09-07 12:16:19 +00:00
//
// samplers
//
2024-07-23 10:10:17 +00:00
2024-09-07 12:16:19 +00:00
// greedy
2024-07-23 10:10:17 +00:00
2024-09-07 12:16:19 +00:00
static struct llama_sampler_i llama_sampler_greedy_i = {
/* .name = */ [ ] ( const struct llama_sampler * /*smpl*/ ) { return " greedy " ; } ,
/* .accept = */ nullptr ,
/* .apply = */ [ ] ( struct llama_sampler * /*smpl*/ , llama_token_data_array * cur_p ) {
cur_p - > selected = 0 ;
for ( size_t i = 1 ; i < cur_p - > size ; + + i ) {
if ( cur_p - > data [ i ] . logit > cur_p - > data [ cur_p - > selected ] . logit ) {
cur_p - > selected = i ;
}
}
} ,
/* .reset = */ nullptr ,
/* .clone = */ nullptr ,
/* .free = */ nullptr ,
} ;
struct llama_sampler * llama_sampler_init_greedy ( ) {
return new llama_sampler {
/* .iface = */ & llama_sampler_greedy_i ,
/* .ctx = */ nullptr ,
} ;
2024-07-23 10:10:17 +00:00
}
2024-09-07 12:16:19 +00:00
// dist
2024-07-23 10:10:17 +00:00
2024-09-07 12:16:19 +00:00
struct llama_sampler_dist {
const uint32_t seed ;
2024-07-23 10:10:17 +00:00
2024-09-07 12:16:19 +00:00
std : : mt19937 rng ;
2024-07-23 10:10:17 +00:00
2024-09-07 12:16:19 +00:00
std : : vector < float > probs ; // work array
} ;
2024-07-23 10:10:17 +00:00
2024-09-07 12:16:19 +00:00
static struct llama_sampler_i llama_sampler_dist_i = {
/* .name = */ [ ] ( const struct llama_sampler * /*smpl*/ ) { return " dist " ; } ,
/* .accept = */ nullptr ,
/* .apply = */ [ ] ( struct llama_sampler * smpl , llama_token_data_array * cur_p ) {
auto * ctx = ( llama_sampler_dist * ) smpl - > ctx ;
cur_p - > selected = llama_sample_dist ( cur_p , ctx - > rng , ctx - > probs ) ;
} ,
/* .reset = */ nullptr ,
/* .clone = */ [ ] ( const struct llama_sampler * smpl ) {
const auto * ctx = ( const llama_sampler_dist * ) smpl - > ctx ;
auto * result = llama_sampler_init_dist ( ctx - > seed ) ;
2024-07-23 10:10:17 +00:00
2024-09-07 12:16:19 +00:00
// copy the state
{
auto * result_ctx = ( llama_sampler_dist * ) result - > ctx ;
2024-07-23 10:10:17 +00:00
2024-09-07 12:16:19 +00:00
result_ctx - > rng = ctx - > rng ;
}
2024-07-23 10:10:17 +00:00
2024-09-07 12:16:19 +00:00
return result ;
} ,
/* .free = */ [ ] ( struct llama_sampler * smpl ) {
delete ( llama_sampler_dist * ) smpl - > ctx ;
} ,
} ;
struct llama_sampler * llama_sampler_init_dist ( uint32_t seed ) {
return new llama_sampler {
/* .iface = */ & llama_sampler_dist_i ,
/* .ctx = */ new llama_sampler_dist {
/* .seed = */ seed ,
/* .rng = */ std : : mt19937 ( seed ) ,
/* .probs = */ { } ,
} ,
} ;
}
2024-07-23 10:10:17 +00:00
2024-09-07 12:16:19 +00:00
// softmax
static struct llama_sampler_i llama_sampler_softmax_i = {
/* .name = */ [ ] ( const struct llama_sampler * /*smpl*/ ) { return " softmax " ; } ,
/* .accept = */ nullptr ,
/* .apply = */ [ ] ( struct llama_sampler * /*smpl*/ , llama_token_data_array * cur_p ) {
llama_sampler_softmax_impl ( cur_p ) ;
} ,
/* .reset = */ nullptr ,
/* .clone = */ nullptr ,
/* .free = */ nullptr ,
} ;
struct llama_sampler * llama_sampler_init_softmax ( ) {
return new llama_sampler {
/* .iface = */ & llama_sampler_softmax_i ,
/* .ctx = */ nullptr ,
} ;
}
2024-07-23 10:10:17 +00:00
2024-09-07 12:16:19 +00:00
// top-k
struct llama_sampler_top_k {
const int32_t k ;
} ;
static struct llama_sampler_i llama_sampler_top_k_i = {
/* .name = */ [ ] ( const struct llama_sampler * /*smpl*/ ) { return " top-k " ; } ,
/* .accept = */ nullptr ,
/* .apply = */ [ ] ( struct llama_sampler * smpl , llama_token_data_array * cur_p ) {
const auto * ctx = ( llama_sampler_top_k * ) smpl - > ctx ;
llama_sampler_top_k_impl ( cur_p , ctx - > k ) ;
} ,
/* .reset = */ nullptr ,
/* .clone = */ [ ] ( const struct llama_sampler * smpl ) {
const auto * ctx = ( const llama_sampler_top_k * ) smpl - > ctx ;
return llama_sampler_init_top_k ( ctx - > k ) ;
} ,
/* .free = */ [ ] ( struct llama_sampler * smpl ) {
delete ( llama_sampler_top_k * ) smpl - > ctx ;
} ,
} ;
struct llama_sampler * llama_sampler_init_top_k ( int32_t k ) {
return new llama_sampler {
/* .iface = */ & llama_sampler_top_k_i ,
/* .ctx = */ new llama_sampler_top_k {
/* .k = */ k ,
} ,
} ;
2024-07-23 10:10:17 +00:00
}
2024-09-07 12:16:19 +00:00
// top-p
struct llama_sampler_top_p {
const float p ;
const size_t min_keep ;
} ;
static struct llama_sampler_i llama_sampler_top_p_i = {
/* .name = */ [ ] ( const struct llama_sampler * /*smpl*/ ) { return " top-p " ; } ,
/* .accept = */ nullptr ,
/* .apply = */ [ ] ( struct llama_sampler * smpl , llama_token_data_array * cur_p ) {
const auto * ctx = ( llama_sampler_top_p * ) smpl - > ctx ;
llama_sampler_top_p_impl ( cur_p , ctx - > p , ctx - > min_keep ) ;
} ,
/* .reset = */ nullptr ,
/* .clone = */ [ ] ( const struct llama_sampler * smpl ) {
const auto * ctx = ( const llama_sampler_top_p * ) smpl - > ctx ;
return llama_sampler_init_top_p ( ctx - > p , ctx - > min_keep ) ;
} ,
/* .free = */ [ ] ( struct llama_sampler * smpl ) {
delete ( llama_sampler_top_p * ) smpl - > ctx ;
} ,
} ;
struct llama_sampler * llama_sampler_init_top_p ( float p , size_t min_keep ) {
return new llama_sampler {
/* .iface = */ & llama_sampler_top_p_i ,
/* .ctx = */ new llama_sampler_top_p {
/* .p = */ p ,
/* .min_keep = */ min_keep ,
} ,
} ;
}
2024-07-23 10:10:17 +00:00
2024-09-07 12:16:19 +00:00
// min-p
struct llama_sampler_min_p {
const float p ;
const size_t min_keep ;
} ;
static struct llama_sampler_i llama_sampler_min_p_i = {
/* .name = */ [ ] ( const struct llama_sampler * /*smpl*/ ) { return " min-p " ; } ,
/* .accept = */ nullptr ,
/* .apply = */ [ ] ( struct llama_sampler * smpl , llama_token_data_array * cur_p ) {
const auto * ctx = ( llama_sampler_min_p * ) smpl - > ctx ;
llama_sampler_min_p_impl ( cur_p , ctx - > p , ctx - > min_keep ) ;
} ,
/* .reset = */ nullptr ,
/* .clone = */ [ ] ( const struct llama_sampler * smpl ) {
const auto * ctx = ( const llama_sampler_min_p * ) smpl - > ctx ;
return llama_sampler_init_min_p ( ctx - > p , ctx - > min_keep ) ;
} ,
/* .free = */ [ ] ( struct llama_sampler * smpl ) {
delete ( llama_sampler_min_p * ) smpl - > ctx ;
} ,
} ;
struct llama_sampler * llama_sampler_init_min_p ( float p , size_t min_keep ) {
return new llama_sampler {
/* .iface = */ & llama_sampler_min_p_i ,
/* .ctx = */ new llama_sampler_min_p {
/* .p = */ p ,
/* .min_keep = */ min_keep ,
} ,
} ;
}
2024-07-23 10:10:17 +00:00
2024-09-07 12:16:19 +00:00
// tail-free
struct llama_sampler_tail_free {
const float z ;
const size_t min_keep ;
} ;
static struct llama_sampler_i llama_sampler_tail_free_i = {
/* .name = */ [ ] ( const struct llama_sampler * /*smpl*/ ) { return " tail-free " ; } ,
/* .accept = */ nullptr ,
/* .apply = */ [ ] ( struct llama_sampler * smpl , llama_token_data_array * cur_p ) {
const auto * ctx = ( llama_sampler_tail_free * ) smpl - > ctx ;
llama_sampler_tail_free_impl ( cur_p , ctx - > z , ctx - > min_keep ) ;
} ,
/* .reset = */ nullptr ,
/* .clone = */ [ ] ( const struct llama_sampler * smpl ) {
const auto * ctx = ( const llama_sampler_tail_free * ) smpl - > ctx ;
return llama_sampler_init_tail_free ( ctx - > z , ctx - > min_keep ) ;
} ,
/* .free = */ [ ] ( struct llama_sampler * smpl ) {
delete ( llama_sampler_tail_free * ) smpl - > ctx ;
} ,
} ;
struct llama_sampler * llama_sampler_init_tail_free ( float z , size_t min_keep ) {
return new llama_sampler {
/* .iface = */ & llama_sampler_tail_free_i ,
/* .ctx = */ new llama_sampler_tail_free {
/* .z = */ z ,
/*. min_keep = */ min_keep ,
} ,
} ;
2024-07-23 10:10:17 +00:00
}
2024-09-07 12:16:19 +00:00
// typical
struct llama_sampler_typical {
const float p ;
const size_t min_keep ;
} ;
static struct llama_sampler_i llama_sampler_typical_i = {
/* .name = */ [ ] ( const struct llama_sampler * /*smpl*/ ) { return " typical " ; } ,
/* .accept = */ nullptr ,
/* .apply = */ [ ] ( struct llama_sampler * smpl , llama_token_data_array * cur_p ) {
const auto * ctx = ( llama_sampler_typical * ) smpl - > ctx ;
llama_sampler_typical_impl ( cur_p , ctx - > p , ctx - > min_keep ) ;
} ,
/* .reset = */ nullptr ,
/* .clone = */ [ ] ( const struct llama_sampler * smpl ) {
const auto * ctx = ( const llama_sampler_typical * ) smpl - > ctx ;
return llama_sampler_init_typical ( ctx - > p , ctx - > min_keep ) ;
} ,
/* .free = */ [ ] ( struct llama_sampler * smpl ) {
delete ( llama_sampler_typical * ) smpl - > ctx ;
} ,
} ;
struct llama_sampler * llama_sampler_init_typical ( float p , size_t min_keep ) {
return new llama_sampler {
/* .iface = */ & llama_sampler_typical_i ,
/* .ctx = */ new llama_sampler_typical {
/* .p = */ p ,
/* .min_keep = */ min_keep ,
} ,
} ;
}
// temp
struct llama_sampler_temp {
const float temp ;
} ;
static struct llama_sampler_i llama_sampler_temp_i = {
/* .name = */ [ ] ( const struct llama_sampler * /*smpl*/ ) { return " temp " ; } ,
/* .accept = */ nullptr ,
/* .apply = */ [ ] ( struct llama_sampler * smpl , llama_token_data_array * cur_p ) {
const auto * ctx = ( llama_sampler_temp * ) smpl - > ctx ;
llama_sampler_temp_impl ( cur_p , ctx - > temp ) ;
} ,
/* .reset = */ nullptr ,
/* .clone = */ [ ] ( const struct llama_sampler * smpl ) {
const auto * ctx = ( const llama_sampler_temp * ) smpl - > ctx ;
return llama_sampler_init_temp ( ctx - > temp ) ;
} ,
/* .free = */ [ ] ( struct llama_sampler * smpl ) {
delete ( llama_sampler_temp * ) smpl - > ctx ;
} ,
} ;
struct llama_sampler * llama_sampler_init_temp ( float temp ) {
return new llama_sampler {
/* .iface = */ & llama_sampler_temp_i ,
/* .ctx = */ new llama_sampler_temp {
/*.temp = */ temp ,
} ,
} ;
}
2024-07-23 10:10:17 +00:00
2024-09-07 12:16:19 +00:00
// temp-ext
struct llama_sampler_temp_ext {
const float temp ;
const float delta ;
const float exponent ;
} ;
static struct llama_sampler_i llama_sampler_temp_ext_i = {
/* .name = */ [ ] ( const struct llama_sampler * /*smpl*/ ) { return " temp-ext " ; } ,
/* .accept = */ nullptr ,
/* .apply = */ [ ] ( struct llama_sampler * smpl , llama_token_data_array * cur_p ) {
const auto * ctx = ( llama_sampler_temp_ext * ) smpl - > ctx ;
if ( ctx - > delta > 0 ) {
const float temp_min = std : : max ( 0.0f , ctx - > temp - ctx - > delta ) ;
const float temp_max = ctx - > temp + ctx - > delta ;
llama_sampler_entropy_impl ( cur_p , temp_min , temp_max , ctx - > exponent ) ;
} else {
llama_sampler_temp_impl ( cur_p , ctx - > temp ) ;
}
} ,
/* .reset = */ nullptr ,
/* .clone = */ [ ] ( const struct llama_sampler * smpl ) {
const auto * ctx = ( const llama_sampler_temp_ext * ) smpl - > ctx ;
return llama_sampler_init_temp_ext ( ctx - > temp , ctx - > delta , ctx - > exponent ) ;
} ,
/* .free = */ [ ] ( struct llama_sampler * smpl ) {
delete ( llama_sampler_temp_ext * ) smpl - > ctx ;
} ,
} ;
struct llama_sampler * llama_sampler_init_temp_ext ( float temp , float delta , float exponent ) {
return new llama_sampler {
/* .iface = */ & llama_sampler_temp_ext_i ,
/* .ctx = */ new llama_sampler_temp_ext {
/* .temp = */ temp ,
/* .delta = */ delta ,
/* .exponent = */ exponent ,
} ,
} ;
}
// mirostat
struct llama_sampler_mirostat {
const int32_t n_vocab ;
const uint32_t seed ;
const float tau ;
const float eta ;
const int32_t m ;
float mu ;
std : : mt19937 rng ;
std : : vector < float > probs ;
} ;
static struct llama_sampler_i llama_sampler_mirostat_i = {
/* .name = */ [ ] ( const struct llama_sampler * /*smpl*/ ) { return " mirostat " ; } ,
/* .accept = */ nullptr ,
/* .apply = */ [ ] ( struct llama_sampler * smpl , llama_token_data_array * cur_p ) {
auto * ctx = ( llama_sampler_mirostat * ) smpl - > ctx ;
llama_sampler_softmax_impl ( cur_p ) ;
// Estimate s_hat using the most probable m tokens
float s_hat = 0.0 ;
float sum_ti_bi = 0.0 ;
float sum_ti_sq = 0.0 ;
for ( size_t i = 0 ; i < size_t ( ctx - > m - 1 ) & & i < cur_p - > size - 1 ; + + i ) {
float t_i = logf ( float ( i + 2 ) / float ( i + 1 ) ) ;
float b_i = logf ( cur_p - > data [ i ] . p / cur_p - > data [ i + 1 ] . p ) ;
sum_ti_bi + = t_i * b_i ;
sum_ti_sq + = t_i * t_i ;
}
s_hat = sum_ti_bi / sum_ti_sq ;
// Compute k from the estimated s_hat and target surprise value
float epsilon_hat = s_hat - 1 ;
float k = powf ( ( epsilon_hat * powf ( 2 , ctx - > mu ) ) / ( 1 - powf ( ctx - > n_vocab , - epsilon_hat ) ) , 1 / s_hat ) ;
llama_sampler_top_k_impl ( cur_p , std : : max ( int ( k ) , 1 ) ) ;
llama_sampler_softmax_impl ( cur_p ) ;
const int idx = llama_sample_dist ( cur_p , ctx - > rng , ctx - > probs ) ;
cur_p - > selected = idx ;
float observed_surprise = - log2f ( cur_p - > data [ idx ] . p ) ;
float e = observed_surprise - ctx - > tau ;
// Update mu using the learning rate and error
ctx - > mu = ctx - > mu - ctx - > eta * e ;
} ,
/* .reset = */ [ ] ( struct llama_sampler * smpl ) {
auto * ctx = ( llama_sampler_mirostat * ) smpl - > ctx ;
ctx - > mu = 2.0f * ctx - > tau ;
ctx - > rng = std : : mt19937 ( ctx - > seed ) ;
} ,
/* .clone = */ [ ] ( const struct llama_sampler * smpl ) {
const auto * ctx = ( const llama_sampler_mirostat * ) smpl - > ctx ;
auto * result = llama_sampler_init_mirostat ( ctx - > n_vocab , ctx - > seed , ctx - > tau , ctx - > eta , ctx - > m ) ;
// copy the state
{
auto * result_ctx = ( llama_sampler_mirostat * ) smpl - > ctx ;
result_ctx - > mu = ctx - > mu ;
result_ctx - > rng = ctx - > rng ;
}
return result ;
} ,
/* .free = */ [ ] ( struct llama_sampler * smpl ) {
delete ( llama_sampler_mirostat * ) smpl - > ctx ;
} ,
} ;
struct llama_sampler * llama_sampler_init_mirostat ( int32_t n_vocab , uint32_t seed , float tau , float eta , int32_t m ) {
return new llama_sampler {
/* .iface = */ & llama_sampler_mirostat_i ,
/* .ctx = */ new llama_sampler_mirostat {
/* .n_vocab = */ n_vocab ,
/* .seed = */ seed ,
/* .tau = */ tau ,
/* .eta = */ eta ,
/* .m = */ m ,
/* .mu = */ 2.0f * tau ,
/* .rng = */ std : : mt19937 ( seed ) ,
/* .probs = */ { } ,
} ,
} ;
}
// mirostat v2
struct llama_sampler_mirostat_v2 {
const uint32_t seed ;
const float tau ;
const float eta ;
float mu ;
std : : mt19937 rng ;
2024-07-23 10:10:17 +00:00
std : : vector < float > probs ;
2024-09-07 12:16:19 +00:00
} ;
static struct llama_sampler_i llama_sampler_mirostat_v2_i = {
/* .name = */ [ ] ( const struct llama_sampler * /*smpl*/ ) { return " mirostat-v2 " ; } ,
/* .accept = */ nullptr ,
/* .apply = */ [ ] ( struct llama_sampler * smpl , llama_token_data_array * cur_p ) {
auto * ctx = ( llama_sampler_mirostat_v2 * ) smpl - > ctx ;
llama_sampler_softmax_impl ( cur_p ) ;
// Truncate the words with surprise values greater than mu
cur_p - > size = std : : distance ( cur_p - > data , std : : find_if ( cur_p - > data , cur_p - > data + cur_p - > size , [ & ] ( const llama_token_data & candidate ) {
return - log2f ( candidate . p ) > ctx - > mu ;
} ) ) ;
if ( cur_p - > size = = 0 ) {
cur_p - > size = 1 ;
}
// Normalize the probabilities of the remaining words
llama_sampler_softmax_impl ( cur_p ) ;
const int idx = llama_sample_dist ( cur_p , ctx - > rng , ctx - > probs ) ;
cur_p - > selected = idx ;
float observed_surprise = - log2f ( cur_p - > data [ idx ] . p ) ;
float e = observed_surprise - ctx - > tau ;
// Update mu using the learning rate and error
ctx - > mu = ctx - > mu - ctx - > eta * e ;
} ,
/* .reset = */ [ ] ( struct llama_sampler * smpl ) {
auto * ctx = ( llama_sampler_mirostat_v2 * ) smpl - > ctx ;
ctx - > mu = 2.0f * ctx - > tau ;
ctx - > rng = std : : mt19937 ( ctx - > seed ) ;
} ,
/* .clone = */ [ ] ( const struct llama_sampler * smpl ) {
const auto * ctx = ( const llama_sampler_mirostat_v2 * ) smpl - > ctx ;
auto * result = llama_sampler_init_mirostat_v2 ( ctx - > seed , ctx - > tau , ctx - > eta ) ;
// copy the state
{
auto * result_ctx = ( llama_sampler_mirostat_v2 * ) result - > ctx ;
result_ctx - > mu = ctx - > mu ;
result_ctx - > rng = ctx - > rng ;
}
return result ;
} ,
/* .free = */ [ ] ( struct llama_sampler * smpl ) {
delete ( llama_sampler_mirostat_v2 * ) smpl - > ctx ;
} ,
} ;
struct llama_sampler * llama_sampler_init_mirostat_v2 ( uint32_t seed , float tau , float eta ) {
return new llama_sampler {
/* .iface = */ & llama_sampler_mirostat_v2_i ,
/* .ctx = */ new llama_sampler_mirostat_v2 {
/* .seed = */ seed ,
/* .tau = */ tau ,
/* .eta = */ eta ,
/* .mu = */ 2.0f * tau ,
/* .rng = */ std : : mt19937 ( seed ) ,
/* .probs = */ { } ,
} ,
} ;
}
// grammar
struct llama_sampler_grammar {
const struct llama_vocab * vocab ;
std : : string grammar_str ;
std : : string grammar_root ;
struct llama_grammar * grammar ;
} ;
static struct llama_sampler_i llama_sampler_grammar_i = {
/* .name = */ [ ] ( const struct llama_sampler * /*smpl*/ ) { return " grammar " ; } ,
/* .accept = */ [ ] ( struct llama_sampler * smpl , llama_token token ) {
const auto * ctx = ( llama_sampler_grammar * ) smpl - > ctx ;
if ( ctx - > grammar ) {
llama_grammar_accept_impl ( * ctx - > grammar , token ) ;
}
} ,
/* .apply = */ [ ] ( struct llama_sampler * smpl , llama_token_data_array * cur_p ) {
const auto * ctx = ( llama_sampler_grammar * ) smpl - > ctx ;
if ( ctx - > grammar ) {
llama_sampler_grammar_impl ( cur_p , * ctx - > grammar ) ;
}
} ,
/* .reset = */ [ ] ( struct llama_sampler * smpl ) {
auto * ctx = ( llama_sampler_grammar * ) smpl - > ctx ;
if ( ! ctx - > grammar ) {
return ;
}
auto * grammar_new = llama_grammar_init_impl ( ctx - > grammar - > vocab , ctx - > grammar_str . c_str ( ) , ctx - > grammar_root . c_str ( ) ) ;
llama_grammar_free_impl ( ctx - > grammar ) ;
ctx - > grammar = grammar_new ;
} ,
/* .clone = */ [ ] ( const struct llama_sampler * smpl ) {
const auto * ctx = ( const llama_sampler_grammar * ) smpl - > ctx ;
auto * result = llama_sampler_init_grammar_impl ( * ctx - > vocab , nullptr , nullptr ) ;
// copy the state
{
auto * result_ctx = ( llama_sampler_grammar * ) result - > ctx ;
if ( ctx - > grammar ) {
result_ctx - > grammar_str = ctx - > grammar_str ;
result_ctx - > grammar_root = ctx - > grammar_root ;
result_ctx - > grammar = llama_grammar_clone_impl ( * ctx - > grammar ) ;
}
}
return result ;
} ,
/* .free = */ [ ] ( struct llama_sampler * smpl ) {
const auto * ctx = ( llama_sampler_grammar * ) smpl - > ctx ;
if ( ctx - > grammar ) {
llama_grammar_free_impl ( ctx - > grammar ) ;
}
delete ctx ;
} ,
} ;
struct llama_sampler * llama_sampler_init_grammar_impl ( const struct llama_vocab & vocab , const char * grammar_str , const char * grammar_root ) {
auto * ctx = new llama_sampler_grammar ;
if ( grammar_str ! = nullptr & & grammar_str [ 0 ] ! = ' \0 ' ) {
* ctx = {
/* .vocab = */ & vocab ,
/* .grammar_str = */ grammar_str ,
/* .grammar_root = */ grammar_root ,
/* .grammar = */ llama_grammar_init_impl ( & vocab , grammar_str , grammar_root ) ,
} ;
} else {
* ctx = {
/* .vocab = */ & vocab ,
/* .grammar_str = */ { } ,
/* .grammar_root = */ { } ,
/* .grammar = */ nullptr ,
} ;
2024-07-23 10:10:17 +00:00
}
2024-09-07 12:16:19 +00:00
return new llama_sampler {
/* .iface = */ & llama_sampler_grammar_i ,
/* .ctx = */ ctx ,
} ;
}
2024-07-23 10:10:17 +00:00
2024-09-07 12:16:19 +00:00
// penalties
struct llama_sampler_penalties {
const int32_t n_vocab ;
const llama_token special_eos_id ;
const llama_token linefeed_id ;
const int32_t penalty_last_n ;
const float penalty_repeat ;
const float penalty_freq ;
const float penalty_present ;
const bool penalize_nl ;
const bool ignore_eos ;
ring_buffer < llama_token > prev ;
} ;
static struct llama_sampler_i llama_sampler_penalties_i = {
/* .name = */ [ ] ( const struct llama_sampler * /*smpl*/ ) { return " penalties " ; } ,
/* .accept = */ [ ] ( struct llama_sampler * smpl , llama_token token ) {
auto * ctx = ( llama_sampler_penalties * ) smpl - > ctx ;
2024-09-07 21:33:33 +00:00
if ( ctx - > prev . size ( ) ) {
ctx - > prev . push_back ( token ) ;
}
2024-09-07 12:16:19 +00:00
} ,
/* .apply = */ [ ] ( struct llama_sampler * smpl , llama_token_data_array * cur_p ) {
auto * ctx = ( llama_sampler_penalties * ) smpl - > ctx ;
if ( ctx - > ignore_eos ) {
assert ( ctx - > special_eos_id > = 0 ) ;
// optimistically check if the candidates are not yet sorted/shuffled/truncated
if ( cur_p - > size > ( size_t ) ctx - > special_eos_id & & cur_p - > data [ ctx - > special_eos_id ] . id = = ctx - > special_eos_id ) {
cur_p - > data [ ctx - > special_eos_id ] . logit = - INFINITY ;
} else {
// else, search for the special EOS token
for ( size_t i = 0 ; i < cur_p - > size ; + + i ) {
if ( cur_p - > data [ i ] . id = = ctx - > special_eos_id ) {
cur_p - > data [ i ] . logit = - INFINITY ;
break ;
}
}
}
}
2024-07-23 10:10:17 +00:00
2024-09-07 12:16:19 +00:00
if ( ( ctx - > penalty_last_n = = 0 ) | |
( ctx - > penalty_repeat = = 1.0f & & ctx - > penalty_freq = = 0.0f & & ctx - > penalty_present = = 0.0f ) ) {
return ;
}
2024-07-23 10:10:17 +00:00
2024-09-07 12:16:19 +00:00
bool nl_found = false ;
size_t nl_idx = 0 ;
float nl_logit = - INFINITY ;
if ( ! ctx - > penalize_nl ) {
assert ( ctx - > linefeed_id > = 0 ) ;
// optimistically check if the candidates are not yet sorted/shuffled/truncated
if ( cur_p - > size > ( size_t ) ctx - > linefeed_id & & cur_p - > data [ ctx - > linefeed_id ] . id = = ctx - > linefeed_id ) {
nl_found = true ;
nl_idx = ctx - > linefeed_id ;
nl_logit = cur_p - > data [ ctx - > linefeed_id ] . logit ;
} else {
// else, search for the linefeed token
for ( size_t i = 0 ; i < cur_p - > size ; + + i ) {
if ( cur_p - > data [ i ] . id = = ctx - > linefeed_id ) {
nl_found = true ;
nl_idx = i ;
nl_logit = cur_p - > data [ i ] . logit ;
break ;
}
}
}
}
// Create a frequency map to count occurrences of each token in last_tokens
// TODO: optimize this by maintaining the token count in the sampler context
llama_token_cnt token_count ;
for ( int i = 0 ; i < std : : min < int > ( ctx - > penalty_last_n , ctx - > prev . size ( ) ) ; + + i ) {
token_count [ ctx - > prev . rat ( i ) ] + + ;
}
llama_sampler_penalties_impl ( cur_p , token_count , ctx - > penalty_repeat , ctx - > penalty_freq , ctx - > penalty_present ) ;
if ( ! ctx - > penalize_nl & & nl_found ) {
// restore the logit of the newline token if it was penalized
cur_p - > data [ nl_idx ] . logit = nl_logit ;
}
} ,
/* .reset = */ [ ] ( struct llama_sampler * smpl ) {
auto * ctx = ( llama_sampler_penalties * ) smpl - > ctx ;
ctx - > prev . clear ( ) ;
} ,
/* .clone = */ [ ] ( const struct llama_sampler * smpl ) {
const auto * ctx = ( const llama_sampler_penalties * ) smpl - > ctx ;
auto * result = llama_sampler_init_penalties (
ctx - > n_vocab ,
ctx - > special_eos_id ,
ctx - > linefeed_id ,
ctx - > penalty_last_n ,
ctx - > penalty_repeat ,
ctx - > penalty_freq ,
ctx - > penalty_present ,
ctx - > penalize_nl ,
ctx - > ignore_eos ) ;
// copy the state
{
auto * result_ctx = ( llama_sampler_penalties * ) result - > ctx ;
result_ctx - > prev = ctx - > prev ;
}
return result ;
} ,
/* .free = */ [ ] ( struct llama_sampler * smpl ) {
delete ( llama_sampler_penalties * ) smpl - > ctx ;
} ,
} ;
struct llama_sampler * llama_sampler_init_penalties (
int32_t n_vocab ,
llama_token special_eos_id ,
llama_token linefeed_id ,
int32_t penalty_last_n ,
float penalty_repeat ,
float penalty_freq ,
float penalty_present ,
bool penalize_nl ,
bool ignore_eos ) {
if ( linefeed_id = = LLAMA_TOKEN_NULL ) {
penalize_nl = false ;
}
if ( special_eos_id = = LLAMA_TOKEN_NULL ) {
ignore_eos = true ;
}
return new llama_sampler {
/* .iface = */ & llama_sampler_penalties_i ,
/* .ctx = */ new llama_sampler_penalties {
/* .n_vocab = */ n_vocab ,
/* .special_eos_id = */ special_eos_id ,
/* .linefeed_id = */ linefeed_id ,
/* .penalty_last_n = */ penalty_last_n ,
/* .penalty_repeat = */ penalty_repeat ,
/* .penalty_freq = */ penalty_freq ,
/* .penalty_present = */ penalty_present ,
/* .penalize_nl = */ penalize_nl ,
/* .ignore_eos = */ ignore_eos ,
/* .prev = */ ring_buffer < llama_token > ( penalty_last_n ) ,
} ,
} ;
2024-07-23 10:10:17 +00:00
}
2024-09-07 12:16:19 +00:00
// logit-bias
struct llama_sampler_logit_bias {
const int32_t n_vocab ;
const std : : vector < llama_logit_bias > logit_bias ;
std : : vector < llama_logit_bias > to_search ;
} ;
static struct llama_sampler_i llama_sampler_logit_bias_i = {
/* .name = */ [ ] ( const struct llama_sampler * /*smpl*/ ) { return " logit-bias " ; } ,
/* .accept = */ nullptr ,
/* .apply = */ [ ] ( struct llama_sampler * smpl , llama_token_data_array * cur_p ) {
auto * ctx = ( llama_sampler_logit_bias * ) smpl - > ctx ;
ctx - > to_search . clear ( ) ;
// update the candidates that have not been shuffled in the vocabulary (i.e. idx == id)
for ( const auto & lb : ctx - > logit_bias ) {
if ( lb . token > = 0 & & cur_p - > size > ( size_t ) lb . token & & cur_p - > data [ lb . token ] . id = = lb . token ) {
cur_p - > data [ lb . token ] . logit + = lb . bias ;
} else {
ctx - > to_search . push_back ( lb ) ;
}
}
// search for the remaining candidates that were not found in the previous step
for ( size_t i = 0 ; i < cur_p - > size ; + + i ) {
for ( const auto & lb : ctx - > to_search ) {
if ( cur_p - > data [ i ] . id = = lb . token ) {
cur_p - > data [ i ] . logit + = lb . bias ;
break ;
}
}
}
} ,
/* .reset = */ nullptr ,
/* .clone = */ [ ] ( const struct llama_sampler * smpl ) {
const auto * ctx = ( const llama_sampler_logit_bias * ) smpl - > ctx ;
return llama_sampler_init_logit_bias ( ctx - > n_vocab , ctx - > logit_bias . size ( ) , ctx - > logit_bias . data ( ) ) ;
} ,
/* .free = */ [ ] ( struct llama_sampler * smpl ) {
delete ( llama_sampler_logit_bias * ) smpl - > ctx ;
} ,
} ;
struct llama_sampler * llama_sampler_init_logit_bias (
int32_t n_vocab ,
int32_t n_logit_bias ,
const llama_logit_bias * logit_bias ) {
return new llama_sampler {
/* .iface = */ & llama_sampler_logit_bias_i ,
/* .ctx = */ new llama_sampler_logit_bias {
/* .n_vocab = */ n_vocab ,
/* .logit_bias = */ std : : vector < llama_logit_bias > ( logit_bias , logit_bias + n_logit_bias ) ,
/* .to_search = */ { } ,
} ,
} ;
2024-07-23 10:10:17 +00:00
}