mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-11-11 21:39:52 +00:00
ggml : generalize GGML_OP_CONCAT (#7563)
* ggml : generalize GGML_OP_CONCAT (WIP) ggml-ci * tests : add dim != 2 tests * metal : generalize concat kernel * tests : naming * cuda : generalize concat kernel ggml-ci * sycl : add warning and assert * ggml : fix op params handling * metal : bugfix kernel ggml-ci * ggml : reimplement CPU and Metal * cuda : add asserts ggml-ci * ggml : fix ptrs ggml-ci
This commit is contained in:
parent
9335b969e8
commit
0548a4187f
@ -1,15 +1,68 @@
|
|||||||
#include "concat.cuh"
|
#include "concat.cuh"
|
||||||
|
|
||||||
static __global__ void concat_f32(const float * x,const float * y, float * dst, const int ne0, const int ne02) {
|
static __global__ void concat_f32_dim0(const float * x, const float * y, float * dst, const int ne0, const int ne00) {
|
||||||
int nidx = threadIdx.x + blockIdx.x * blockDim.x;
|
int nidx = threadIdx.x + blockIdx.x * blockDim.x;
|
||||||
if (nidx >= ne0) {
|
if (nidx >= ne0) {
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
// operation
|
|
||||||
int offset_dst =
|
int offset_dst =
|
||||||
nidx +
|
nidx +
|
||||||
blockIdx.y * ne0 +
|
blockIdx.y * ne0 +
|
||||||
blockIdx.z * ne0 * gridDim.y;
|
blockIdx.z * ne0 * gridDim.y;
|
||||||
|
|
||||||
|
if (nidx < ne00) { // src0
|
||||||
|
int offset_src =
|
||||||
|
nidx +
|
||||||
|
blockIdx.y * ne00 +
|
||||||
|
blockIdx.z * ne00 * gridDim.y;
|
||||||
|
dst[offset_dst] = x[offset_src];
|
||||||
|
} else {
|
||||||
|
int offset_src =
|
||||||
|
(nidx - ne00) +
|
||||||
|
blockIdx.y * (ne0 - ne00) +
|
||||||
|
blockIdx.z * (ne0 - ne00) * gridDim.y;
|
||||||
|
dst[offset_dst] = y[offset_src];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
static __global__ void concat_f32_dim1(const float * x, const float * y, float * dst, const int ne0, const int ne01) {
|
||||||
|
int nidx = threadIdx.x + blockIdx.x * blockDim.x;
|
||||||
|
if (nidx >= ne0) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
int offset_dst =
|
||||||
|
nidx +
|
||||||
|
blockIdx.y * ne0 +
|
||||||
|
blockIdx.z * ne0 * gridDim.y;
|
||||||
|
|
||||||
|
if (blockIdx.y < ne01) { // src0
|
||||||
|
int offset_src =
|
||||||
|
nidx +
|
||||||
|
blockIdx.y * ne0 +
|
||||||
|
blockIdx.z * ne0 * ne01;
|
||||||
|
dst[offset_dst] = x[offset_src];
|
||||||
|
} else {
|
||||||
|
int offset_src =
|
||||||
|
nidx +
|
||||||
|
(blockIdx.y - ne01) * ne0 +
|
||||||
|
blockIdx.z * ne0 * (gridDim.y - ne01);
|
||||||
|
dst[offset_dst] = y[offset_src];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
static __global__ void concat_f32_dim2(const float * x, const float * y, float * dst, const int ne0, const int ne02) {
|
||||||
|
int nidx = threadIdx.x + blockIdx.x * blockDim.x;
|
||||||
|
if (nidx >= ne0) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
int offset_dst =
|
||||||
|
nidx +
|
||||||
|
blockIdx.y * ne0 +
|
||||||
|
blockIdx.z * ne0 * gridDim.y;
|
||||||
|
|
||||||
if (blockIdx.z < ne02) { // src0
|
if (blockIdx.z < ne02) { // src0
|
||||||
int offset_src =
|
int offset_src =
|
||||||
nidx +
|
nidx +
|
||||||
@ -25,25 +78,53 @@ static __global__ void concat_f32(const float * x,const float * y, float * dst,
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
static void concat_f32_cuda(const float * x, const float * y, float * dst, const int ne0, int ne1, int ne2, int ne02, cudaStream_t stream) {
|
static void concat_f32_cuda(const float * x, const float * y, float * dst, int ne00, int ne01, int ne02, int ne0, int ne1, int ne2, int dim, cudaStream_t stream) {
|
||||||
int num_blocks = (ne0 + CUDA_CONCAT_BLOCK_SIZE - 1) / CUDA_CONCAT_BLOCK_SIZE;
|
int num_blocks = (ne0 + CUDA_CONCAT_BLOCK_SIZE - 1) / CUDA_CONCAT_BLOCK_SIZE;
|
||||||
dim3 gridDim(num_blocks, ne1, ne2);
|
dim3 gridDim(num_blocks, ne1, ne2);
|
||||||
concat_f32<<<gridDim, CUDA_CONCAT_BLOCK_SIZE, 0, stream>>>(x, y, dst, ne0, ne02);
|
if (dim == 0) {
|
||||||
|
concat_f32_dim0<<<gridDim, CUDA_CONCAT_BLOCK_SIZE, 0, stream>>>(x, y, dst, ne0, ne00);
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
if (dim == 1) {
|
||||||
|
concat_f32_dim1<<<gridDim, CUDA_CONCAT_BLOCK_SIZE, 0, stream>>>(x, y, dst, ne0, ne01);
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
concat_f32_dim2<<<gridDim, CUDA_CONCAT_BLOCK_SIZE, 0, stream>>>(x, y, dst, ne0, ne02);
|
||||||
}
|
}
|
||||||
|
|
||||||
void ggml_cuda_op_concat(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
void ggml_cuda_op_concat(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||||
const ggml_tensor * src0 = dst->src[0];
|
const ggml_tensor * src0 = dst->src[0];
|
||||||
const ggml_tensor * src1 = dst->src[1];
|
const ggml_tensor * src1 = dst->src[1];
|
||||||
|
|
||||||
const float * src0_d = (const float *)src0->data;
|
const float * src0_d = (const float *)src0->data;
|
||||||
const float * src1_d = (const float *)src1->data;
|
const float * src1_d = (const float *)src1->data;
|
||||||
|
|
||||||
float * dst_d = (float *)dst->data;
|
float * dst_d = (float *)dst->data;
|
||||||
cudaStream_t stream = ctx.stream();
|
cudaStream_t stream = ctx.stream();
|
||||||
|
|
||||||
|
const int32_t dim = ((int32_t *) dst->op_params)[0];
|
||||||
|
|
||||||
|
GGML_ASSERT(ggml_is_contiguous(src0));
|
||||||
|
GGML_ASSERT(ggml_is_contiguous(src1));
|
||||||
|
|
||||||
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||||
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
||||||
GGML_ASSERT(dst->type == GGML_TYPE_F32);
|
GGML_ASSERT(dst->type == GGML_TYPE_F32);
|
||||||
|
|
||||||
for (int i3 = 0; i3 < dst->ne[3]; i3++) {
|
if (dim != 3) {
|
||||||
concat_f32_cuda(src0_d + i3 * (src0->nb[3] / 4), src1_d + i3 * (src1->nb[3] / 4), dst_d + i3 * (dst->nb[3] / 4), dst->ne[0], dst->ne[1], dst->ne[2], src0->ne[2], stream);
|
for (int i3 = 0; i3 < dst->ne[3]; i3++) {
|
||||||
|
concat_f32_cuda(
|
||||||
|
src0_d + i3 * (src0->nb[3] / 4),
|
||||||
|
src1_d + i3 * (src1->nb[3] / 4),
|
||||||
|
dst_d + i3 * ( dst->nb[3] / 4),
|
||||||
|
src0->ne[0], src0->ne[1], src0->ne[2],
|
||||||
|
dst->ne[0], dst->ne[1], dst->ne[2], dim, stream);
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
const size_t size0 = ggml_nbytes(src0);
|
||||||
|
const size_t size1 = ggml_nbytes(src1);
|
||||||
|
|
||||||
|
CUDA_CHECK(cudaMemcpyAsync(dst_d, src0_d, size0, cudaMemcpyDeviceToDevice, stream));
|
||||||
|
CUDA_CHECK(cudaMemcpyAsync(dst_d + size0/4, src1_d, size1, cudaMemcpyDeviceToDevice, stream));
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -990,6 +990,8 @@ static enum ggml_status ggml_metal_graph_compute(
|
|||||||
{
|
{
|
||||||
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CONCAT].pipeline;
|
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CONCAT].pipeline;
|
||||||
|
|
||||||
|
const int32_t dim = ((int32_t *) dst->op_params)[0];
|
||||||
|
|
||||||
[encoder setComputePipelineState:pipeline];
|
[encoder setComputePipelineState:pipeline];
|
||||||
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
||||||
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
|
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
|
||||||
@ -1018,6 +1020,7 @@ static enum ggml_status ggml_metal_graph_compute(
|
|||||||
[encoder setBytes:&nb1 length:sizeof(nb1) atIndex:24];
|
[encoder setBytes:&nb1 length:sizeof(nb1) atIndex:24];
|
||||||
[encoder setBytes:&nb2 length:sizeof(nb2) atIndex:25];
|
[encoder setBytes:&nb2 length:sizeof(nb2) atIndex:25];
|
||||||
[encoder setBytes:&nb3 length:sizeof(nb3) atIndex:26];
|
[encoder setBytes:&nb3 length:sizeof(nb3) atIndex:26];
|
||||||
|
[encoder setBytes:&dim length:sizeof(dim) atIndex:27];
|
||||||
|
|
||||||
const int nth = MIN(1024, ne0);
|
const int nth = MIN(1024, ne0);
|
||||||
|
|
||||||
|
@ -3366,31 +3366,30 @@ kernel void kernel_concat(
|
|||||||
constant uint64_t & nb1,
|
constant uint64_t & nb1,
|
||||||
constant uint64_t & nb2,
|
constant uint64_t & nb2,
|
||||||
constant uint64_t & nb3,
|
constant uint64_t & nb3,
|
||||||
|
constant int32_t & dim,
|
||||||
uint3 tgpig[[threadgroup_position_in_grid]],
|
uint3 tgpig[[threadgroup_position_in_grid]],
|
||||||
uint3 tpitg[[thread_position_in_threadgroup]],
|
uint3 tpitg[[thread_position_in_threadgroup]],
|
||||||
uint3 ntg[[threads_per_threadgroup]]) {
|
uint3 ntg[[threads_per_threadgroup]]) {
|
||||||
|
|
||||||
const int64_t i03 = tgpig.z;
|
const int64_t i3 = tgpig.z;
|
||||||
const int64_t i02 = tgpig.y;
|
const int64_t i2 = tgpig.y;
|
||||||
const int64_t i01 = tgpig.x;
|
const int64_t i1 = tgpig.x;
|
||||||
|
|
||||||
const int64_t i13 = i03 % ne13;
|
int64_t o[4] = {0, 0, 0, 0};
|
||||||
const int64_t i12 = i02 % ne12;
|
o[dim] = dim == 0 ? ne00 : (dim == 1 ? ne01 : (dim == 2 ? ne02 : ne03));
|
||||||
const int64_t i11 = i01 % ne11;
|
|
||||||
|
|
||||||
device const char * src0_ptr = src0 + i03*nb03 + i02*nb02 + i01*nb01 + tpitg.x*nb00;
|
device const float * x;
|
||||||
device const char * src1_ptr = src1 + i13*nb13 + i12*nb12 + i11*nb11 + tpitg.x*nb10;
|
|
||||||
device char * dst_ptr = dst + i03*nb3 + i02*nb2 + i01*nb1 + tpitg.x*nb0;
|
|
||||||
|
|
||||||
for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) {
|
for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) {
|
||||||
if (i02 < ne02) {
|
if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
|
||||||
((device float *)dst_ptr)[0] = ((device float *)src0_ptr)[0];
|
x = (device const float *)(src0 + (i3 )*nb03 + (i2 )*nb02 + (i1 )*nb01 + (i0 )*nb00);
|
||||||
src0_ptr += ntg.x*nb00;
|
|
||||||
} else {
|
} else {
|
||||||
((device float *)dst_ptr)[0] = ((device float *)src1_ptr)[0];
|
x = (device const float *)(src1 + (i3 - o[3])*nb13 + (i2 - o[2])*nb12 + (i1 - o[1])*nb11 + (i0 - o[0])*nb10);
|
||||||
src1_ptr += ntg.x*nb10;
|
|
||||||
}
|
}
|
||||||
dst_ptr += ntg.x*nb0;
|
|
||||||
|
device float * y = (device float *)(dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
|
||||||
|
|
||||||
|
*y = *x;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -13512,6 +13512,10 @@ inline void ggml_sycl_op_concat(const ggml_tensor *src0,
|
|||||||
const float *src0_dd, const float *src1_dd,
|
const float *src0_dd, const float *src1_dd,
|
||||||
float *dst_dd,
|
float *dst_dd,
|
||||||
const dpct::queue_ptr &main_stream) {
|
const dpct::queue_ptr &main_stream) {
|
||||||
|
#pragma message("TODO: generalize concat kernel for dim != 2")
|
||||||
|
#pragma message(" https://github.com/ggerganov/llama.cpp/pull/7563")
|
||||||
|
int dim = dst->op_params[0];
|
||||||
|
GGML_ASSERT(dim != 2);
|
||||||
|
|
||||||
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||||
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
||||||
|
61
ggml.c
61
ggml.c
@ -4882,10 +4882,21 @@ struct ggml_tensor * ggml_repeat_back(
|
|||||||
// ggml_concat
|
// ggml_concat
|
||||||
|
|
||||||
struct ggml_tensor * ggml_concat(
|
struct ggml_tensor * ggml_concat(
|
||||||
struct ggml_context* ctx,
|
struct ggml_context * ctx,
|
||||||
struct ggml_tensor* a,
|
struct ggml_tensor * a,
|
||||||
struct ggml_tensor* b) {
|
struct ggml_tensor * b,
|
||||||
GGML_ASSERT(a->ne[0] == b->ne[0] && a->ne[1] == b->ne[1] && a->ne[3] == b->ne[3]);
|
int dim) {
|
||||||
|
GGML_ASSERT(dim >= 0 && dim < GGML_MAX_DIMS);
|
||||||
|
|
||||||
|
int64_t ne[GGML_MAX_DIMS];
|
||||||
|
for (int d = 0; d < GGML_MAX_DIMS; ++d) {
|
||||||
|
if (d == dim) {
|
||||||
|
ne[d] = a->ne[d] + b->ne[d];
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
GGML_ASSERT(a->ne[d] == b->ne[d]);
|
||||||
|
ne[d] = a->ne[d];
|
||||||
|
}
|
||||||
|
|
||||||
bool is_node = false;
|
bool is_node = false;
|
||||||
|
|
||||||
@ -4893,7 +4904,9 @@ struct ggml_tensor * ggml_concat(
|
|||||||
is_node = true;
|
is_node = true;
|
||||||
}
|
}
|
||||||
|
|
||||||
struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, a->ne[0], a->ne[1], a->ne[2] + b->ne[2], a->ne[3]);
|
struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne);
|
||||||
|
|
||||||
|
ggml_set_op_params_i32(result, 0, dim);
|
||||||
|
|
||||||
result->op = GGML_OP_CONCAT;
|
result->op = GGML_OP_CONCAT;
|
||||||
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
||||||
@ -5013,6 +5026,7 @@ struct ggml_tensor * ggml_leaky_relu(
|
|||||||
}
|
}
|
||||||
|
|
||||||
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
|
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
|
||||||
|
|
||||||
ggml_set_op_params(result, &negative_slope, sizeof(negative_slope));
|
ggml_set_op_params(result, &negative_slope, sizeof(negative_slope));
|
||||||
|
|
||||||
result->op = GGML_OP_LEAKY_RELU;
|
result->op = GGML_OP_LEAKY_RELU;
|
||||||
@ -10967,26 +10981,29 @@ static void ggml_compute_forward_concat_f32(
|
|||||||
GGML_ASSERT(nb00 == sizeof(float));
|
GGML_ASSERT(nb00 == sizeof(float));
|
||||||
GGML_ASSERT(nb10 == sizeof(float));
|
GGML_ASSERT(nb10 == sizeof(float));
|
||||||
|
|
||||||
|
const int32_t dim = ggml_get_op_params_i32(dst, 0);
|
||||||
|
|
||||||
|
GGML_ASSERT(dim >= 0 && dim < 4);
|
||||||
|
|
||||||
|
int64_t o[4] = {0, 0, 0, 0};
|
||||||
|
o[dim] = src0->ne[dim];
|
||||||
|
|
||||||
|
const float * x;
|
||||||
|
|
||||||
|
// TODO: smarter multi-theading
|
||||||
for (int i3 = 0; i3 < ne3; i3++) {
|
for (int i3 = 0; i3 < ne3; i3++) {
|
||||||
for (int i2 = ith; i2 < ne2; i2 += nth) {
|
for (int i2 = ith; i2 < ne2; i2 += nth) {
|
||||||
if (i2 < ne02) { // src0
|
for (int i1 = 0; i1 < ne1; i1++) {
|
||||||
for (int i1 = 0; i1 < ne1; i1++) {
|
for (int i0 = 0; i0 < ne0; i0++) {
|
||||||
for (int i0 = 0; i0 < ne0; i0++) {
|
if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
|
||||||
const float * x = (float *)((char *) src0->data + i0 * nb00 + i1 * nb01 + i2 * nb02 + i3 * nb03);
|
x = (const float *) ((const char *)src0->data + (i0 )*nb00 + (i1 )*nb01 + (i2 )*nb02 + (i3 )*nb03);
|
||||||
|
} else {
|
||||||
float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
|
x = (const float *) ((const char *)src1->data + (i0 - o[0])*nb10 + (i1 - o[1])*nb11 + (i2 - o[2])*nb12 + (i3 - o[3])*nb13);
|
||||||
*y = *x;
|
|
||||||
}
|
}
|
||||||
}
|
|
||||||
} // src1
|
|
||||||
else {
|
|
||||||
for (int i1 = 0; i1 < ne1; i1++) {
|
|
||||||
for (int i0 = 0; i0 < ne0; i0++) {
|
|
||||||
const float * x = (float *)((char *) src1->data + i0 * nb10 + i1 * nb11 + (i2 - ne02) * nb12 + i3 * nb13);
|
|
||||||
|
|
||||||
float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
|
float * y = (float *)((char *)dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
|
||||||
*y = *x;
|
|
||||||
}
|
*y = *x;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -10994,7 +11011,7 @@ static void ggml_compute_forward_concat_f32(
|
|||||||
}
|
}
|
||||||
|
|
||||||
static void ggml_compute_forward_concat(
|
static void ggml_compute_forward_concat(
|
||||||
const struct ggml_compute_params* params,
|
const struct ggml_compute_params * params,
|
||||||
struct ggml_tensor* dst) {
|
struct ggml_tensor* dst) {
|
||||||
|
|
||||||
const struct ggml_tensor * src0 = dst->src[0];
|
const struct ggml_tensor * src0 = dst->src[0];
|
||||||
|
5
ggml.h
5
ggml.h
@ -1007,12 +1007,13 @@ extern "C" {
|
|||||||
struct ggml_tensor * a,
|
struct ggml_tensor * a,
|
||||||
struct ggml_tensor * b);
|
struct ggml_tensor * b);
|
||||||
|
|
||||||
// concat a and b on dim 2
|
// concat a and b along dim
|
||||||
// used in stable-diffusion
|
// used in stable-diffusion
|
||||||
GGML_API struct ggml_tensor * ggml_concat(
|
GGML_API struct ggml_tensor * ggml_concat(
|
||||||
struct ggml_context * ctx,
|
struct ggml_context * ctx,
|
||||||
struct ggml_tensor * a,
|
struct ggml_tensor * a,
|
||||||
struct ggml_tensor * b);
|
struct ggml_tensor * b,
|
||||||
|
int dim);
|
||||||
|
|
||||||
GGML_API struct ggml_tensor * ggml_abs(
|
GGML_API struct ggml_tensor * ggml_abs(
|
||||||
struct ggml_context * ctx,
|
struct ggml_context * ctx,
|
||||||
|
@ -1259,22 +1259,26 @@ struct test_im2col : public test_case {
|
|||||||
// GGML_OP_CONCAT
|
// GGML_OP_CONCAT
|
||||||
struct test_concat : public test_case {
|
struct test_concat : public test_case {
|
||||||
const ggml_type type;
|
const ggml_type type;
|
||||||
const std::array<int64_t, 4> ne;
|
const std::array<int64_t, 4> ne_a;
|
||||||
const int64_t b_ne2;
|
const int64_t ne_b_d;
|
||||||
|
const int dim;
|
||||||
|
|
||||||
std::string vars() override {
|
std::string vars() override {
|
||||||
return VARS_TO_STR3(type, ne, b_ne2);
|
return VARS_TO_STR4(type, ne_a, ne_b_d, dim);
|
||||||
}
|
}
|
||||||
|
|
||||||
test_concat(ggml_type type = GGML_TYPE_F32,
|
test_concat(ggml_type type = GGML_TYPE_F32,
|
||||||
std::array<int64_t, 4> ne = {10, 10, 10, 10},
|
std::array<int64_t, 4> ne_a = {10, 10, 10, 10},
|
||||||
int64_t b_ne2 = 10)
|
int64_t ne_b_d = 10,
|
||||||
: type(type), ne(ne), b_ne2(b_ne2) {}
|
int dim = 2)
|
||||||
|
: type(type), ne_a(ne_a), ne_b_d(ne_b_d), dim(dim) {}
|
||||||
|
|
||||||
ggml_tensor * build_graph(ggml_context * ctx) override {
|
ggml_tensor * build_graph(ggml_context * ctx) override {
|
||||||
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
|
auto ne_b = ne_a;
|
||||||
ggml_tensor * b = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], b_ne2, ne[3]);
|
ne_b[dim] = ne_b_d;
|
||||||
ggml_tensor * out = ggml_concat(ctx, a, b);
|
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
|
||||||
|
ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne_b.data());
|
||||||
|
ggml_tensor * out = ggml_concat(ctx, a, b, dim);
|
||||||
return out;
|
return out;
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
@ -2211,8 +2215,10 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
test_cases.emplace_back(new test_concat(GGML_TYPE_F32));
|
for (int dim : { 0, 1, 2, 3, }) {
|
||||||
test_cases.emplace_back(new test_concat(GGML_TYPE_I32));
|
test_cases.emplace_back(new test_concat(GGML_TYPE_F32, {11, 12, 13, 14}, 7, dim));
|
||||||
|
test_cases.emplace_back(new test_concat(GGML_TYPE_I32, {11, 12, 13, 14}, 7, dim));
|
||||||
|
}
|
||||||
|
|
||||||
for (ggml_sort_order order : {GGML_SORT_ORDER_ASC, GGML_SORT_ORDER_DESC}) {
|
for (ggml_sort_order order : {GGML_SORT_ORDER_ASC, GGML_SORT_ORDER_DESC}) {
|
||||||
test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {8, 1, 1, 1}, order));
|
test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {8, 1, 1, 1}, order));
|
||||||
|
Loading…
Reference in New Issue
Block a user