add command line parser, simplify code
Some checks failed
flake8 Lint / Lint (push) Has been cancelled

This commit is contained in:
slaren 2024-10-09 18:28:18 +02:00
parent 1c4d573c5f
commit 06444a603f

View File

@ -1,37 +1,84 @@
#include "llama.h" #include "llama.h"
#include <cstdio> #include <cstdio>
#include <cstring>
#include <string> #include <string>
#include <vector> #include <vector>
static void print_usage(int, char ** argv) { static void print_usage(int, char ** argv) {
printf("\nexample usage:\n"); printf("\nexample usage:\n");
printf("\n %s <model.gguf> [prompt]\n", argv[0]); printf("\n %s -m model.gguf [-n n_predict] [-ngl n_gpu_layers] [prompt]\n", argv[0]);
printf("\n"); printf("\n");
} }
int main(int argc, char ** argv) { int main(int argc, char ** argv) {
// path to the model gguf file
std::string model_path; std::string model_path;
// prompt to generate text from
std::string prompt = "Hello my name is"; std::string prompt = "Hello my name is";
// number of layers to offload to the GPU
int ngl = 99;
// number of tokens to predict
int n_predict = 32; int n_predict = 32;
if (argc < 2) { // parse command line arguments
print_usage(argc, argv);
return 1;
}
model_path = argv[1];
if (argc > 2) { {
prompt = argv[2]; int i = 1;
for (int i = 3; i < argc; i++) { for (; i < argc; i++) {
prompt += " "; if (strcmp(argv[i], "-m") == 0) {
prompt += argv[i]; if (i + 1 < argc) {
model_path = argv[++i];
} else {
print_usage(argc, argv);
return 1;
}
} else if (strcmp(argv[i], "-n") == 0) {
if (i + 1 < argc) {
try {
n_predict = std::stoi(argv[++i]);
} catch (...) {
print_usage(argc, argv);
return 1;
}
} else {
print_usage(argc, argv);
return 1;
}
} else if (strcmp(argv[i], "-ngl") == 0) {
if (i + 1 < argc) {
try {
ngl = std::stoi(argv[++i]);
} catch (...) {
print_usage(argc, argv);
return 1;
}
} else {
print_usage(argc, argv);
return 1;
}
} else {
// prompt starts here
break;
}
}
if (model_path.empty()) {
print_usage(argc, argv);
return 1;
}
if (i < argc) {
prompt = argv[i++];
for (; i < argc; i++) {
prompt += " ";
prompt += argv[i];
}
} }
} }
// initialize the model // initialize the model
llama_model_params model_params = llama_model_default_params(); llama_model_params model_params = llama_model_default_params();
model_params.n_gpu_layers = 99; // offload all layers to GPU model_params.n_gpu_layers = ngl;
llama_model * model = llama_load_model_from_file(model_path.c_str(), model_params); llama_model * model = llama_load_model_from_file(model_path.c_str(), model_params);
if (model == NULL) { if (model == NULL) {
@ -39,11 +86,28 @@ int main(int argc, char ** argv) {
return 1; return 1;
} }
// tokenize the prompt
// find the number of tokens in the prompt
const int n_prompt = -llama_tokenize(model, prompt.c_str(), prompt.size(), NULL, 0, true, true);
// allocate space for the tokens and tokenize the prompt
std::vector<llama_token> prompt_tokens(n_prompt);
if (llama_tokenize(model, prompt.c_str(), prompt.size(), prompt_tokens.data(), prompt_tokens.size(), true, true) < 0) {
fprintf(stderr, "%s: error: failed to tokenize the prompt\n", __func__);
return 1;
}
// initialize the context // initialize the context
llama_context_params ctx_params = llama_context_default_params(); llama_context_params ctx_params = llama_context_default_params();
ctx_params.n_ctx = 512; // maximum context size // n_ctx is the context size
ctx_params.n_ctx = n_prompt + n_predict - 1;
// n_batch is the maximum number of tokens that can be processed in a single call to llama_decode
ctx_params.n_batch = n_prompt;
// enable performance counters
ctx_params.no_perf = false; ctx_params.no_perf = false;
llama_context * ctx = llama_new_context_with_model(model, ctx_params); llama_context * ctx = llama_new_context_with_model(model, ctx_params);
if (ctx == NULL) { if (ctx == NULL) {
@ -51,40 +115,17 @@ int main(int argc, char ** argv) {
return 1; return 1;
} }
// initialize the sampler
auto sparams = llama_sampler_chain_default_params(); auto sparams = llama_sampler_chain_default_params();
sparams.no_perf = false; sparams.no_perf = false;
llama_sampler * smpl = llama_sampler_chain_init(sparams); llama_sampler * smpl = llama_sampler_chain_init(sparams);
llama_sampler_chain_add(smpl, llama_sampler_init_greedy()); llama_sampler_chain_add(smpl, llama_sampler_init_greedy());
// tokenize the prompt
std::vector<llama_token> tokens_list;
int n_tokens = llama_tokenize(model, prompt.c_str(), prompt.size(), NULL, 0, true, true);
tokens_list.resize(-n_tokens);
if (llama_tokenize(model, prompt.c_str(), prompt.size(), tokens_list.data(), tokens_list.size(), true, true) < 0) {
fprintf(stderr, "%s: error: failed to tokenize the prompt\n", __func__);
return 1;
}
const int n_ctx = llama_n_ctx(ctx);
const int n_kv_req = tokens_list.size() + (n_predict - tokens_list.size());
fprintf(stderr, "%s: n_predict = %d, n_ctx = %d, n_kv_req = %d\n", __func__, n_predict, n_ctx, n_kv_req);
// make sure the KV cache is big enough to hold all the prompt and generated tokens
if (n_kv_req > n_ctx) {
fprintf(stderr, "%s: error: n_kv_req > n_ctx, the required KV cache size is not big enough\n", __func__);
fprintf(stderr, "%s: either reduce n_predict or increase n_ctx\n", __func__);
return 1;
}
// print the prompt token-by-token // print the prompt token-by-token
fprintf(stderr, "\n"); for (auto id : prompt_tokens) {
for (auto id : tokens_list) {
char buf[128]; char buf[128];
int n = llama_token_to_piece(model, id, buf, sizeof(buf), 0, true); int n = llama_token_to_piece(model, id, buf, sizeof(buf), 0, true);
if (n < 0) { if (n < 0) {
@ -95,34 +136,31 @@ int main(int argc, char ** argv) {
printf("%s", s.c_str()); printf("%s", s.c_str());
} }
// create a llama_batch with size 512 // prepare a batch for the prompt
// we use this object to submit token data for decoding
llama_batch batch = llama_batch_get_one(tokens_list.data(), tokens_list.size(), 0, 0); llama_batch batch = llama_batch_get_one(prompt_tokens.data(), prompt_tokens.size(), 0, 0);
// evaluate the initial prompt
if (llama_decode(ctx, batch) != 0) {
fprintf(stderr, "%s: llama_decode() failed\n", __func__);
return 1;
}
// main loop // main loop
int n_cur = batch.n_tokens;
int n_decode = 0;
const auto t_main_start = ggml_time_us(); const auto t_main_start = ggml_time_us();
int n_decode = 0;
llama_token new_token_id;
for (int n_pos = 0; n_pos + batch.n_tokens < n_prompt + n_predict; ) {
// evaluate the current batch with the transformer model
if (llama_decode(ctx, batch)) {
fprintf(stderr, "%s : failed to eval, return code %d\n", __func__, 1);
return 1;
}
n_pos += batch.n_tokens;
while (n_cur <= n_predict) {
// sample the next token // sample the next token
llama_token new_token_id = llama_sampler_sample(smpl, ctx, -1);
{ {
new_token_id = llama_sampler_sample(smpl, ctx, -1);
// is it an end of generation? // is it an end of generation?
if (llama_token_is_eog(model, new_token_id) || n_cur == n_predict) { if (llama_token_is_eog(model, new_token_id)) {
fprintf(stderr, "\n");
break; break;
} }
@ -136,22 +174,14 @@ int main(int argc, char ** argv) {
printf("%s", s.c_str()); printf("%s", s.c_str());
fflush(stdout); fflush(stdout);
// prepare the next batch // prepare the next batch with the sampled token
batch = llama_batch_get_one(&new_token_id, 1, n_cur, 0); batch = llama_batch_get_one(&new_token_id, 1, n_pos, 0);
n_decode += 1; n_decode += 1;
} }
n_cur += 1;
// evaluate the current batch with the transformer model
if (llama_decode(ctx, batch)) {
fprintf(stderr, "%s : failed to eval, return code %d\n", __func__, 1);
return 1;
}
} }
fprintf(stderr, "\n"); printf("\n");
const auto t_main_end = ggml_time_us(); const auto t_main_end = ggml_time_us();