convert-gptneox-h5-to-gguf.py : gpt2bpe tokenizer

This commit is contained in:
klosax 2023-08-04 03:55:23 +02:00 committed by GitHub
parent 6691aa8797
commit 2922280a1a
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -1,14 +1,36 @@
# Quick and dirty HF gptneox--> gguf conversion
import gguf
import os
import sys
import struct
import json
import numpy as np
from typing import Any, List
from pathlib import Path
from transformers import AutoModelForCausalLM
from transformers import AutoTokenizer, AutoModelForCausalLM
# ref: https://github.com/openai/gpt-2/blob/master/src/encoder.py
def bytes_to_unicode():
"""
Returns list of utf-8 byte and a corresponding list of unicode strings.
The reversible bpe codes work on unicode strings.
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
This is a significant percentage of your normal, say, 32K bpe vocab.
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
And avoids mapping to whitespace/control characters the bpe code barfs on.
"""
bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1))
cs = bs[:]
n = 0
for b in range(2**8):
if b not in bs:
bs.append(b)
cs.append(2**8+n)
n += 1
cs = [chr(n) for n in cs]
return dict(zip(bs, cs))
if len(sys.argv) < 3:
print("Usage: convert-h5-to-ggml.py dir-model ftype\n")
@ -20,7 +42,7 @@ if len(sys.argv) < 3:
# output in the same directory as the model
dir_model = sys.argv[1]
fname_out = sys.argv[1] + "/ggml-model.bin"
last_dir = os.path.basename(os.path.normpath(dir_model))
# possible tensor data types
# ftype == 0 -> float32
@ -37,6 +59,8 @@ if len(sys.argv) > 2:
sys.exit(1)
fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".gguf"
print("gguf: loading model "+last_dir)
with open(dir_model + "/config.json", "r", encoding="utf-8") as f:
hparams = json.load(f)
@ -44,17 +68,17 @@ if hparams["architectures"][0] != "GPTNeoXForCausalLM":
print("Model architecture not supported: " + hparams["architectures"][0] )
sys.exit()
model = AutoModelForCausalLM.from_pretrained(dir_model, low_cpu_mem_usage=True, trust_remote_code=True)
list_vars = model.state_dict()
gguf_writer = gguf.GGUFWriter.open(fname_out)
print("gguf: add key-values, metadata")
print("gguf: add metadata")
llm_arch = "gptneox"
gguf_writer.add_name("pythia-70b-deduped")
gguf_writer.add_name(last_dir)
gguf_writer.add_description("gguf test model")
gguf_writer.add_architecture(llm_arch)
gguf_writer.add_context_length(llm_arch, hparams["max_position_embeddings"])
@ -68,28 +92,55 @@ gguf_writer.add_layer_norm_eps(llm_arch, hparams["layer_norm_eps"])
# TOKENIZATION
print("gguf: add key-values, tokenizer")
print("gguf: add tokenizer")
tokens: List[str] = []
merges: List[str] = []
if Path(dir_model + "/tokenizer.json").is_file():
# vocab type gpt2
print("gguf: adding gpt2 tokenizer vocab")
# gpt2 tokenizer
gguf_writer.add_tokenizer_model("gpt2")
print("gguf: adding gpt2 tokenizer merges")
with open(dir_model + "/tokenizer.json", "r", encoding="utf-8") as f:
tokenizer = json.load(f)
tokenizer_json = json.load(f)
merges = tokenizer_json["model"]["merges"]
for key in tokenizer["model"]["vocab"]:
tokens.append(key)
merges = tokenizer["model"]["merges"]
gguf_writer.add_tokenizer_model("gpt2")
gguf_writer.add_token_list(tokens)
gguf_writer.add_token_merges(merges)
if "added_tokens" in tokenizer and Path(dir_model + "/tokenizer_config.json").is_file():
print("gguf: adding gpt2 tokenizer vocab")
vocab_size = len( tokenizer_json["model"]["vocab"] )
# from ggllm.cpp falcon_convert.py
tokenizer = AutoTokenizer.from_pretrained(dir_model)
reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()}
byte_encoder = bytes_to_unicode()
byte_decoder = {v:k for k, v in byte_encoder.items()}
for i in range(vocab_size):
if i in reverse_vocab:
try:
text = bytearray([byte_decoder[c] for c in reverse_vocab[i]])
except KeyError:
text = bytearray()
for c in reverse_vocab[i]:
if ord(c) < 256: # single byte character
text.append(byte_decoder[ord(c)])
else: # multibyte special token character
text.extend(c.encode('utf-8'))
else:
print(f"Key {i} not in tokenizer vocabulary. Padding with an arbitrary token.")
padding_token = f"[PAD{i}]".encode("utf8")
text = bytearray(padding_token)
tokens.append(text)
gguf_writer.add_token_list(tokens)
if "added_tokens" in tokenizer_json and Path(dir_model + "/tokenizer_config.json").is_file():
print("gguf: adding special token ids")
with open(dir_model + "/tokenizer_config.json", "r", encoding="utf-8") as f:
@ -98,27 +149,27 @@ if Path(dir_model + "/tokenizer.json").is_file():
# find special token ids
if "bos_token" in tokenizer_config:
for key in tokenizer["added_tokens"]:
for key in tokenizer_json["added_tokens"]:
if key["content"] == tokenizer_config["bos_token"]:
gguf_writer.add_bos_token_id(key["id"])
if "eos_token" in tokenizer_config:
for key in tokenizer["added_tokens"]:
for key in tokenizer_json["added_tokens"]:
if key["content"] == tokenizer_config["eos_token"]:
gguf_writer.add_eos_token_id(key["id"])
if "unk_token" in tokenizer_config:
for key in tokenizer["added_tokens"]:
for key in tokenizer_json["added_tokens"]:
if key["content"] == tokenizer_config["unk_token"]:
gguf_writer.add_unk_token_id(key["id"])
if "sep_token" in tokenizer_config:
for key in tokenizer["added_tokens"]:
for key in tokenizer_json["added_tokens"]:
if key["content"] == tokenizer_config["sep_token"]:
gguf_writer.add_sep_token_id(key["id"])
if "pad_token" in tokenizer_config:
for key in tokenizer["added_tokens"]:
for key in tokenizer_json["added_tokens"]:
if key["content"] == tokenizer_config["pad_token"]:
gguf_writer.add_pad_token_id(key["id"])
@ -165,11 +216,9 @@ print("gguf: write tensor data")
for name in list_vars.keys():
data = list_vars[name].squeeze().numpy()
# print("Process tensor: " + name + " with shape: ", data.shape)
# we don't need these
if name.endswith(".attention.masked_bias") or name.endswith(".attention.bias") or name.endswith(".attention.rotary_emb.inv_freq"):
# print(" Skip tensor: " + name)
continue
n_dims = len(data.shape)
@ -178,16 +227,13 @@ for name in list_vars.keys():
ftype_cur = 0
if ftype != 0:
if name.endswith(".weight") and n_dims == 2:
# print(" Converting to float16")
data = data.astype(np.float16)
ftype_cur = 1
else:
# print(" Converting to float32")
data = data.astype(np.float32)
ftype_cur = 0
else:
if data.dtype != np.float32:
# print(" Converting to float32")
data = data.astype(np.float32)
ftype_cur = 0