mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-14 04:24:30 +00:00
cuda : new cublas gemm branch for multi-batch quantized src0
This commit is contained in:
parent
59d1232ea7
commit
52af782608
113
ggml-cuda.cu
113
ggml-cuda.cu
@ -6304,7 +6304,6 @@ inline void ggml_cuda_op_mul_mat_cublas(
|
||||
const half alpha_f16 = 1.0f;
|
||||
const half beta_f16 = 0.0f;
|
||||
|
||||
//printf("F16: row_diff: %ld, src1_ncols: %ld, ne10: %ld, ne00: %ld, ldc: %d\n", row_diff, src1_ncols, ne10, ne00, ldc);
|
||||
CUBLAS_CHECK(cublasSetStream(g_cublas_handles[id], stream));
|
||||
CUBLAS_CHECK(
|
||||
cublasGemmEx(g_cublas_handles[id], CUBLAS_OP_T, CUBLAS_OP_N,
|
||||
@ -7052,6 +7051,7 @@ static void ggml_cuda_mul_mat_vec_nc(const ggml_tensor * src0, const ggml_tensor
|
||||
static void ggml_cuda_mul_mat_mat_batched_cublas(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
GGML_ASSERT(!ggml_is_transposed(src0));
|
||||
GGML_ASSERT(!ggml_is_transposed(src1));
|
||||
|
||||
GGML_ASSERT(src0->backend != GGML_BACKEND_GPU_SPLIT);
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F16);
|
||||
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
||||
@ -7202,6 +7202,115 @@ static void ggml_cuda_mul_mat_mat_batched_cublas(const ggml_tensor * src0, const
|
||||
ggml_cuda_pool_free(dst_f16, dst_as);
|
||||
}
|
||||
|
||||
static void ggml_cuda_mul_mat_mat_deq_cublas(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
int id;
|
||||
CUDA_CHECK(cudaGetDevice(&id));
|
||||
|
||||
// require tensor cores
|
||||
const int compute_capability = g_compute_capabilities[id];
|
||||
GGML_ASSERT(compute_capability >= CC_VOLTA);
|
||||
|
||||
GGML_ASSERT(!ggml_is_transposed(src0));
|
||||
GGML_ASSERT(!ggml_is_transposed(src1));
|
||||
|
||||
//GGML_ASSERT(src0->backend != GGML_BACKEND_GPU_SPLIT);
|
||||
|
||||
GGML_ASSERT(ggml_is_quantized(src0->type) || src0->type == GGML_TYPE_F16);
|
||||
GGML_ASSERT(src1->type == GGML_TYPE_F16 || src1->type == GGML_TYPE_F32);
|
||||
|
||||
const int64_t ne00 = src0->ne[0]; GGML_UNUSED(ne00);
|
||||
const int64_t ne01 = src0->ne[1];
|
||||
const int64_t ne02 = src0->ne[2]; GGML_UNUSED(ne02);
|
||||
const int64_t ne03 = src0->ne[3]; GGML_UNUSED(ne03);
|
||||
|
||||
const int64_t nb01 = src0->nb[1]; GGML_UNUSED(nb01);
|
||||
const int64_t nb02 = src0->nb[2]; GGML_UNUSED(nb02);
|
||||
const int64_t nb03 = src0->nb[3]; GGML_UNUSED(nb03);
|
||||
|
||||
const int64_t ne10 = src1->ne[0];
|
||||
const int64_t ne11 = src1->ne[1];
|
||||
const int64_t ne12 = src1->ne[2]; GGML_UNUSED(ne12);
|
||||
const int64_t ne13 = src1->ne[3]; GGML_UNUSED(ne13);
|
||||
|
||||
const int64_t nb11 = src1->nb[1]; GGML_UNUSED(nb11);
|
||||
const int64_t nb12 = src1->nb[2]; GGML_UNUSED(nb12);
|
||||
const int64_t nb13 = src1->nb[3]; GGML_UNUSED(nb13);
|
||||
|
||||
const int64_t ne1 = ggml_nelements(src1);
|
||||
const int64_t ne = ggml_nelements(dst);
|
||||
|
||||
CUDA_CHECK(ggml_cuda_set_device(g_main_device));
|
||||
cudaStream_t main_stream = g_cudaStreams[g_main_device][0];
|
||||
CUBLAS_CHECK(cublasSetStream(g_cublas_handles[id], main_stream));
|
||||
|
||||
ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra;
|
||||
void * src0_ddq = src0_extra->data_device[g_main_device];
|
||||
|
||||
ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra;
|
||||
float * src1_ddf = (float *) src1_extra->data_device[g_main_device];
|
||||
|
||||
ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
|
||||
float * dst_ddf = (float *) dst_extra->data_device[g_main_device];
|
||||
|
||||
if (ggml_is_contiguous(src0)) {
|
||||
// convert src0 and src1 to fp16, multiply as fp16, convert dst to fp32
|
||||
half * src0_as_f16 = nullptr;
|
||||
size_t src0_as = 0;
|
||||
if (src0->type != GGML_TYPE_F16) {
|
||||
const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src0->type);
|
||||
GGML_ASSERT(to_fp16_cuda != nullptr);
|
||||
const size_t ne = ne01*ne00;
|
||||
src0_as_f16 = (half *) ggml_cuda_pool_malloc(ne * sizeof(half), &src0_as);
|
||||
to_fp16_cuda(src0_ddq, src0_as_f16, ne, main_stream);
|
||||
}
|
||||
|
||||
const half * src0_ptr = src0->type == GGML_TYPE_F16 ? (const half *) src0_ddq : src0_as_f16;
|
||||
|
||||
half * src1_as_f16 = nullptr;
|
||||
size_t src1_as = 0;
|
||||
if (src1->type != GGML_TYPE_F16) {
|
||||
const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src1->type);
|
||||
GGML_ASSERT(to_fp16_cuda != nullptr);
|
||||
const size_t ne = ne11*ne10;
|
||||
src1_as_f16 = (half *) ggml_cuda_pool_malloc(ne * sizeof(half), &src1_as);
|
||||
to_fp16_cuda(src1_ddf, src1_as_f16, ne, main_stream);
|
||||
}
|
||||
|
||||
const half * src1_ptr = src1->type == GGML_TYPE_F16 ? (const half *) src1_ddf : src1_as_f16;
|
||||
|
||||
size_t dst_as = 0;
|
||||
half * dst_f16 = (half *) ggml_cuda_pool_malloc(ne01*ne11 * sizeof(half), &dst_as);
|
||||
|
||||
const half alpha_f16 = 1.0f;
|
||||
const half beta_f16 = 0.0f;
|
||||
|
||||
CUBLAS_CHECK(cublasSetStream(g_cublas_handles[id], main_stream));
|
||||
CUBLAS_CHECK(
|
||||
cublasGemmEx(g_cublas_handles[id], CUBLAS_OP_T, CUBLAS_OP_N,
|
||||
ne01, ne11, ne10,
|
||||
&alpha_f16, src0_ptr, CUDA_R_16F, ne00,
|
||||
src1_ptr, CUDA_R_16F, ne10,
|
||||
&beta_f16, dst_f16, CUDA_R_16F, ne01,
|
||||
CUBLAS_COMPUTE_16F,
|
||||
CUBLAS_GEMM_DEFAULT_TENSOR_OP));
|
||||
|
||||
const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(GGML_TYPE_F16);
|
||||
to_fp32_cuda(dst_f16, dst_ddf, ne01*ne11, main_stream);
|
||||
|
||||
ggml_cuda_pool_free(dst_f16, dst_as);
|
||||
|
||||
if (src0_as != 0) {
|
||||
ggml_cuda_pool_free(src0_as_f16, src0_as);
|
||||
}
|
||||
|
||||
if (src1_as != 0) {
|
||||
ggml_cuda_pool_free(src1_as_f16, src1_as);
|
||||
}
|
||||
} else {
|
||||
GGML_ASSERT(false && "not implemented");
|
||||
}
|
||||
}
|
||||
|
||||
static void ggml_cuda_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
bool all_on_device = (src0->backend == GGML_BACKEND_GPU || src0->backend == GGML_BACKEND_GPU_SPLIT) &&
|
||||
src1->backend == GGML_BACKEND_GPU && dst->backend == GGML_BACKEND_GPU;
|
||||
@ -7231,6 +7340,8 @@ static void ggml_cuda_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1
|
||||
} else if (all_on_device && src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F32 && !ggml_is_transposed(src0) && !ggml_is_transposed(src1) && src1->ne[2]*src1->ne[3] > 1) {
|
||||
// KQ + KQV multi-batch
|
||||
ggml_cuda_mul_mat_mat_batched_cublas(src0, src1, dst);
|
||||
} else if (all_on_device && (ggml_is_quantized(src0->type) || src0->type == GGML_TYPE_F16) && src1->ne[1] > 1) {
|
||||
ggml_cuda_mul_mat_mat_deq_cublas(src0, src1, dst);
|
||||
} else if (src0->type == GGML_TYPE_F32) {
|
||||
ggml_cuda_op_mul_mat(src0, src1, dst, ggml_cuda_op_mul_mat_cublas, false);
|
||||
} else if (ggml_is_quantized(src0->type) || src0->type == GGML_TYPE_F16) {
|
||||
|
Loading…
Reference in New Issue
Block a user