mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-12-27 03:44:35 +00:00
remove .rotary_pos_emb.inv_freq and unuse code for chatglm3 model
Signed-off-by: XingXing Qiao <qiaoxx@dingdao.com>
This commit is contained in:
parent
6630a2da48
commit
5a914ffce0
@ -2790,85 +2790,18 @@ class ChatGLMModel(Model):
|
|||||||
self.gguf_writer.add_rope_dimension_count(64)
|
self.gguf_writer.add_rope_dimension_count(64)
|
||||||
self.gguf_writer.add_add_bos_token(False)
|
self.gguf_writer.add_add_bos_token(False)
|
||||||
|
|
||||||
def write_tensors(self):
|
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||||
block_count = self.hparams["num_layers"]
|
if name.endswith(".rotary_pos_emb.inv_freq"):
|
||||||
tensors = dict(self.get_tensors())
|
return []
|
||||||
tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
|
|
||||||
has_lm_head = True
|
|
||||||
n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
|
|
||||||
n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
|
|
||||||
|
|
||||||
for name, data_torch in tensors.items():
|
del bid # unused
|
||||||
if name.endswith(".rotary_pos_emb.inv_freq"):
|
|
||||||
continue
|
|
||||||
|
|
||||||
if "lm_head.weight" not in tensors.keys() and "output.weight" not in tensors.keys():
|
name = re.sub(r'transformer\.', '', name)
|
||||||
has_lm_head = False
|
|
||||||
|
|
||||||
name = re.sub(r'transformer\.', '', name)
|
if name == "word_embeddings.weight":
|
||||||
|
assert self.tensor_names is not None
|
||||||
|
|
||||||
old_dtype = data_torch.dtype
|
return [(self.map_tensor_name(name), data_torch)]
|
||||||
|
|
||||||
# convert any unsupported data types to float32
|
|
||||||
if data_torch.dtype not in (torch.float16, torch.float32):
|
|
||||||
data_torch = data_torch.to(torch.float32)
|
|
||||||
|
|
||||||
data = data_torch.squeeze().numpy()
|
|
||||||
|
|
||||||
if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
|
|
||||||
# Map bloom-style qkv_linear to gpt-style qkv_linear
|
|
||||||
# bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
|
|
||||||
# gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
|
|
||||||
qkv_weights = data.reshape((n_head, 3, n_embed // n_head, n_embed))
|
|
||||||
data = np.concatenate(
|
|
||||||
(
|
|
||||||
qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
|
|
||||||
qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
|
|
||||||
qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
|
|
||||||
),
|
|
||||||
axis=0,
|
|
||||||
)
|
|
||||||
print("re-format attention.linear_qkv.weight")
|
|
||||||
elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
|
|
||||||
qkv_bias = data.reshape((n_head, 3, n_embed // n_head))
|
|
||||||
data = np.concatenate(
|
|
||||||
(
|
|
||||||
qkv_bias[:, 0, :].reshape((n_embed,)),
|
|
||||||
qkv_bias[:, 1, :].reshape((n_embed,)),
|
|
||||||
qkv_bias[:, 2, :].reshape((n_embed,)),
|
|
||||||
),
|
|
||||||
axis=0,
|
|
||||||
)
|
|
||||||
print("re-format attention.linear_qkv.bias")
|
|
||||||
|
|
||||||
# map tensor names
|
|
||||||
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
|
|
||||||
if new_name is None:
|
|
||||||
print(f"Can not map tensor {name!r}")
|
|
||||||
sys.exit()
|
|
||||||
|
|
||||||
n_dims = len(data.shape)
|
|
||||||
data_dtype = data.dtype
|
|
||||||
|
|
||||||
# if f32 desired, convert any float16 to float32
|
|
||||||
if self.ftype == 0 and data_dtype == np.float16:
|
|
||||||
data = data.astype(np.float32)
|
|
||||||
|
|
||||||
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
|
|
||||||
if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
|
|
||||||
data = data.astype(np.float32)
|
|
||||||
|
|
||||||
# if f16 desired, convert any float32 2-dim weight tensors to float16
|
|
||||||
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
|
|
||||||
data = data.astype(np.float16)
|
|
||||||
|
|
||||||
print(f"=> {new_name}, shape = {data.shape}, {old_dtype} --> {data.dtype}")
|
|
||||||
|
|
||||||
self.gguf_writer.add_tensor(new_name, data)
|
|
||||||
|
|
||||||
if not has_lm_head and name == "word_embeddings.weight":
|
|
||||||
self.gguf_writer.add_tensor("output.weight", data)
|
|
||||||
print(name, f"=> output.weight, shape = {data.shape}, {old_dtype} --> {data.dtype}")
|
|
||||||
|
|
||||||
|
|
||||||
###### CONVERSION LOGIC ######
|
###### CONVERSION LOGIC ######
|
||||||
|
Loading…
Reference in New Issue
Block a user