gguf-py : Numpy dequantization for most types

This commit is contained in:
Francis Couture-Harpin 2024-08-08 23:11:42 -04:00
parent 3a14e00366
commit 5a9edda7ca
2 changed files with 595 additions and 3 deletions

View File

@ -4,7 +4,7 @@ from typing import Any, Callable, Sequence
from numpy.typing import DTypeLike from numpy.typing import DTypeLike
from .constants import GGML_QUANT_SIZES, GGMLQuantizationType from .constants import GGML_QUANT_SIZES, GGMLQuantizationType, QK_K
from .lazy import LazyNumpyTensor from .lazy import LazyNumpyTensor
import numpy as np import numpy as np
@ -64,8 +64,10 @@ def quantize(data: np.ndarray, qtype: GGMLQuantizationType) -> np.ndarray:
def dequantize(data: np.ndarray, qtype: GGMLQuantizationType) -> np.ndarray: def dequantize(data: np.ndarray, qtype: GGMLQuantizationType) -> np.ndarray:
if qtype == GGMLQuantizationType.F32 or qtype == GGMLQuantizationType.F16: if qtype == GGMLQuantizationType.F32:
return data.astype(np.float32, copy=False) return data.view(np.float32)
elif qtype == GGMLQuantizationType.F16:
return data.view(np.float16).astype(np.float32)
elif (q := _type_traits.get(qtype)) is not None: elif (q := _type_traits.get(qtype)) is not None:
return q.dequantize(data) return q.dequantize(data)
else: else:
@ -187,6 +189,166 @@ class BF16(__Quant, qtype=GGMLQuantizationType.BF16):
return (blocks.view(np.int16).astype(np.int32) << 16).view(np.float32) return (blocks.view(np.int16).astype(np.int32) << 16).view(np.float32)
class Q4_0(__Quant, qtype=GGMLQuantizationType.Q4_0):
@classmethod
def quantize_blocks(cls, blocks: np.ndarray) -> np.ndarray:
n_blocks = blocks.shape[0]
imax = abs(blocks).argmax(axis=-1, keepdims=True)
max = np.take_along_axis(blocks, imax, axis=-1)
d = max / -8
with np.errstate(divide="ignore"):
id = np.where(d == 0, 0, 1 / d)
# FIXME: Q4_0's reference rounding is cursed and depends on FMA
qs = np.trunc((np.float64(blocks) * np.float64(id)) + np.float64(8.5), dtype=np.float32).astype(np.uint8).clip(0, 15)
qs = qs.reshape((n_blocks, 2, cls.block_size // 2))
qs = qs[..., 0, :] | (qs[..., 1, :] << np.uint8(4))
d = d.astype(np.float16).view(np.uint8)
return np.concatenate([d, qs], axis=-1)
@classmethod
def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray:
n_blocks = blocks.shape[0]
d, qs = np.hsplit(blocks, [2])
d = d.view(np.float16).astype(np.float32)
qs = qs.reshape((n_blocks, -1, 1, cls.block_size // 2)) >> np.array([0, 4], dtype=np.uint8).reshape((1, 1, 2, 1))
qs = (qs & np.uint8(0x0F)).reshape((n_blocks, -1)).astype(np.int8) - np.int8(8)
return (d * qs.astype(np.float32))
class Q4_1(__Quant, qtype=GGMLQuantizationType.Q4_1):
@classmethod
def quantize_blocks(cls, blocks: np.ndarray) -> np.ndarray:
n_blocks = blocks.shape[0]
max = blocks.max(axis=-1, keepdims=True)
min = blocks.min(axis=-1, keepdims=True)
d = (max - min) / 15
with np.errstate(divide="ignore"):
id = np.where(d == 0, 0, 1 / d)
qs = np.trunc((blocks - min) * id + np.float32(0.5), dtype=np.float32).astype(np.uint8).clip(0, 15)
qs = qs.reshape((n_blocks, 2, cls.block_size // 2))
qs = qs[..., 0, :] | (qs[..., 1, :] << np.uint8(4))
d = d.astype(np.float16).view(np.uint8)
m = min.astype(np.float16).view(np.uint8)
return np.concatenate([d, m, qs], axis=-1)
@classmethod
def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray:
n_blocks = blocks.shape[0]
d, rest = np.hsplit(blocks, [2])
m, qs = np.hsplit(rest, [2])
d = d.view(np.float16).astype(np.float32)
m = m.view(np.float16).astype(np.float32)
qs = qs.reshape((n_blocks, -1, 1, cls.block_size // 2)) >> np.array([0, 4], dtype=np.uint8).reshape((1, 1, 2, 1))
qs = (qs & np.uint8(0x0F)).reshape((n_blocks, -1)).astype(np.float32)
return (d * qs) + m
class Q5_0(__Quant, qtype=GGMLQuantizationType.Q5_0):
@classmethod
def quantize_blocks(cls, blocks: np.ndarray) -> np.ndarray:
n_blocks = blocks.shape[0]
imax = abs(blocks).argmax(axis=-1, keepdims=True)
max = np.take_along_axis(blocks, imax, axis=-1)
d = max / -16
with np.errstate(divide="ignore"):
id = np.where(d == 0, 0, 1 / d)
# FIXME: Q5_0's reference rounding is cursed and depends on FMA
q = np.trunc((np.float64(blocks) * np.float64(id)) + np.float64(16.5), dtype=np.float32).astype(np.uint8).clip(0, 31)
qs = q.reshape((n_blocks, 2, cls.block_size // 2))
qs = (qs[..., 0, :] & np.uint8(0x0F)) | (qs[..., 1, :] << np.uint8(4))
qh = np.packbits(q.reshape((n_blocks, 1, 32)) >> np.uint8(4), axis=-1, bitorder="little").reshape(n_blocks, 4)
d = d.astype(np.float16).view(np.uint8)
return np.concatenate([d, qh, qs], axis=-1)
@classmethod
def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray:
n_blocks = blocks.shape[0]
d, rest = np.hsplit(blocks, [2])
qh, qs = np.hsplit(rest, [4])
d = d.view(np.float16).astype(np.float32)
qh = qh.view(np.uint32)
qh = qh.reshape((n_blocks, 1)) >> np.array([i for i in range(32)], dtype=np.uint32).reshape((1, 32))
ql = qs.reshape((n_blocks, -1, 1, cls.block_size // 2)) >> np.array([0, 4], dtype=np.uint8).reshape((1, 1, 2, 1))
qh = (qh & np.uint32(0x01)).astype(np.uint8)
ql = (ql & np.uint8(0x0F)).reshape((n_blocks, -1))
qs = (ql | (qh << np.uint8(4))).astype(np.int8) - np.int8(16)
return (d * qs.astype(np.float32))
class Q5_1(__Quant, qtype=GGMLQuantizationType.Q5_1):
@classmethod
def quantize_blocks(cls, blocks: np.ndarray) -> np.ndarray:
n_blocks = blocks.shape[0]
max = blocks.max(axis=-1, keepdims=True)
min = blocks.min(axis=-1, keepdims=True)
d = (max - min) / 31
with np.errstate(divide="ignore"):
id = np.where(d == 0, 0, 1 / d)
q = np.trunc((blocks - min) * id + np.float32(0.5), dtype=np.float32).astype(np.uint8).clip(0, 31)
qs = q.reshape((n_blocks, 2, cls.block_size // 2))
qs = (qs[..., 0, :] & np.uint8(0x0F)) | (qs[..., 1, :] << np.uint8(4))
qh = np.packbits(q.reshape((n_blocks, 1, 32)) >> np.uint8(4), axis=-1, bitorder="little").reshape(n_blocks, 4)
d = d.astype(np.float16).view(np.uint8)
m = min.astype(np.float16).view(np.uint8)
return np.concatenate([d, m, qh, qs], axis=-1)
@classmethod
def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray:
n_blocks = blocks.shape[0]
d, rest = np.hsplit(blocks, [2])
m, rest = np.hsplit(rest, [2])
qh, qs = np.hsplit(rest, [4])
d = d.view(np.float16).astype(np.float32)
m = m.view(np.float16).astype(np.float32)
qh = qh.view(np.uint32)
qh = qh.reshape((n_blocks, 1)) >> np.array([i for i in range(32)], dtype=np.uint32).reshape((1, 32))
ql = qs.reshape((n_blocks, -1, 1, cls.block_size // 2)) >> np.array([0, 4], dtype=np.uint8).reshape((1, 1, 2, 1))
qh = (qh & np.uint32(0x01)).astype(np.uint8)
ql = (ql & np.uint8(0x0F)).reshape((n_blocks, -1))
qs = (ql | (qh << np.uint8(4))).astype(np.float32)
return (d * qs) + m
class Q8_0(__Quant, qtype=GGMLQuantizationType.Q8_0): class Q8_0(__Quant, qtype=GGMLQuantizationType.Q8_0):
@classmethod @classmethod
# Implementation of Q8_0 with bit-exact same results as reference implementation in ggml-quants.c # Implementation of Q8_0 with bit-exact same results as reference implementation in ggml-quants.c
@ -211,3 +373,227 @@ class Q8_0(__Quant, qtype=GGMLQuantizationType.Q8_0):
x = x.view(np.int8).astype(np.float32) x = x.view(np.int8).astype(np.float32)
return (x * d) return (x * d)
class Q2_K(__Quant, qtype=GGMLQuantizationType.Q2_K):
@classmethod
def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray:
n_blocks = blocks.shape[0]
scales, rest = np.hsplit(blocks, [QK_K // 16])
qs, rest = np.hsplit(rest, [QK_K // 4])
d, dmin = np.hsplit(rest, [2])
d = d.view(np.float16).astype(np.float32)
dmin = dmin.view(np.float16).astype(np.float32)
# (n_blocks, 16, 1)
dl = (d * (scales & 0xF).astype(np.float32)).reshape((n_blocks, QK_K // 16, 1))
ml = (dmin * (scales >> 4).astype(np.float32)).reshape((n_blocks, QK_K // 16, 1))
shift = np.array([0, 2, 4, 6], dtype=np.uint8).reshape((1, 1, 4, 1))
qs = (qs.reshape((n_blocks, -1, 1, 32)) >> shift) & np.uint8(3)
qs = qs.reshape((n_blocks, QK_K // 16, 16)).astype(np.float32)
qs = dl * qs - ml
return qs.reshape((n_blocks, -1))
class Q3_K(__Quant, qtype=GGMLQuantizationType.Q3_K):
@classmethod
def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray:
n_blocks = blocks.shape[0]
hmask, rest = np.hsplit(blocks, [QK_K // 8])
qs, rest = np.hsplit(rest, [QK_K // 4])
scales, d = np.hsplit(rest, [12])
d = d.view(np.float16).astype(np.float32)
# The scales are packed at 6-bit each in this pattern:
# 0: IIIIAAAA
# 1: JJJJBBBB
# 2: KKKKCCCC
# 3: LLLLDDDD
# 4: MMMMEEEE
# 5: NNNNFFFF
# 6: OOOOGGGG
# 7: PPPPHHHH
# 8: MMIIEEAA
# 9: NNJJFFBB
# 10: OOKKGGCC
# 11: PPLLHHDD
lscales, hscales = np.hsplit(scales, [8])
lscales = lscales.reshape((n_blocks, 1, 8)) >> np.array([0, 4], dtype=np.uint8).reshape((1, 2, 1))
lscales = lscales.reshape((n_blocks, 16))
hscales = hscales.reshape((n_blocks, 1, 4)) >> np.array([0, 2, 4, 6], dtype=np.uint8).reshape((1, 4, 1))
hscales = hscales.reshape((n_blocks, 16))
scales = (lscales & np.uint8(0x0F)) | ((hscales & np.uint8(0x03)) << np.uint8(4))
scales = (scales.astype(np.int8) - np.int8(32)).astype(np.float32)
dl = (d * scales).reshape((n_blocks, 16, 1))
ql = qs.reshape((n_blocks, -1, 1, 32)) >> np.array([0, 2, 4, 6], dtype=np.uint8).reshape((1, 1, 4, 1))
qh = hmask.reshape(n_blocks, -1, 1, 32) >> np.array([i for i in range(8)], dtype=np.uint8).reshape((1, 1, 8, 1))
ql = ql.reshape((n_blocks, 16, QK_K // 16)) & np.uint8(3)
qh = (qh.reshape((n_blocks, 16, QK_K // 16)) & np.uint8(1))
qh = qh ^ np.uint8(1) # strangely, the offset is zero when the bitmask is 1
q = (ql.astype(np.int8) - (qh << np.uint8(2)).astype(np.int8)).astype(np.float32)
return (dl * q).reshape((n_blocks, QK_K))
class Q4_K(__Quant, qtype=GGMLQuantizationType.Q4_K):
K_SCALE_SIZE = 12
@staticmethod
def get_scale_min(scales: np.ndarray) -> tuple[np.ndarray, np.ndarray]:
n_blocks = scales.shape[0]
scales = scales.view(np.uint8)
### Unpacking the following: ###
# 0 EEAAAAAA
# 1 FFBBBBBB
# 2 GGCCCCCC
# 3 HHDDDDDD
# 4 eeaaaaaa
# 5 ffbbbbbb
# 6 ggcccccc
# 7 hhdddddd
# 8 eeeeEEEE
# 9 ffffFFFF
# 10 ggggGGGG
# 11 hhhhHHHH
scales = scales.reshape((n_blocks, 3, 4))
d, m, m_d = np.split(scales, 3, axis=-2)
sc = np.concatenate([d & 0x3F, (m_d & 0x0F) | ((d >> 2) & 0x30)], axis=-1)
min = np.concatenate([m & 0x3F, (m_d >> 4) | ((m >> 2) & 0x30)], axis=-1)
return (sc.reshape((n_blocks, 8)), min.reshape((n_blocks, 8)))
@classmethod
def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray:
n_blocks = blocks.shape[0]
d, rest = np.hsplit(blocks, [2])
dmin, rest = np.hsplit(rest, [2])
scales, qs = np.hsplit(rest, [cls.K_SCALE_SIZE])
d = d.view(np.float16).astype(np.float32)
dmin = dmin.view(np.float16).astype(np.float32)
sc, m = Q4_K.get_scale_min(scales)
d = (d * sc.astype(np.float32)).reshape((n_blocks, -1, 1))
dm = (dmin * m.astype(np.float32)).reshape((n_blocks, -1, 1))
qs = qs.reshape((n_blocks, -1, 1, 32)) >> np.array([0, 4], dtype=np.uint8).reshape((1, 1, 2, 1))
qs = (qs & np.uint8(0x0F)).reshape((n_blocks, -1, 32)).astype(np.float32)
return (d * qs - dm).reshape((n_blocks, QK_K))
class Q5_K(__Quant, qtype=GGMLQuantizationType.Q5_K):
@classmethod
def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray:
n_blocks = blocks.shape[0]
d, rest = np.hsplit(blocks, [2])
dmin, rest = np.hsplit(rest, [2])
scales, rest = np.hsplit(rest, [Q4_K.K_SCALE_SIZE])
qh, qs = np.hsplit(rest, [QK_K // 8])
d = d.view(np.float16).astype(np.float32)
dmin = dmin.view(np.float16).astype(np.float32)
sc, m = Q4_K.get_scale_min(scales)
d = (d * sc.astype(np.float32)).reshape((n_blocks, -1, 1))
dm = (dmin * m.astype(np.float32)).reshape((n_blocks, -1, 1))
ql = qs.reshape((n_blocks, -1, 1, 32)) >> np.array([0, 4], dtype=np.uint8).reshape((1, 1, 2, 1))
qh = qh.reshape((n_blocks, -1, 1, 32)) >> np.array([i for i in range(8)], dtype=np.uint8).reshape((1, 1, 8, 1))
ql = (ql & np.uint8(0x0F)).reshape((n_blocks, -1, 32))
qh = (qh & np.uint8(0x01)).reshape((n_blocks, -1, 32))
q = (ql | (qh << np.uint8(4))).astype(np.float32)
return (d * q - dm).reshape((n_blocks, QK_K))
class Q6_K(__Quant, qtype=GGMLQuantizationType.Q6_K):
@classmethod
def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray:
n_blocks = blocks.shape[0]
ql, rest = np.hsplit(blocks, [QK_K // 2])
qh, rest = np.hsplit(rest, [QK_K // 4])
scales, d = np.hsplit(rest, [QK_K // 16])
scales = scales.view(np.int8).astype(np.float32)
d = d.view(np.float16).astype(np.float32)
d = (d * scales).reshape((n_blocks, QK_K // 16, 1))
ql = ql.reshape((n_blocks, -1, 1, 64)) >> np.array([0, 4], dtype=np.uint8).reshape((1, 1, 2, 1))
ql = (ql & np.uint8(0x0F)).reshape((n_blocks, -1, 32))
qh = qh.reshape((n_blocks, -1, 1, 32)) >> np.array([0, 2, 4, 6], dtype=np.uint8).reshape((1, 1, 4, 1))
qh = (qh & np.uint8(0x03)).reshape((n_blocks, -1, 32))
q = (ql | (qh << np.uint8(4))).astype(np.int8) - np.int8(32)
q = q.reshape((n_blocks, QK_K // 16, -1)).astype(np.float32)
return (d * q).reshape((n_blocks, QK_K))
class IQ4_NL(__Quant, qtype=GGMLQuantizationType.IQ4_NL):
QK4_NL = 32
kvalues = (-127, -104, -83, -65, -49, -35, -22, -10, 1, 13, 25, 38, 53, 69, 89, 113)
@classmethod
def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray:
n_blocks = blocks.shape[0]
d, qs = np.hsplit(blocks, [2])
d = d.view(np.float16).astype(np.float32)
qs = qs.reshape((n_blocks, -1, 1, cls.QK4_NL // 2)) >> np.array([0, 4], dtype=np.uint8).reshape((1, 1, 2, 1))
qs = (qs & np.uint8(0x0F)).reshape((n_blocks, -1, 1))
kvalues = np.array(cls.kvalues, dtype=np.int8).reshape(1, 1, 16)
qs = np.take_along_axis(kvalues, qs, axis=-1).astype(np.float32).reshape((n_blocks, -1))
return (d * qs)
class IQ4_XS(__Quant, qtype=GGMLQuantizationType.IQ4_XS):
@classmethod
def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray:
n_blocks = blocks.shape[0]
d, rest = np.hsplit(blocks, [2])
scales_h, rest = np.hsplit(rest, [2])
scales_l, qs = np.hsplit(rest, [QK_K // 64])
d = d.view(np.float16).astype(np.float32)
scales_h = scales_h.view(np.uint16)
scales_l = scales_l.reshape((n_blocks, -1, 1)) >> np.array([0, 4], dtype=np.uint8).reshape((1, 1, 2))
scales_h = scales_h.reshape((n_blocks, 1, -1)) >> np.array([2 * i for i in range(QK_K // 32)], dtype=np.uint16).reshape((1, -1, 1))
scales_l = scales_l.reshape((n_blocks, -1)) & np.uint8(0x0F)
scales_h = scales_h.reshape((n_blocks, -1)).astype(np.uint8) & np.uint8(0x03)
scales = (scales_l | (scales_h << np.uint8(4))).astype(np.int8) - np.int8(32)
dl = (d * scales.astype(np.float32)).reshape((n_blocks, -1, 1))
qs = qs.reshape((n_blocks, -1, 1, 16)) >> np.array([0, 4], dtype=np.uint8).reshape((1, 1, 2, 1))
qs = qs.reshape((n_blocks, -1, 32, 1)) & np.uint8(0x0F)
kvalues = np.array(IQ4_NL.kvalues, dtype=np.int8).reshape((1, 1, 1, -1))
qs = np.take_along_axis(kvalues, qs, axis=-1).astype(np.float32).reshape((n_blocks, -1, 32))
return (dl * qs).reshape((n_blocks, -1))

206
gguf-py/tests/test_quants.py Executable file
View File

@ -0,0 +1,206 @@
#!/usr/bin/env python3
# Test gguf.quants so that it exactly matches the C implementation of the (de)quantization
# NOTE: this is kind of a mess, but at least it worked for initially testing the Python implementations.
from __future__ import annotations
import argparse
from math import prod
import os
import sys
from pathlib import Path
import ctypes
import logging
import numpy as np
# Necessary to load the local gguf package
if "NO_LOCAL_GGUF" not in os.environ and (Path(__file__).parent.parent.parent / 'gguf-py').exists():
sys.path.insert(0, str(Path(__file__).parent.parent))
import gguf
from gguf.constants import GGMLQuantizationType
logger = logging.getLogger("test-quants")
c_float_p = ctypes.POINTER(ctypes.c_float)
class ggml_init_params(ctypes.Structure):
_fields_ = [
("mem_size", ctypes.c_size_t),
("mem_buffer", ctypes.c_void_p),
("no_alloc", ctypes.c_bool),
]
class GGMLQuants:
libggml: ctypes.CDLL
def __init__(self, libggml: Path):
self.libggml = ctypes.CDLL(str(libggml))
self.libggml.ggml_quantize_chunk.restype = ctypes.c_size_t
# enum ggml_type type,
# const float * src,
# void * dst,
# int64_t start,
# int64_t nrows,
# int64_t n_per_row,
# const float * imatrix) {
self.libggml.ggml_quantize_chunk.argtypes = (
ctypes.c_int,
ctypes.POINTER(ctypes.c_float),
ctypes.c_void_p,
ctypes.c_int64,
ctypes.c_int64,
ctypes.c_int64,
ctypes.POINTER(ctypes.c_float),
)
for t in (
"q4_0", "q4_1", "q5_0", "q5_1", "q8_0",
"q2_K", "q3_K", "q4_K", "q5_K", "q6_K",
"iq4_nl", "iq4_xs",
):
dequant_func: ctypes._NamedFuncPointer = getattr(self.libggml, "dequantize_row_" + t)
dequant_func.restype = None
dequant_func.argtypes = (ctypes.c_void_p, ctypes.POINTER(ctypes.c_float), ctypes.c_int64)
self.libggml.ggml_fp16_to_fp32_row.restype = None
self.libggml.ggml_fp16_to_fp32_row.argtypes = (ctypes.POINTER(ctypes.c_uint16), ctypes.POINTER(ctypes.c_float), ctypes.c_int64)
self.libggml.ggml_bf16_to_fp32_row.restype = None
self.libggml.ggml_bf16_to_fp32_row.argtypes = (ctypes.POINTER(ctypes.c_uint16), ctypes.POINTER(ctypes.c_float), ctypes.c_int64)
self.libggml.ggml_init.argtypes = (ggml_init_params,)
self.libggml.ggml_init(ggml_init_params(1 * 1024 * 1024, 0, False))
def dequantize(self, tensor: np.ndarray, qtype: GGMLQuantizationType) -> np.ndarray:
result = np.zeros(gguf.quant_shape_from_byte_shape(tensor.shape, qtype), dtype=np.float32, order="C")
if qtype == GGMLQuantizationType.F32:
# no-op
result = tensor.view(np.float32)
elif qtype == GGMLQuantizationType.F16:
self.libggml.ggml_fp16_to_fp32_row(tensor.ctypes.data_as(ctypes.POINTER(ctypes.c_uint16)), result.ctypes.data_as(c_float_p), result.size)
elif qtype == GGMLQuantizationType.BF16:
self.libggml.ggml_bf16_to_fp32_row(tensor.ctypes.data_as(ctypes.POINTER(ctypes.c_uint16)), result.ctypes.data_as(c_float_p), result.size)
else:
lw_qname = qtype.name.lower()
if lw_qname[-1] == "k":
lw_qname = lw_qname[:-1] + "K"
dequant_func: ctypes._NamedFuncPointer = getattr(self.libggml, "dequantize_row_" + lw_qname)
dequant_func(tensor.ctypes.data_as(ctypes.c_void_p), result.ctypes.data_as(c_float_p), result.size)
return result
def quantize(self, data: np.ndarray, qtype: GGMLQuantizationType) -> np.ndarray:
result = np.zeros(gguf.quant_shape_to_byte_shape(data.shape, qtype), dtype=np.uint8, order="C")
result_size = self.libggml.ggml_quantize_chunk(qtype.value, data.ctypes.data_as(c_float_p), result.ctypes.data_as(ctypes.c_void_p), 0, prod(data.shape[:-1]), data.shape[-1], ctypes.cast(0, c_float_p))
assert result.size == result_size
return result
def compare_tensors(t1: np.ndarray, t2: np.ndarray, qtype: GGMLQuantizationType) -> bool:
same = np.array_equal(t1, t2)
if same:
return True
else:
block_size, type_size = gguf.GGML_QUANT_SIZES[qtype]
if t1.dtype == np.float32:
t1 = t1.reshape((-1, block_size))
t2 = t2.reshape((-1, block_size))
else:
t1 = t1.reshape((-1, type_size))
t2 = t2.reshape((-1, type_size))
x = t1.view(np.uint8) ^ t2.view(np.uint8)
diff_bits = np.count_nonzero(np.unpackbits(x, axis=-1), axis=-1)
logger.debug(f"{diff_bits.shape=}")
num_bad_blocks = np.count_nonzero(diff_bits, axis=0)
logger.debug(f"{num_bad_blocks} bad blocks ({100 * num_bad_blocks / x.shape[0]:.6f}%)")
bad_block_id = np.argmax(diff_bits, axis=0)
logger.debug(f"Worst block id: {bad_block_id}")
logger.debug(f"Sample bad block ({diff_bits[bad_block_id]} differing bits):\n{t1[bad_block_id]}\nReference:\n{t2[bad_block_id]}")
sum_diff_bits = np.sum(diff_bits)
logger.debug(f"{sum_diff_bits} bits differ ({100 * sum_diff_bits/(x.size * 8):.6f}%)")
return False
def do_test(libggml_path: Path):
ggml_quants = GGMLQuants(libggml_path)
np.set_printoptions(precision=None, threshold=(4 * 256) + 1, formatter={"int": lambda n: "0x%02X" % n})
r = np.random.randn(8, 1024, 1024).astype(np.float32, copy=False)
for qtype in (GGMLQuantizationType.F16, *gguf.quants._type_traits.keys()):
has_dequantize = False
has_quantize = False
try:
gguf.dequantize(np.zeros((gguf.GGML_QUANT_SIZES[qtype][1]), dtype=np.uint8), qtype)
has_dequantize = True
except (NotImplementedError, AssertionError) as e:
if isinstance(e, AssertionError):
logger.error(f"Error with {qtype.name}: {e}")
raise e
try:
gguf.quantize(np.zeros((gguf.GGML_QUANT_SIZES[qtype][0]), dtype=np.float32), qtype)
has_quantize = True
except (NotImplementedError, AssertionError) as e:
if isinstance(e, AssertionError):
logger.error(f"Error with {qtype.name}: {e}")
raise e
if not has_dequantize and not has_quantize:
continue
logger.info(f"Testing {qtype.name}")
rc = r.copy(order="C")
pyq = None
if has_quantize:
logger.debug(f"Quantizing to {qtype.name} with Python")
pyq = gguf.quants.quantize(rc, qtype)
logger.debug(f"Quantizing to {qtype.name} with C")
ggq = ggml_quants.quantize(rc, qtype)
if has_quantize:
assert pyq is not None
if qtype == GGMLQuantizationType.F16:
pyq = pyq.view(np.uint8)
quant_equal = compare_tensors(pyq, ggq, qtype)
if not quant_equal:
logger.error(f"Quantization to {qtype.name} does not match ❌")
else:
logger.info(f"Quantization to {qtype.name} matches exactly ✅")
if has_dequantize:
logger.debug(f"Dequantizing from {qtype.name} with Python")
pydq = gguf.quants.dequantize(ggq, qtype)
logger.debug(f"Dequantizing from {qtype.name} with C")
ggdq = ggml_quants.dequantize(ggq, qtype)
dequant_equal = compare_tensors(pydq, ggdq, qtype)
if not dequant_equal:
logger.error(f"Dequantization from {qtype.name} does not match ❌")
else:
logger.info(f"Dequantization from {qtype.name} matches exactly ✅")
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Test Python (de)quantization against the reference C implementation")
parser.add_argument("--libggml", type=Path, default=Path(__file__).parent.parent.parent / "build" / "ggml" / "src" / "libggml.so", help="The path to libggml.so")
args = parser.parse_args()
logging.basicConfig(level=logging.DEBUG)
do_test(args.libggml)