mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-12-25 02:44:36 +00:00
convert-*.py: GGUF Naming Convention Refactor and Metadata Override Refactor (#7499)
Main thing is that the default output filename will take this form {name}{parameters}{finetune}{version}{encoding}{kind} In addition this add and remove some entries in the KV store and adds a metadata class with automatic heuristics capability to derive some values based on model card content * No Change: - Internal GGUF Spec - `general.architecture` - `general.quantization_version` - `general.alignment` - `general.file_type` - General Model Details - `general.name` - `general.author` - `general.version` - `general.description` - Licensing details - `general.license` - Typically represents the converted GGUF repo (Unless made from scratch) - `general.url` - Model Source during conversion - `general.source.url` * Removed: - Model Source during conversion - `general.source.huggingface.repository` * Added: - General Model Details - `general.organization` - `general.finetune` - `general.basename` - `general.quantized_by` - `general.size_label` - Licensing details - `general.license.name` - `general.license.link` - Typically represents the converted GGUF repo (Unless made from scratch) - `general.doi` - `general.uuid` - `general.repo_url` - Model Source during conversion - `general.source.doi` - `general.source.uuid` - `general.source.repo_url` - Base Model Source - `general.base_model.count` - `general.base_model.{id}.name` - `general.base_model.{id}.author` - `general.base_model.{id}.version` - `general.base_model.{id}.organization` - `general.base_model.{id}.url` (Model Website/Paper) - `general.base_model.{id}.doi` - `general.base_model.{id}.uuid` - `general.base_model.{id}.repo_url` (Model Source Repository (git/svn/etc...)) - Array based KV stores - `general.tags` - `general.languages` - `general.datasets` --------- Co-authored-by: compilade <git@compilade.net> Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com>
This commit is contained in:
parent
3807c3de04
commit
672a6f1018
@ -48,34 +48,38 @@ class Model:
|
|||||||
|
|
||||||
dir_model: Path
|
dir_model: Path
|
||||||
ftype: gguf.LlamaFileType
|
ftype: gguf.LlamaFileType
|
||||||
|
fname_out: Path | None
|
||||||
is_big_endian: bool
|
is_big_endian: bool
|
||||||
endianess: gguf.GGUFEndian
|
endianess: gguf.GGUFEndian
|
||||||
use_temp_file: bool
|
use_temp_file: bool
|
||||||
lazy: bool
|
lazy: bool
|
||||||
model_name: str | None
|
|
||||||
part_names: list[str]
|
part_names: list[str]
|
||||||
is_safetensors: bool
|
is_safetensors: bool
|
||||||
hparams: dict[str, Any]
|
hparams: dict[str, Any]
|
||||||
block_count: int
|
block_count: int
|
||||||
tensor_map: gguf.TensorNameMap
|
tensor_map: gguf.TensorNameMap
|
||||||
tensor_names: set[str] | None
|
tensor_names: set[str] | None
|
||||||
fname_out: Path
|
|
||||||
gguf_writer: gguf.GGUFWriter
|
gguf_writer: gguf.GGUFWriter
|
||||||
|
model_name: str | None
|
||||||
|
metadata_override: Path | None
|
||||||
|
|
||||||
# subclasses should define this!
|
# subclasses should define this!
|
||||||
model_arch: gguf.MODEL_ARCH
|
model_arch: gguf.MODEL_ARCH
|
||||||
|
|
||||||
def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, is_big_endian: bool, use_temp_file: bool, eager: bool,
|
def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path | None, is_big_endian: bool = False,
|
||||||
model_name: str | None, split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False, small_first_shard: bool = False):
|
use_temp_file: bool = False, eager: bool = False,
|
||||||
|
metadata_override: Path | None = None, model_name: str | None = None,
|
||||||
|
split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False, small_first_shard: bool = False):
|
||||||
if type(self) is Model:
|
if type(self) is Model:
|
||||||
raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
|
raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
|
||||||
|
|
||||||
self.dir_model = dir_model
|
self.dir_model = dir_model
|
||||||
self.ftype = ftype
|
self.ftype = ftype
|
||||||
|
self.fname_out = fname_out
|
||||||
self.is_big_endian = is_big_endian
|
self.is_big_endian = is_big_endian
|
||||||
self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
|
self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
|
||||||
self.use_temp_file = use_temp_file
|
self.use_temp_file = use_temp_file
|
||||||
self.lazy = not eager
|
self.lazy = not eager
|
||||||
self.model_name = model_name
|
|
||||||
self.part_names = Model.get_model_part_names(self.dir_model, "model", ".safetensors")
|
self.part_names = Model.get_model_part_names(self.dir_model, "model", ".safetensors")
|
||||||
self.is_safetensors = len(self.part_names) > 0
|
self.is_safetensors = len(self.part_names) > 0
|
||||||
if not self.is_safetensors:
|
if not self.is_safetensors:
|
||||||
@ -84,6 +88,10 @@ class Model:
|
|||||||
self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"])
|
self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"])
|
||||||
self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
|
self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
|
||||||
self.tensor_names = None
|
self.tensor_names = None
|
||||||
|
self.metadata_override = metadata_override
|
||||||
|
self.model_name = model_name
|
||||||
|
|
||||||
|
# Apply heuristics to figure out typical tensor encoding based on first layer tensor encoding type
|
||||||
if self.ftype == gguf.LlamaFileType.GUESSED:
|
if self.ftype == gguf.LlamaFileType.GUESSED:
|
||||||
# NOTE: can't use field "torch_dtype" in config.json, because some finetunes lie.
|
# NOTE: can't use field "torch_dtype" in config.json, because some finetunes lie.
|
||||||
_, first_tensor = next(self.get_tensors())
|
_, first_tensor = next(self.get_tensors())
|
||||||
@ -93,10 +101,8 @@ class Model:
|
|||||||
else:
|
else:
|
||||||
logger.info(f"choosing --outtype bf16 from first tensor type ({first_tensor.dtype})")
|
logger.info(f"choosing --outtype bf16 from first tensor type ({first_tensor.dtype})")
|
||||||
self.ftype = gguf.LlamaFileType.MOSTLY_BF16
|
self.ftype = gguf.LlamaFileType.MOSTLY_BF16
|
||||||
ftype_up: str = self.ftype.name.partition("_")[2].upper()
|
|
||||||
ftype_lw: str = ftype_up.lower()
|
# Configure GGUF Writer
|
||||||
# allow templating the file name with the output ftype, useful with the "auto" ftype
|
|
||||||
self.fname_out = fname_out.parent / fname_out.name.format(ftype_lw, outtype=ftype_lw, ftype=ftype_lw, OUTTYPE=ftype_up, FTYPE=ftype_up)
|
|
||||||
self.gguf_writer = gguf.GGUFWriter(path=None, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file,
|
self.gguf_writer = gguf.GGUFWriter(path=None, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file,
|
||||||
split_max_tensors=split_max_tensors, split_max_size=split_max_size, dry_run=dry_run, small_first_shard=small_first_shard)
|
split_max_tensors=split_max_tensors, split_max_size=split_max_size, dry_run=dry_run, small_first_shard=small_first_shard)
|
||||||
|
|
||||||
@ -193,7 +199,6 @@ class Model:
|
|||||||
return new_name
|
return new_name
|
||||||
|
|
||||||
def set_gguf_parameters(self):
|
def set_gguf_parameters(self):
|
||||||
self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
|
|
||||||
self.gguf_writer.add_block_count(self.block_count)
|
self.gguf_writer.add_block_count(self.block_count)
|
||||||
|
|
||||||
if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx"], optional=True)) is not None:
|
if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx"], optional=True)) is not None:
|
||||||
@ -250,7 +255,7 @@ class Model:
|
|||||||
|
|
||||||
return False
|
return False
|
||||||
|
|
||||||
def write_tensors(self):
|
def prepare_tensors(self):
|
||||||
max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")
|
max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")
|
||||||
|
|
||||||
for name, data_torch in self.get_tensors():
|
for name, data_torch in self.get_tensors():
|
||||||
@ -333,9 +338,67 @@ class Model:
|
|||||||
|
|
||||||
self.gguf_writer.add_tensor(new_name, data, raw_dtype=data_qtype)
|
self.gguf_writer.add_tensor(new_name, data, raw_dtype=data_qtype)
|
||||||
|
|
||||||
|
def set_type(self):
|
||||||
|
self.gguf_writer.add_type(gguf.GGUFType.MODEL)
|
||||||
|
|
||||||
|
def prepare_metadata(self, vocab_only: bool):
|
||||||
|
|
||||||
|
total_params, shared_params, expert_params, expert_count = self.gguf_writer.get_total_parameter_count()
|
||||||
|
|
||||||
|
self.metadata = gguf.Metadata.load(self.metadata_override, self.dir_model, self.model_name, total_params)
|
||||||
|
|
||||||
|
# Fallback to model directory name if metadata name is still missing
|
||||||
|
if self.metadata.name is None:
|
||||||
|
self.metadata.name = self.dir_model.name
|
||||||
|
|
||||||
|
# Generate parameter weight class (useful for leader boards) if not yet determined
|
||||||
|
if self.metadata.size_label is None and total_params > 0:
|
||||||
|
self.metadata.size_label = gguf.size_label(total_params, shared_params, expert_params, expert_count)
|
||||||
|
|
||||||
|
# Extract the encoding scheme from the file type name. e.g. 'gguf.LlamaFileType.MOSTLY_Q8_0' --> 'Q8_0'
|
||||||
|
output_type: str = self.ftype.name.partition("_")[2]
|
||||||
|
|
||||||
|
# Filename Output
|
||||||
|
# Note: `not is_dir()` is used because `.is_file()` will not detect
|
||||||
|
# file template strings as it doesn't actually exist as a file
|
||||||
|
if self.fname_out is not None and not self.fname_out.is_dir():
|
||||||
|
# Output path is a custom defined templated filename
|
||||||
|
|
||||||
|
# Process templated file name with the output ftype, useful with the "auto" ftype
|
||||||
|
self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type)
|
||||||
|
else:
|
||||||
|
# Generate default filename based on model specification and available metadata
|
||||||
|
if not vocab_only:
|
||||||
|
fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, self.metadata.size_label, output_type, model_type="LoRA" if total_params < 0 else None)
|
||||||
|
else:
|
||||||
|
fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=None, model_type="vocab")
|
||||||
|
|
||||||
|
# Check if preferred output directory path was provided
|
||||||
|
if self.fname_out is not None and self.fname_out.is_dir():
|
||||||
|
# output path is a directory
|
||||||
|
self.fname_out = self.fname_out / f"{fname_default}.gguf"
|
||||||
|
else:
|
||||||
|
# output in the same directory as the model by default
|
||||||
|
self.fname_out = self.dir_model / f"{fname_default}.gguf"
|
||||||
|
|
||||||
|
self.set_type()
|
||||||
|
|
||||||
|
logger.info("Set meta model")
|
||||||
|
self.metadata.set_gguf_meta_model(self.gguf_writer)
|
||||||
|
|
||||||
|
logger.info("Set model parameters")
|
||||||
|
self.set_gguf_parameters()
|
||||||
|
|
||||||
|
logger.info("Set model tokenizer")
|
||||||
|
self.set_vocab()
|
||||||
|
|
||||||
|
logger.info("Set model quantization version")
|
||||||
|
self.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION)
|
||||||
|
|
||||||
def write(self):
|
def write(self):
|
||||||
self.write_tensors()
|
self.prepare_tensors()
|
||||||
self.gguf_writer.write_header_to_file(self.fname_out)
|
self.prepare_metadata(vocab_only=False)
|
||||||
|
self.gguf_writer.write_header_to_file(path=self.fname_out)
|
||||||
self.gguf_writer.write_kv_data_to_file()
|
self.gguf_writer.write_kv_data_to_file()
|
||||||
self.gguf_writer.write_tensors_to_file(progress=True)
|
self.gguf_writer.write_tensors_to_file(progress=True)
|
||||||
self.gguf_writer.close()
|
self.gguf_writer.close()
|
||||||
@ -343,7 +406,9 @@ class Model:
|
|||||||
def write_vocab(self):
|
def write_vocab(self):
|
||||||
if len(self.gguf_writer.tensors) != 1:
|
if len(self.gguf_writer.tensors) != 1:
|
||||||
raise ValueError('Splitting the vocabulary is not supported')
|
raise ValueError('Splitting the vocabulary is not supported')
|
||||||
self.gguf_writer.write_header_to_file(self.fname_out)
|
|
||||||
|
self.prepare_metadata(vocab_only=True)
|
||||||
|
self.gguf_writer.write_header_to_file(path=self.fname_out)
|
||||||
self.gguf_writer.write_kv_data_to_file()
|
self.gguf_writer.write_kv_data_to_file()
|
||||||
self.gguf_writer.close()
|
self.gguf_writer.close()
|
||||||
|
|
||||||
@ -780,7 +845,6 @@ class GPTNeoXModel(Model):
|
|||||||
def set_gguf_parameters(self):
|
def set_gguf_parameters(self):
|
||||||
block_count = self.hparams["num_hidden_layers"]
|
block_count = self.hparams["num_hidden_layers"]
|
||||||
|
|
||||||
self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
|
|
||||||
self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
|
self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
|
||||||
self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
|
self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
|
||||||
self.gguf_writer.add_block_count(block_count)
|
self.gguf_writer.add_block_count(block_count)
|
||||||
@ -836,7 +900,6 @@ class BloomModel(Model):
|
|||||||
model_arch = gguf.MODEL_ARCH.BLOOM
|
model_arch = gguf.MODEL_ARCH.BLOOM
|
||||||
|
|
||||||
def set_gguf_parameters(self):
|
def set_gguf_parameters(self):
|
||||||
self.gguf_writer.add_name("Bloom")
|
|
||||||
n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
|
n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
|
||||||
n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
|
n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
|
||||||
self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
|
self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
|
||||||
@ -913,7 +976,6 @@ class MPTModel(Model):
|
|||||||
|
|
||||||
def set_gguf_parameters(self):
|
def set_gguf_parameters(self):
|
||||||
block_count = self.hparams["n_layers"]
|
block_count = self.hparams["n_layers"]
|
||||||
self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
|
|
||||||
self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
|
self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
|
||||||
self.gguf_writer.add_embedding_length(self.hparams["d_model"])
|
self.gguf_writer.add_embedding_length(self.hparams["d_model"])
|
||||||
self.gguf_writer.add_block_count(block_count)
|
self.gguf_writer.add_block_count(block_count)
|
||||||
@ -952,7 +1014,6 @@ class OrionModel(Model):
|
|||||||
block_count = self.hparams["num_hidden_layers"]
|
block_count = self.hparams["num_hidden_layers"]
|
||||||
head_count = self.hparams["num_attention_heads"]
|
head_count = self.hparams["num_attention_heads"]
|
||||||
head_count_kv = self.hparams.get("num_key_value_heads", head_count)
|
head_count_kv = self.hparams.get("num_key_value_heads", head_count)
|
||||||
hf_repo = self.hparams.get("_name_or_path", "")
|
|
||||||
|
|
||||||
ctx_length = 0
|
ctx_length = 0
|
||||||
if "max_sequence_length" in self.hparams:
|
if "max_sequence_length" in self.hparams:
|
||||||
@ -965,8 +1026,6 @@ class OrionModel(Model):
|
|||||||
raise ValueError("gguf: can not find ctx length parameter.")
|
raise ValueError("gguf: can not find ctx length parameter.")
|
||||||
|
|
||||||
self.gguf_writer.add_file_type(self.ftype)
|
self.gguf_writer.add_file_type(self.ftype)
|
||||||
self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
|
|
||||||
self.gguf_writer.add_source_hf_repo(hf_repo)
|
|
||||||
self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
|
self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
|
||||||
self.gguf_writer.add_context_length(ctx_length)
|
self.gguf_writer.add_context_length(ctx_length)
|
||||||
self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
|
self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
|
||||||
@ -990,7 +1049,6 @@ class BaichuanModel(Model):
|
|||||||
block_count = self.hparams["num_hidden_layers"]
|
block_count = self.hparams["num_hidden_layers"]
|
||||||
head_count = self.hparams["num_attention_heads"]
|
head_count = self.hparams["num_attention_heads"]
|
||||||
head_count_kv = self.hparams.get("num_key_value_heads", head_count)
|
head_count_kv = self.hparams.get("num_key_value_heads", head_count)
|
||||||
hf_repo = self.hparams.get("_name_or_path", "")
|
|
||||||
|
|
||||||
ctx_length = 0
|
ctx_length = 0
|
||||||
if "max_sequence_length" in self.hparams:
|
if "max_sequence_length" in self.hparams:
|
||||||
@ -1002,8 +1060,6 @@ class BaichuanModel(Model):
|
|||||||
else:
|
else:
|
||||||
raise ValueError("gguf: can not find ctx length parameter.")
|
raise ValueError("gguf: can not find ctx length parameter.")
|
||||||
|
|
||||||
self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
|
|
||||||
self.gguf_writer.add_source_hf_repo(hf_repo)
|
|
||||||
self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
|
self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
|
||||||
self.gguf_writer.add_context_length(ctx_length)
|
self.gguf_writer.add_context_length(ctx_length)
|
||||||
self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
|
self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
|
||||||
@ -1117,7 +1173,6 @@ class XverseModel(Model):
|
|||||||
block_count = self.hparams["num_hidden_layers"]
|
block_count = self.hparams["num_hidden_layers"]
|
||||||
head_count = self.hparams["num_attention_heads"]
|
head_count = self.hparams["num_attention_heads"]
|
||||||
head_count_kv = self.hparams.get("num_key_value_heads", head_count)
|
head_count_kv = self.hparams.get("num_key_value_heads", head_count)
|
||||||
hf_repo = self.hparams.get("_name_or_path", "")
|
|
||||||
|
|
||||||
ctx_length = 0
|
ctx_length = 0
|
||||||
if "max_sequence_length" in self.hparams:
|
if "max_sequence_length" in self.hparams:
|
||||||
@ -1129,8 +1184,6 @@ class XverseModel(Model):
|
|||||||
else:
|
else:
|
||||||
raise ValueError("gguf: can not find ctx length parameter.")
|
raise ValueError("gguf: can not find ctx length parameter.")
|
||||||
|
|
||||||
self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
|
|
||||||
self.gguf_writer.add_source_hf_repo(hf_repo)
|
|
||||||
self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
|
self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
|
||||||
self.gguf_writer.add_context_length(ctx_length)
|
self.gguf_writer.add_context_length(ctx_length)
|
||||||
self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
|
self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
|
||||||
@ -1189,7 +1242,6 @@ class FalconModel(Model):
|
|||||||
if n_head_kv is None:
|
if n_head_kv is None:
|
||||||
n_head_kv = self.hparams.get("n_head_kv", 1) # old name
|
n_head_kv = self.hparams.get("n_head_kv", 1) # old name
|
||||||
|
|
||||||
self.gguf_writer.add_name("Falcon")
|
|
||||||
self.gguf_writer.add_context_length(2048) # not in config.json
|
self.gguf_writer.add_context_length(2048) # not in config.json
|
||||||
self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
|
self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
|
||||||
self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
|
self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
|
||||||
@ -1234,7 +1286,6 @@ class StarCoderModel(Model):
|
|||||||
def set_gguf_parameters(self):
|
def set_gguf_parameters(self):
|
||||||
block_count = self.hparams["n_layer"]
|
block_count = self.hparams["n_layer"]
|
||||||
|
|
||||||
self.gguf_writer.add_name("StarCoder")
|
|
||||||
self.gguf_writer.add_context_length(self.hparams["n_positions"])
|
self.gguf_writer.add_context_length(self.hparams["n_positions"])
|
||||||
self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
|
self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
|
||||||
self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
|
self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
|
||||||
@ -1269,7 +1320,6 @@ class RefactModel(Model):
|
|||||||
|
|
||||||
block_count = self.hparams["n_layer"]
|
block_count = self.hparams["n_layer"]
|
||||||
|
|
||||||
self.gguf_writer.add_name("Refact")
|
|
||||||
# refact uses Alibi. So this is from config.json which might be used by training.
|
# refact uses Alibi. So this is from config.json which might be used by training.
|
||||||
self.gguf_writer.add_context_length(self.hparams["n_positions"])
|
self.gguf_writer.add_context_length(self.hparams["n_positions"])
|
||||||
self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
|
self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
|
||||||
@ -1324,7 +1374,6 @@ class StableLMModel(Model):
|
|||||||
hparams = self.hparams
|
hparams = self.hparams
|
||||||
block_count = hparams["num_hidden_layers"]
|
block_count = hparams["num_hidden_layers"]
|
||||||
|
|
||||||
self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
|
|
||||||
self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
|
self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
|
||||||
self.gguf_writer.add_embedding_length(hparams["hidden_size"])
|
self.gguf_writer.add_embedding_length(hparams["hidden_size"])
|
||||||
self.gguf_writer.add_block_count(block_count)
|
self.gguf_writer.add_block_count(block_count)
|
||||||
@ -1386,8 +1435,8 @@ class StableLMModel(Model):
|
|||||||
|
|
||||||
return [(new_name, data_torch)]
|
return [(new_name, data_torch)]
|
||||||
|
|
||||||
def write_tensors(self):
|
def prepare_tensors(self):
|
||||||
super().write_tensors()
|
super().prepare_tensors()
|
||||||
|
|
||||||
if self._q_norms is not None or self._k_norms is not None:
|
if self._q_norms is not None or self._k_norms is not None:
|
||||||
# flatten two `list[dict[str, Tensor]]` into a single `list[str]`
|
# flatten two `list[dict[str, Tensor]]` into a single `list[str]`
|
||||||
@ -1503,8 +1552,8 @@ class LlamaModel(Model):
|
|||||||
|
|
||||||
return [(self.map_tensor_name(name), data_torch)]
|
return [(self.map_tensor_name(name), data_torch)]
|
||||||
|
|
||||||
def write_tensors(self):
|
def prepare_tensors(self):
|
||||||
super().write_tensors()
|
super().prepare_tensors()
|
||||||
|
|
||||||
if self._experts is not None:
|
if self._experts is not None:
|
||||||
# flatten `list[dict[str, Tensor]]` into `list[str]`
|
# flatten `list[dict[str, Tensor]]` into `list[str]`
|
||||||
@ -1567,7 +1616,6 @@ class GrokModel(Model):
|
|||||||
|
|
||||||
def set_gguf_parameters(self):
|
def set_gguf_parameters(self):
|
||||||
super().set_gguf_parameters()
|
super().set_gguf_parameters()
|
||||||
self.gguf_writer.add_name("Grok")
|
|
||||||
|
|
||||||
_experts: list[dict[str, Tensor]] | None = None
|
_experts: list[dict[str, Tensor]] | None = None
|
||||||
|
|
||||||
@ -1616,7 +1664,6 @@ class DbrxModel(Model):
|
|||||||
def set_gguf_parameters(self):
|
def set_gguf_parameters(self):
|
||||||
ffn_config = self.hparams["ffn_config"]
|
ffn_config = self.hparams["ffn_config"]
|
||||||
attn_config = self.hparams["attn_config"]
|
attn_config = self.hparams["attn_config"]
|
||||||
self.gguf_writer.add_name(self.hparams["model_type"])
|
|
||||||
self.gguf_writer.add_block_count(self.hparams["n_layers"])
|
self.gguf_writer.add_block_count(self.hparams["n_layers"])
|
||||||
|
|
||||||
self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
|
self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
|
||||||
@ -1685,7 +1732,6 @@ class MiniCPMModel(Model):
|
|||||||
|
|
||||||
def set_gguf_parameters(self):
|
def set_gguf_parameters(self):
|
||||||
block_count = self.hparams["num_hidden_layers"]
|
block_count = self.hparams["num_hidden_layers"]
|
||||||
self.gguf_writer.add_name("MiniCPM")
|
|
||||||
self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
|
self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
|
||||||
self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
|
self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
|
||||||
self.gguf_writer.add_block_count(block_count)
|
self.gguf_writer.add_block_count(block_count)
|
||||||
@ -1755,7 +1801,6 @@ class QwenModel(Model):
|
|||||||
self._set_vocab_qwen()
|
self._set_vocab_qwen()
|
||||||
|
|
||||||
def set_gguf_parameters(self):
|
def set_gguf_parameters(self):
|
||||||
self.gguf_writer.add_name("Qwen")
|
|
||||||
self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
|
self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
|
||||||
self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
|
self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
|
||||||
self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
|
self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
|
||||||
@ -1831,8 +1876,8 @@ class Qwen2MoeModel(Model):
|
|||||||
|
|
||||||
return [(self.map_tensor_name(name), data_torch)]
|
return [(self.map_tensor_name(name), data_torch)]
|
||||||
|
|
||||||
def write_tensors(self):
|
def prepare_tensors(self):
|
||||||
super().write_tensors()
|
super().prepare_tensors()
|
||||||
|
|
||||||
if self._experts is not None:
|
if self._experts is not None:
|
||||||
# flatten `list[dict[str, Tensor]]` into `list[str]`
|
# flatten `list[dict[str, Tensor]]` into `list[str]`
|
||||||
@ -1846,7 +1891,6 @@ class GPT2Model(Model):
|
|||||||
model_arch = gguf.MODEL_ARCH.GPT2
|
model_arch = gguf.MODEL_ARCH.GPT2
|
||||||
|
|
||||||
def set_gguf_parameters(self):
|
def set_gguf_parameters(self):
|
||||||
self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
|
|
||||||
self.gguf_writer.add_block_count(self.hparams["n_layer"])
|
self.gguf_writer.add_block_count(self.hparams["n_layer"])
|
||||||
self.gguf_writer.add_context_length(self.hparams["n_ctx"])
|
self.gguf_writer.add_context_length(self.hparams["n_ctx"])
|
||||||
self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
|
self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
|
||||||
@ -1889,7 +1933,6 @@ class Phi2Model(Model):
|
|||||||
n_embd = self.find_hparam(["hidden_size", "n_embd"])
|
n_embd = self.find_hparam(["hidden_size", "n_embd"])
|
||||||
n_head = self.find_hparam(["num_attention_heads", "n_head"])
|
n_head = self.find_hparam(["num_attention_heads", "n_head"])
|
||||||
|
|
||||||
self.gguf_writer.add_name("Phi2")
|
|
||||||
self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
|
self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
|
||||||
|
|
||||||
self.gguf_writer.add_embedding_length(n_embd)
|
self.gguf_writer.add_embedding_length(n_embd)
|
||||||
@ -2011,7 +2054,6 @@ class Phi3MiniModel(Model):
|
|||||||
orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
|
orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
|
||||||
rope_dims = n_embd // n_head
|
rope_dims = n_embd // n_head
|
||||||
|
|
||||||
self.gguf_writer.add_name("Phi3")
|
|
||||||
self.gguf_writer.add_context_length(max_pos_embds)
|
self.gguf_writer.add_context_length(max_pos_embds)
|
||||||
self.gguf_writer.add_rope_scaling_orig_ctx_len(orig_max_pos_embds)
|
self.gguf_writer.add_rope_scaling_orig_ctx_len(orig_max_pos_embds)
|
||||||
self.gguf_writer.add_embedding_length(n_embd)
|
self.gguf_writer.add_embedding_length(n_embd)
|
||||||
@ -2068,7 +2110,6 @@ class PlamoModel(Model):
|
|||||||
hparams = self.hparams
|
hparams = self.hparams
|
||||||
block_count = hparams["num_hidden_layers"]
|
block_count = hparams["num_hidden_layers"]
|
||||||
|
|
||||||
self.gguf_writer.add_name("PLaMo")
|
|
||||||
self.gguf_writer.add_context_length(4096) # not in config.json
|
self.gguf_writer.add_context_length(4096) # not in config.json
|
||||||
self.gguf_writer.add_embedding_length(hparams["hidden_size"])
|
self.gguf_writer.add_embedding_length(hparams["hidden_size"])
|
||||||
self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
|
self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
|
||||||
@ -2113,7 +2154,6 @@ class CodeShellModel(Model):
|
|||||||
def set_gguf_parameters(self):
|
def set_gguf_parameters(self):
|
||||||
block_count = self.hparams["n_layer"]
|
block_count = self.hparams["n_layer"]
|
||||||
|
|
||||||
self.gguf_writer.add_name("CodeShell")
|
|
||||||
self.gguf_writer.add_context_length(self.hparams["n_positions"])
|
self.gguf_writer.add_context_length(self.hparams["n_positions"])
|
||||||
self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
|
self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
|
||||||
self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
|
self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
|
||||||
@ -2272,7 +2312,6 @@ class InternLM2Model(Model):
|
|||||||
special_vocab.add_to_gguf(self.gguf_writer)
|
special_vocab.add_to_gguf(self.gguf_writer)
|
||||||
|
|
||||||
def set_gguf_parameters(self):
|
def set_gguf_parameters(self):
|
||||||
self.gguf_writer.add_name("InternLM2")
|
|
||||||
self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
|
self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
|
||||||
self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
|
self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
|
||||||
self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
|
self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
|
||||||
@ -2440,7 +2479,6 @@ class GemmaModel(Model):
|
|||||||
hparams = self.hparams
|
hparams = self.hparams
|
||||||
block_count = hparams["num_hidden_layers"]
|
block_count = hparams["num_hidden_layers"]
|
||||||
|
|
||||||
self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
|
|
||||||
self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
|
self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
|
||||||
self.gguf_writer.add_embedding_length(hparams["hidden_size"])
|
self.gguf_writer.add_embedding_length(hparams["hidden_size"])
|
||||||
self.gguf_writer.add_block_count(block_count)
|
self.gguf_writer.add_block_count(block_count)
|
||||||
@ -2481,7 +2519,6 @@ class Gemma2Model(Model):
|
|||||||
hparams = self.hparams
|
hparams = self.hparams
|
||||||
block_count = hparams["num_hidden_layers"]
|
block_count = hparams["num_hidden_layers"]
|
||||||
|
|
||||||
self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
|
|
||||||
self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
|
self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
|
||||||
self.gguf_writer.add_embedding_length(hparams["hidden_size"])
|
self.gguf_writer.add_embedding_length(hparams["hidden_size"])
|
||||||
self.gguf_writer.add_block_count(block_count)
|
self.gguf_writer.add_block_count(block_count)
|
||||||
@ -2556,7 +2593,6 @@ class MambaModel(Model):
|
|||||||
# Fail early for models which don't have a block expansion factor of 2
|
# Fail early for models which don't have a block expansion factor of 2
|
||||||
assert d_inner == 2 * d_model
|
assert d_inner == 2 * d_model
|
||||||
|
|
||||||
self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
|
|
||||||
self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
|
self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
|
||||||
self.gguf_writer.add_embedding_length(d_model)
|
self.gguf_writer.add_embedding_length(d_model)
|
||||||
self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
|
self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
|
||||||
@ -2735,7 +2771,6 @@ class OpenELMModel(Model):
|
|||||||
assert self.block_count == len(self._num_query_heads)
|
assert self.block_count == len(self._num_query_heads)
|
||||||
assert self.block_count == len(self._ffn_dims)
|
assert self.block_count == len(self._ffn_dims)
|
||||||
|
|
||||||
self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
|
|
||||||
self.gguf_writer.add_block_count(self.block_count)
|
self.gguf_writer.add_block_count(self.block_count)
|
||||||
self.gguf_writer.add_context_length(self.hparams["max_context_length"])
|
self.gguf_writer.add_context_length(self.hparams["max_context_length"])
|
||||||
self.gguf_writer.add_embedding_length(n_embd)
|
self.gguf_writer.add_embedding_length(n_embd)
|
||||||
@ -2909,8 +2944,8 @@ class ArcticModel(Model):
|
|||||||
|
|
||||||
return [(self.map_tensor_name(name), data_torch)]
|
return [(self.map_tensor_name(name), data_torch)]
|
||||||
|
|
||||||
def write_tensors(self):
|
def prepare_tensors(self):
|
||||||
super().write_tensors()
|
super().prepare_tensors()
|
||||||
|
|
||||||
if self._experts is not None:
|
if self._experts is not None:
|
||||||
# flatten `list[dict[str, Tensor]]` into `list[str]`
|
# flatten `list[dict[str, Tensor]]` into `list[str]`
|
||||||
@ -2988,8 +3023,8 @@ class DeepseekV2Model(Model):
|
|||||||
|
|
||||||
return [(self.map_tensor_name(name), data_torch)]
|
return [(self.map_tensor_name(name), data_torch)]
|
||||||
|
|
||||||
def write_tensors(self):
|
def prepare_tensors(self):
|
||||||
super().write_tensors()
|
super().prepare_tensors()
|
||||||
|
|
||||||
if self._experts is not None:
|
if self._experts is not None:
|
||||||
# flatten `list[dict[str, Tensor]]` into `list[str]`
|
# flatten `list[dict[str, Tensor]]` into `list[str]`
|
||||||
@ -3107,7 +3142,6 @@ class T5Model(Model):
|
|||||||
self.gguf_writer.add_add_eos_token(True)
|
self.gguf_writer.add_add_eos_token(True)
|
||||||
|
|
||||||
def set_gguf_parameters(self):
|
def set_gguf_parameters(self):
|
||||||
self.gguf_writer.add_name("T5")
|
|
||||||
if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
|
if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
|
||||||
logger.warning("Couldn't find context length in config.json, assuming default value of 512")
|
logger.warning("Couldn't find context length in config.json, assuming default value of 512")
|
||||||
n_ctx = 512
|
n_ctx = 512
|
||||||
@ -3181,7 +3215,6 @@ class JaisModel(Model):
|
|||||||
self._set_vocab_gpt2()
|
self._set_vocab_gpt2()
|
||||||
|
|
||||||
def set_gguf_parameters(self):
|
def set_gguf_parameters(self):
|
||||||
self.gguf_writer.add_name(self.dir_model.name)
|
|
||||||
self.gguf_writer.add_block_count(self.hparams["n_layer"])
|
self.gguf_writer.add_block_count(self.hparams["n_layer"])
|
||||||
self.gguf_writer.add_context_length(self.hparams["n_positions"])
|
self.gguf_writer.add_context_length(self.hparams["n_positions"])
|
||||||
self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
|
self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
|
||||||
@ -3227,8 +3260,8 @@ class JaisModel(Model):
|
|||||||
|
|
||||||
return tensors
|
return tensors
|
||||||
|
|
||||||
def write_tensors(self):
|
def prepare_tensors(self):
|
||||||
super().write_tensors()
|
super().prepare_tensors()
|
||||||
self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias)
|
self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias)
|
||||||
|
|
||||||
|
|
||||||
@ -3539,6 +3572,10 @@ def parse_args() -> argparse.Namespace:
|
|||||||
"--no-tensor-first-split", action="store_true",
|
"--no-tensor-first-split", action="store_true",
|
||||||
help="do not add tensors to the first split (disabled by default)"
|
help="do not add tensors to the first split (disabled by default)"
|
||||||
)
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--metadata", type=Path,
|
||||||
|
help="Specify the path for an authorship metadata override file"
|
||||||
|
)
|
||||||
|
|
||||||
return parser.parse_args()
|
return parser.parse_args()
|
||||||
|
|
||||||
@ -3564,7 +3601,10 @@ def split_str_to_n_bytes(split_str: str) -> int:
|
|||||||
def main() -> None:
|
def main() -> None:
|
||||||
args = parse_args()
|
args = parse_args()
|
||||||
|
|
||||||
logging.basicConfig(level=logging.DEBUG if args.verbose else logging.INFO)
|
if args.verbose:
|
||||||
|
logging.basicConfig(level=logging.DEBUG)
|
||||||
|
else:
|
||||||
|
logging.basicConfig(level=logging.INFO)
|
||||||
|
|
||||||
dir_model = args.model
|
dir_model = args.model
|
||||||
|
|
||||||
@ -3585,37 +3625,33 @@ def main() -> None:
|
|||||||
logger.error("Error: Cannot use temp file when splitting")
|
logger.error("Error: Cannot use temp file when splitting")
|
||||||
sys.exit(1)
|
sys.exit(1)
|
||||||
|
|
||||||
|
fname_out = None
|
||||||
|
|
||||||
if args.outfile is not None:
|
if args.outfile is not None:
|
||||||
fname_out = args.outfile
|
fname_out = args.outfile
|
||||||
else:
|
|
||||||
# output in the same directory as the model by default
|
|
||||||
fname_out = dir_model / 'ggml-model-{ftype}.gguf'
|
|
||||||
|
|
||||||
logger.info(f"Loading model: {dir_model.name}")
|
logger.info(f"Loading model: {dir_model.name}")
|
||||||
|
|
||||||
hparams = Model.load_hparams(dir_model)
|
hparams = Model.load_hparams(dir_model)
|
||||||
|
|
||||||
with torch.inference_mode():
|
with torch.inference_mode():
|
||||||
|
output_type = ftype_map[args.outtype]
|
||||||
|
model_architecture = hparams["architectures"][0]
|
||||||
|
|
||||||
try:
|
try:
|
||||||
model_class = Model.from_model_architecture(hparams["architectures"][0])
|
model_class = Model.from_model_architecture(model_architecture)
|
||||||
except NotImplementedError:
|
except NotImplementedError:
|
||||||
logger.error(f"Model {hparams['architectures'][0]} is not supported")
|
logger.error(f"Model {model_architecture} is not supported")
|
||||||
sys.exit(1)
|
sys.exit(1)
|
||||||
|
|
||||||
model_instance = model_class(dir_model, ftype_map[args.outtype], fname_out, args.bigendian, args.use_temp_file,
|
model_instance = model_class(dir_model=dir_model, ftype=output_type, fname_out=fname_out,
|
||||||
args.no_lazy, args.model_name, split_max_tensors=args.split_max_tensors,
|
is_big_endian=args.bigendian, use_temp_file=args.use_temp_file,
|
||||||
|
eager=args.no_lazy,
|
||||||
|
metadata_override=args.metadata, model_name=args.model_name,
|
||||||
|
split_max_tensors=args.split_max_tensors,
|
||||||
split_max_size=split_str_to_n_bytes(args.split_max_size), dry_run=args.dry_run,
|
split_max_size=split_str_to_n_bytes(args.split_max_size), dry_run=args.dry_run,
|
||||||
small_first_shard=args.no_tensor_first_split)
|
small_first_shard=args.no_tensor_first_split)
|
||||||
|
|
||||||
logger.info("Set model parameters")
|
|
||||||
model_instance.gguf_writer.add_type(gguf.GGUFType.MODEL)
|
|
||||||
model_instance.set_gguf_parameters()
|
|
||||||
|
|
||||||
logger.info("Set model tokenizer")
|
|
||||||
model_instance.set_vocab()
|
|
||||||
|
|
||||||
model_instance.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION)
|
|
||||||
|
|
||||||
if args.vocab_only:
|
if args.vocab_only:
|
||||||
logger.info("Exporting model vocab...")
|
logger.info("Exporting model vocab...")
|
||||||
model_instance.write_vocab()
|
model_instance.write_vocab()
|
||||||
@ -3623,6 +3659,7 @@ def main() -> None:
|
|||||||
else:
|
else:
|
||||||
logger.info("Exporting model...")
|
logger.info("Exporting model...")
|
||||||
model_instance.write()
|
model_instance.write()
|
||||||
|
assert model_instance.fname_out is not None
|
||||||
out_path = f"{model_instance.fname_out.parent}{os.sep}" if is_split else model_instance.fname_out
|
out_path = f"{model_instance.fname_out.parent}{os.sep}" if is_split else model_instance.fname_out
|
||||||
logger.info(f"Model successfully exported to {out_path}")
|
logger.info(f"Model successfully exported to {out_path}")
|
||||||
|
|
||||||
|
@ -251,6 +251,10 @@ def parse_args() -> argparse.Namespace:
|
|||||||
"--verbose", action="store_true",
|
"--verbose", action="store_true",
|
||||||
help="increase output verbosity",
|
help="increase output verbosity",
|
||||||
)
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--dry-run", action="store_true",
|
||||||
|
help="only print out what will be done, without writing any new files",
|
||||||
|
)
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--base", type=Path, required=True,
|
"--base", type=Path, required=True,
|
||||||
help="directory containing base model file",
|
help="directory containing base model file",
|
||||||
@ -300,6 +304,12 @@ if __name__ == '__main__':
|
|||||||
# load base model
|
# load base model
|
||||||
logger.info(f"Loading base model: {dir_base_model.name}")
|
logger.info(f"Loading base model: {dir_base_model.name}")
|
||||||
hparams = Model.load_hparams(dir_base_model)
|
hparams = Model.load_hparams(dir_base_model)
|
||||||
|
|
||||||
|
with open(lora_config, "r") as f:
|
||||||
|
lparams: dict[str, Any] = json.load(f)
|
||||||
|
|
||||||
|
alpha: float = lparams["lora_alpha"]
|
||||||
|
|
||||||
with torch.inference_mode():
|
with torch.inference_mode():
|
||||||
try:
|
try:
|
||||||
model_class = Model.from_model_architecture(hparams["architectures"][0])
|
model_class = Model.from_model_architecture(hparams["architectures"][0])
|
||||||
@ -310,6 +320,14 @@ if __name__ == '__main__':
|
|||||||
class LoraModel(model_class):
|
class LoraModel(model_class):
|
||||||
model_arch = model_class.model_arch
|
model_arch = model_class.model_arch
|
||||||
|
|
||||||
|
def set_type(self):
|
||||||
|
self.gguf_writer.add_type(gguf.GGUFType.ADAPTER)
|
||||||
|
self.gguf_writer.add_string(gguf.Keys.Adapter.TYPE, "lora")
|
||||||
|
|
||||||
|
def set_gguf_parameters(self):
|
||||||
|
self.gguf_writer.add_float32(gguf.Keys.Adapter.LORA_ALPHA, float(alpha))
|
||||||
|
super().set_gguf_parameters()
|
||||||
|
|
||||||
def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
|
def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
|
||||||
tensor_map: dict[str, PartialLoraTensor] = {}
|
tensor_map: dict[str, PartialLoraTensor] = {}
|
||||||
|
|
||||||
@ -357,18 +375,9 @@ if __name__ == '__main__':
|
|||||||
is_big_endian=args.bigendian,
|
is_big_endian=args.bigendian,
|
||||||
use_temp_file=False,
|
use_temp_file=False,
|
||||||
eager=args.no_lazy,
|
eager=args.no_lazy,
|
||||||
model_name=None,
|
dry_run=args.dry_run,
|
||||||
)
|
)
|
||||||
|
|
||||||
with open(lora_config, "r") as f:
|
|
||||||
lparams: dict[str, Any] = json.load(f)
|
|
||||||
|
|
||||||
alpha = lparams["lora_alpha"]
|
|
||||||
|
|
||||||
model_instance.gguf_writer.add_string(gguf.Keys.General.TYPE, gguf.GGUFType.ADAPTER)
|
|
||||||
model_instance.gguf_writer.add_string(gguf.Keys.Adapter.TYPE, "lora")
|
|
||||||
model_instance.gguf_writer.add_float32(gguf.Keys.Adapter.LORA_ALPHA, float(alpha))
|
|
||||||
model_instance.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION)
|
|
||||||
logger.info("Exporting model...")
|
logger.info("Exporting model...")
|
||||||
model_instance.write()
|
model_instance.write()
|
||||||
logger.info(f"Model successfully exported to {model_instance.fname_out}")
|
logger.info(f"Model successfully exported to {model_instance.fname_out}")
|
||||||
|
@ -24,7 +24,7 @@ from abc import ABC, abstractmethod
|
|||||||
from concurrent.futures import ProcessPoolExecutor, ThreadPoolExecutor
|
from concurrent.futures import ProcessPoolExecutor, ThreadPoolExecutor
|
||||||
from dataclasses import dataclass
|
from dataclasses import dataclass
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
from typing import TYPE_CHECKING, Any, Callable, IO, Iterable, Literal, TypeVar, Optional
|
from typing import TYPE_CHECKING, Any, Callable, IO, Iterable, Literal, TypeVar
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
|
||||||
@ -346,42 +346,6 @@ class Params:
|
|||||||
return params
|
return params
|
||||||
|
|
||||||
|
|
||||||
@dataclass
|
|
||||||
class Metadata:
|
|
||||||
name: Optional[str] = None
|
|
||||||
author: Optional[str] = None
|
|
||||||
version: Optional[str] = None
|
|
||||||
url: Optional[str] = None
|
|
||||||
description: Optional[str] = None
|
|
||||||
license: Optional[str] = None
|
|
||||||
source_url: Optional[str] = None
|
|
||||||
source_hf_repo: Optional[str] = None
|
|
||||||
|
|
||||||
@staticmethod
|
|
||||||
def load(metadata_path: Path) -> Metadata:
|
|
||||||
if metadata_path is None or not metadata_path.exists():
|
|
||||||
return Metadata()
|
|
||||||
|
|
||||||
with open(metadata_path, 'r') as file:
|
|
||||||
data = json.load(file)
|
|
||||||
|
|
||||||
# Create a new Metadata instance
|
|
||||||
metadata = Metadata()
|
|
||||||
|
|
||||||
# Assigning values to Metadata attributes if they exist in the JSON file
|
|
||||||
# This is based on LLM_KV_NAMES mapping in llama.cpp
|
|
||||||
metadata.name = data.get("general.name")
|
|
||||||
metadata.author = data.get("general.author")
|
|
||||||
metadata.version = data.get("general.version")
|
|
||||||
metadata.url = data.get("general.url")
|
|
||||||
metadata.description = data.get("general.description")
|
|
||||||
metadata.license = data.get("general.license")
|
|
||||||
metadata.source_url = data.get("general.source.url")
|
|
||||||
metadata.source_hf_repo = data.get("general.source.huggingface.repository")
|
|
||||||
|
|
||||||
return metadata
|
|
||||||
|
|
||||||
|
|
||||||
#
|
#
|
||||||
# data loading
|
# data loading
|
||||||
# TODO: reuse (probably move to gguf.py?)
|
# TODO: reuse (probably move to gguf.py?)
|
||||||
@ -806,7 +770,7 @@ class OutputFile:
|
|||||||
def __init__(self, fname_out: Path, endianess:gguf.GGUFEndian = gguf.GGUFEndian.LITTLE):
|
def __init__(self, fname_out: Path, endianess:gguf.GGUFEndian = gguf.GGUFEndian.LITTLE):
|
||||||
self.gguf = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH], endianess=endianess)
|
self.gguf = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH], endianess=endianess)
|
||||||
|
|
||||||
def add_meta_model(self, params: Params, metadata: Metadata | None) -> None:
|
def add_meta_model(self, params: Params, metadata: gguf.Metadata | None) -> None:
|
||||||
# Metadata About The Model And Its Provenence
|
# Metadata About The Model And Its Provenence
|
||||||
name = "LLaMA"
|
name = "LLaMA"
|
||||||
if metadata is not None and metadata.name is not None:
|
if metadata is not None and metadata.name is not None:
|
||||||
@ -824,16 +788,73 @@ class OutputFile:
|
|||||||
self.gguf.add_author(metadata.author)
|
self.gguf.add_author(metadata.author)
|
||||||
if metadata.version is not None:
|
if metadata.version is not None:
|
||||||
self.gguf.add_version(metadata.version)
|
self.gguf.add_version(metadata.version)
|
||||||
if metadata.url is not None:
|
if metadata.organization is not None:
|
||||||
self.gguf.add_url(metadata.url)
|
self.gguf.add_organization(metadata.organization)
|
||||||
|
|
||||||
|
if metadata.finetune is not None:
|
||||||
|
self.gguf.add_finetune(metadata.finetune)
|
||||||
|
if metadata.basename is not None:
|
||||||
|
self.gguf.add_basename(metadata.basename)
|
||||||
|
|
||||||
if metadata.description is not None:
|
if metadata.description is not None:
|
||||||
self.gguf.add_description(metadata.description)
|
self.gguf.add_description(metadata.description)
|
||||||
|
if metadata.quantized_by is not None:
|
||||||
|
self.gguf.add_quantized_by(metadata.quantized_by)
|
||||||
|
|
||||||
|
if metadata.size_label is not None:
|
||||||
|
self.gguf.add_size_label(metadata.size_label)
|
||||||
|
|
||||||
if metadata.license is not None:
|
if metadata.license is not None:
|
||||||
self.gguf.add_licence(metadata.license)
|
self.gguf.add_license(metadata.license)
|
||||||
|
if metadata.license_name is not None:
|
||||||
|
self.gguf.add_license_name(metadata.license_name)
|
||||||
|
if metadata.license_link is not None:
|
||||||
|
self.gguf.add_license_link(metadata.license_link)
|
||||||
|
|
||||||
|
if metadata.url is not None:
|
||||||
|
self.gguf.add_url(metadata.url)
|
||||||
|
if metadata.doi is not None:
|
||||||
|
self.gguf.add_doi(metadata.doi)
|
||||||
|
if metadata.uuid is not None:
|
||||||
|
self.gguf.add_uuid(metadata.uuid)
|
||||||
|
if metadata.repo_url is not None:
|
||||||
|
self.gguf.add_repo_url(metadata.repo_url)
|
||||||
|
|
||||||
if metadata.source_url is not None:
|
if metadata.source_url is not None:
|
||||||
self.gguf.add_source_url(metadata.source_url)
|
self.gguf.add_source_url(metadata.source_url)
|
||||||
if metadata.source_hf_repo is not None:
|
if metadata.source_doi is not None:
|
||||||
self.gguf.add_source_hf_repo(metadata.source_hf_repo)
|
self.gguf.add_source_doi(metadata.source_doi)
|
||||||
|
if metadata.source_uuid is not None:
|
||||||
|
self.gguf.add_source_uuid(metadata.source_uuid)
|
||||||
|
if metadata.source_repo_url is not None:
|
||||||
|
self.gguf.add_source_repo_url(metadata.source_repo_url)
|
||||||
|
|
||||||
|
if metadata.base_models is not None:
|
||||||
|
self.gguf.add_base_model_count(len(metadata.base_models))
|
||||||
|
for key, base_model_entry in enumerate(metadata.base_models):
|
||||||
|
if "name" in base_model_entry:
|
||||||
|
self.gguf.add_base_model_name(key, base_model_entry["name"])
|
||||||
|
if "author" in base_model_entry:
|
||||||
|
self.gguf.add_base_model_author(key, base_model_entry["author"])
|
||||||
|
if "version" in base_model_entry:
|
||||||
|
self.gguf.add_base_model_version(key, base_model_entry["version"])
|
||||||
|
if "organization" in base_model_entry:
|
||||||
|
self.gguf.add_base_model_organization(key, base_model_entry["organization"])
|
||||||
|
if "url" in base_model_entry:
|
||||||
|
self.gguf.add_base_model_url(key, base_model_entry["url"])
|
||||||
|
if "doi" in base_model_entry:
|
||||||
|
self.gguf.add_base_model_doi(key, base_model_entry["doi"])
|
||||||
|
if "uuid" in base_model_entry:
|
||||||
|
self.gguf.add_base_model_uuid(key, base_model_entry["uuid"])
|
||||||
|
if "repo_url" in base_model_entry:
|
||||||
|
self.gguf.add_base_model_repo_url(key, base_model_entry["repo_url"])
|
||||||
|
|
||||||
|
if metadata.tags is not None:
|
||||||
|
self.gguf.add_tags(metadata.tags)
|
||||||
|
if metadata.languages is not None:
|
||||||
|
self.gguf.add_languages(metadata.languages)
|
||||||
|
if metadata.datasets is not None:
|
||||||
|
self.gguf.add_datasets(metadata.datasets)
|
||||||
|
|
||||||
def add_meta_arch(self, params: Params) -> None:
|
def add_meta_arch(self, params: Params) -> None:
|
||||||
# Metadata About The Neural Architecture Itself
|
# Metadata About The Neural Architecture Itself
|
||||||
@ -944,7 +965,7 @@ class OutputFile:
|
|||||||
@staticmethod
|
@staticmethod
|
||||||
def write_vocab_only(
|
def write_vocab_only(
|
||||||
fname_out: Path, params: Params, vocab: Vocab, svocab: gguf.SpecialVocab,
|
fname_out: Path, params: Params, vocab: Vocab, svocab: gguf.SpecialVocab,
|
||||||
endianess: gguf.GGUFEndian = gguf.GGUFEndian.LITTLE, pad_vocab: bool = False, metadata: Metadata | None = None,
|
endianess: gguf.GGUFEndian = gguf.GGUFEndian.LITTLE, pad_vocab: bool = False, metadata: gguf.Metadata | None = None,
|
||||||
) -> None:
|
) -> None:
|
||||||
check_vocab_size(params, vocab, pad_vocab=pad_vocab)
|
check_vocab_size(params, vocab, pad_vocab=pad_vocab)
|
||||||
|
|
||||||
@ -978,7 +999,7 @@ class OutputFile:
|
|||||||
fname_out: Path, ftype: GGMLFileType, params: Params, model: LazyModel, vocab: BaseVocab, svocab: gguf.SpecialVocab,
|
fname_out: Path, ftype: GGMLFileType, params: Params, model: LazyModel, vocab: BaseVocab, svocab: gguf.SpecialVocab,
|
||||||
concurrency: int = DEFAULT_CONCURRENCY, endianess: gguf.GGUFEndian = gguf.GGUFEndian.LITTLE,
|
concurrency: int = DEFAULT_CONCURRENCY, endianess: gguf.GGUFEndian = gguf.GGUFEndian.LITTLE,
|
||||||
pad_vocab: bool = False,
|
pad_vocab: bool = False,
|
||||||
metadata: Metadata | None = None,
|
metadata: gguf.Metadata | None = None,
|
||||||
) -> None:
|
) -> None:
|
||||||
check_vocab_size(params, vocab, pad_vocab=pad_vocab)
|
check_vocab_size(params, vocab, pad_vocab=pad_vocab)
|
||||||
|
|
||||||
@ -1021,35 +1042,32 @@ def pick_output_type(model: LazyModel, output_type_str: str | None) -> GGMLFileT
|
|||||||
raise ValueError(f"Unexpected combination of types: {name_to_type}")
|
raise ValueError(f"Unexpected combination of types: {name_to_type}")
|
||||||
|
|
||||||
|
|
||||||
def model_parameter_count(model: LazyModel) -> int:
|
def per_model_weight_count_estimation(tensors: Iterable[tuple[str, LazyTensor]]) -> tuple[int, int, int]:
|
||||||
total_model_parameters = 0
|
total_params = 0
|
||||||
for i, (name, lazy_tensor) in enumerate(model.items()):
|
shared_params = 0
|
||||||
sum_weights_in_tensor = 1
|
expert_params = 0
|
||||||
|
|
||||||
|
for name, lazy_tensor in tensors:
|
||||||
|
# We don't need these
|
||||||
|
if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
|
||||||
|
continue
|
||||||
|
|
||||||
|
# Got A Tensor
|
||||||
|
sum_weights_in_tensor: int = 1
|
||||||
|
|
||||||
|
# Tensor Volume
|
||||||
for dim in lazy_tensor.shape:
|
for dim in lazy_tensor.shape:
|
||||||
sum_weights_in_tensor *= dim
|
sum_weights_in_tensor *= dim
|
||||||
total_model_parameters += sum_weights_in_tensor
|
|
||||||
return total_model_parameters
|
|
||||||
|
|
||||||
|
if ".experts." in name:
|
||||||
def model_parameter_count_rounded_notation(model_params_count: int) -> str:
|
if ".experts.0." in name:
|
||||||
if model_params_count > 1e12 :
|
expert_params += sum_weights_in_tensor
|
||||||
# Trillions Of Parameters
|
|
||||||
scaled_model_params = model_params_count * 1e-12
|
|
||||||
scale_suffix = "T"
|
|
||||||
elif model_params_count > 1e9 :
|
|
||||||
# Billions Of Parameters
|
|
||||||
scaled_model_params = model_params_count * 1e-9
|
|
||||||
scale_suffix = "B"
|
|
||||||
elif model_params_count > 1e6 :
|
|
||||||
# Millions Of Parameters
|
|
||||||
scaled_model_params = model_params_count * 1e-6
|
|
||||||
scale_suffix = "M"
|
|
||||||
else:
|
else:
|
||||||
# Thousands Of Parameters
|
shared_params += sum_weights_in_tensor
|
||||||
scaled_model_params = model_params_count * 1e-3
|
|
||||||
scale_suffix = "K"
|
|
||||||
|
|
||||||
return f"{round(scaled_model_params)}{scale_suffix}"
|
total_params += sum_weights_in_tensor
|
||||||
|
|
||||||
|
return total_params, shared_params, expert_params
|
||||||
|
|
||||||
|
|
||||||
def convert_to_output_type(model: LazyModel, output_type: GGMLFileType) -> LazyModel:
|
def convert_to_output_type(model: LazyModel, output_type: GGMLFileType) -> LazyModel:
|
||||||
@ -1231,34 +1249,24 @@ class VocabFactory:
|
|||||||
return vocab, special_vocab
|
return vocab, special_vocab
|
||||||
|
|
||||||
|
|
||||||
def default_convention_outfile(file_type: GGMLFileType, params: Params, model_params_count: int, metadata: Metadata) -> str:
|
def default_convention_outfile(file_type: GGMLFileType, expert_count: int | None, model_params_count: tuple[int, int, int], metadata: gguf.Metadata) -> str:
|
||||||
quantization = {
|
name = metadata.name if metadata.name is not None else None
|
||||||
|
basename = metadata.basename if metadata.basename is not None else None
|
||||||
|
finetune = metadata.finetune if metadata.finetune is not None else None
|
||||||
|
version = metadata.version if metadata.version is not None else None
|
||||||
|
size_label = metadata.size_label if metadata.size_label is not None else gguf.size_label(*model_params_count, expert_count=expert_count or 0)
|
||||||
|
|
||||||
|
output_type = {
|
||||||
GGMLFileType.AllF32: "F32",
|
GGMLFileType.AllF32: "F32",
|
||||||
GGMLFileType.MostlyF16: "F16",
|
GGMLFileType.MostlyF16: "F16",
|
||||||
GGMLFileType.MostlyQ8_0: "Q8_0",
|
GGMLFileType.MostlyQ8_0: "Q8_0",
|
||||||
}[file_type]
|
}[file_type]
|
||||||
|
|
||||||
parameters = model_parameter_count_rounded_notation(model_params_count)
|
return gguf.naming_convention(name, basename, finetune, version, size_label, output_type)
|
||||||
|
|
||||||
expert_count = ""
|
|
||||||
if params.n_experts is not None:
|
|
||||||
expert_count = f"{params.n_experts}x"
|
|
||||||
|
|
||||||
version = ""
|
|
||||||
if metadata is not None and metadata.version is not None:
|
|
||||||
version = f"-{metadata.version}"
|
|
||||||
|
|
||||||
name = "ggml-model"
|
|
||||||
if metadata is not None and metadata.name is not None:
|
|
||||||
name = metadata.name
|
|
||||||
elif params.path_model is not None:
|
|
||||||
name = params.path_model.name
|
|
||||||
|
|
||||||
return f"{name}{version}-{expert_count}{parameters}-{quantization}"
|
|
||||||
|
|
||||||
|
|
||||||
def default_outfile(model_paths: list[Path], file_type: GGMLFileType, params: Params, model_params_count: int, metadata: Metadata) -> Path:
|
def default_outfile(model_paths: list[Path], file_type: GGMLFileType, expert_count: int | None, model_params_count: tuple[int, int, int], metadata: gguf.Metadata) -> Path:
|
||||||
default_filename = default_convention_outfile(file_type, params, model_params_count, metadata)
|
default_filename = default_convention_outfile(file_type, expert_count, model_params_count, metadata)
|
||||||
ret = model_paths[0].parent / f"{default_filename}.gguf"
|
ret = model_paths[0].parent / f"{default_filename}.gguf"
|
||||||
if ret in model_paths:
|
if ret in model_paths:
|
||||||
logger.error(
|
logger.error(
|
||||||
@ -1297,8 +1305,9 @@ def main(args_in: list[str] | None = None) -> None:
|
|||||||
parser.add_argument("--pad-vocab", action="store_true", help="add pad tokens when model vocab expects more than tokenizer metadata provides")
|
parser.add_argument("--pad-vocab", action="store_true", help="add pad tokens when model vocab expects more than tokenizer metadata provides")
|
||||||
parser.add_argument("--skip-unknown", action="store_true", help="skip unknown tensor names instead of failing")
|
parser.add_argument("--skip-unknown", action="store_true", help="skip unknown tensor names instead of failing")
|
||||||
parser.add_argument("--verbose", action="store_true", help="increase output verbosity")
|
parser.add_argument("--verbose", action="store_true", help="increase output verbosity")
|
||||||
parser.add_argument("--metadata", type=Path, help="Specify the path for a metadata file")
|
parser.add_argument("--metadata", type=Path, help="Specify the path for an authorship metadata override file")
|
||||||
parser.add_argument("--get-outfile", action="store_true", help="get calculated default outfile name")
|
parser.add_argument("--get-outfile", action="store_true", help="get calculated default outfile name")
|
||||||
|
parser.add_argument("--model-name", type=str, default=None, help="name of the model")
|
||||||
|
|
||||||
args = parser.parse_args(args_in)
|
args = parser.parse_args(args_in)
|
||||||
|
|
||||||
@ -1310,32 +1319,36 @@ def main(args_in: list[str] | None = None) -> None:
|
|||||||
else:
|
else:
|
||||||
logging.basicConfig(level=logging.INFO)
|
logging.basicConfig(level=logging.INFO)
|
||||||
|
|
||||||
metadata = Metadata.load(args.metadata)
|
model_name = args.model_name
|
||||||
|
dir_model = args.model
|
||||||
|
|
||||||
|
metadata = gguf.Metadata.load(args.metadata, dir_model, model_name)
|
||||||
|
|
||||||
if args.get_outfile:
|
if args.get_outfile:
|
||||||
model_plus = load_some_model(args.model)
|
model_plus = load_some_model(dir_model)
|
||||||
params = Params.load(model_plus)
|
params = Params.load(model_plus)
|
||||||
model = convert_model_names(model_plus.model, params, args.skip_unknown)
|
model = convert_model_names(model_plus.model, params, args.skip_unknown)
|
||||||
model_params_count = model_parameter_count(model_plus.model)
|
model_params_count = per_model_weight_count_estimation(model_plus.model.items())
|
||||||
ftype = pick_output_type(model, args.outtype)
|
ftype = pick_output_type(model, args.outtype)
|
||||||
print(f"{default_convention_outfile(ftype, params, model_params_count, metadata)}") # noqa: NP100
|
|
||||||
|
if (metadata is None or metadata.name is None) and params.path_model is not None:
|
||||||
|
metadata.name = params.path_model.name
|
||||||
|
|
||||||
|
print(f"{default_convention_outfile(ftype, params.n_experts, model_params_count, metadata)}") # noqa: NP100
|
||||||
return
|
return
|
||||||
|
|
||||||
if args.no_vocab and args.vocab_only:
|
if args.no_vocab and args.vocab_only:
|
||||||
raise ValueError("--vocab-only does not make sense with --no-vocab")
|
raise ValueError("--vocab-only does not make sense with --no-vocab")
|
||||||
|
|
||||||
if args.dump_single:
|
if args.dump_single:
|
||||||
model_plus = lazy_load_file(args.model)
|
model_plus = lazy_load_file(dir_model)
|
||||||
do_dump_model(model_plus)
|
do_dump_model(model_plus)
|
||||||
return
|
return
|
||||||
|
|
||||||
if not args.vocab_only:
|
if not args.vocab_only:
|
||||||
model_plus = load_some_model(args.model)
|
model_plus = load_some_model(dir_model)
|
||||||
else:
|
else:
|
||||||
model_plus = ModelPlus(model = {}, paths = [args.model / 'dummy'], format = 'none', vocab = None)
|
model_plus = ModelPlus(model = {}, paths = [dir_model / 'dummy'], format = 'none', vocab = None)
|
||||||
|
|
||||||
model_params_count = model_parameter_count(model_plus.model)
|
|
||||||
logger.info(f"model parameters count : {model_params_count} ({model_parameter_count_rounded_notation(model_params_count)})")
|
|
||||||
|
|
||||||
if args.dump:
|
if args.dump:
|
||||||
do_dump_model(model_plus)
|
do_dump_model(model_plus)
|
||||||
@ -1368,7 +1381,7 @@ def main(args_in: list[str] | None = None) -> None:
|
|||||||
logger.info(f"params = {params}")
|
logger.info(f"params = {params}")
|
||||||
|
|
||||||
model_parent_path = model_plus.paths[0].parent
|
model_parent_path = model_plus.paths[0].parent
|
||||||
vocab_path = Path(args.vocab_dir or args.model or model_parent_path)
|
vocab_path = Path(args.vocab_dir or dir_model or model_parent_path)
|
||||||
vocab_factory = VocabFactory(vocab_path)
|
vocab_factory = VocabFactory(vocab_path)
|
||||||
vocab_types = None if args.no_vocab else args.vocab_type.split(",")
|
vocab_types = None if args.no_vocab else args.vocab_type.split(",")
|
||||||
vocab, special_vocab = vocab_factory.load_vocab(vocab_types, model_parent_path)
|
vocab, special_vocab = vocab_factory.load_vocab(vocab_types, model_parent_path)
|
||||||
@ -1399,13 +1412,21 @@ def main(args_in: list[str] | None = None) -> None:
|
|||||||
|
|
||||||
assert params is not None
|
assert params is not None
|
||||||
|
|
||||||
|
if metadata.name is None and params.path_model is not None:
|
||||||
|
metadata.name = params.path_model.name
|
||||||
|
|
||||||
|
model_params_count = per_model_weight_count_estimation(model_plus.model.items())
|
||||||
|
logger.info(f"model parameters count : {model_params_count} ({gguf.model_weight_count_rounded_notation(model_params_count[0])})")
|
||||||
|
|
||||||
logger.info(f"Vocab info: {vocab}")
|
logger.info(f"Vocab info: {vocab}")
|
||||||
logger.info(f"Special vocab info: {special_vocab}")
|
logger.info(f"Special vocab info: {special_vocab}")
|
||||||
model = model_plus.model
|
model = model_plus.model
|
||||||
model = convert_model_names(model, params, args.skip_unknown)
|
model = convert_model_names(model, params, args.skip_unknown)
|
||||||
ftype = pick_output_type(model, args.outtype)
|
ftype = pick_output_type(model, args.outtype)
|
||||||
model = convert_to_output_type(model, ftype)
|
model = convert_to_output_type(model, ftype)
|
||||||
outfile = args.outfile or default_outfile(model_plus.paths, ftype, params, model_params_count, metadata)
|
outfile = args.outfile or default_outfile(model_plus.paths, ftype, params.n_experts, model_params_count, metadata=metadata)
|
||||||
|
|
||||||
|
metadata.size_label = gguf.size_label(*model_params_count, expert_count=params.n_experts or 0)
|
||||||
|
|
||||||
params.ftype = ftype
|
params.ftype = ftype
|
||||||
logger.info(f"Writing {outfile}, format {ftype}")
|
logger.info(f"Writing {outfile}, format {ftype}")
|
||||||
|
@ -78,5 +78,13 @@ python -m build
|
|||||||
python -m twine upload dist/*
|
python -m twine upload dist/*
|
||||||
```
|
```
|
||||||
|
|
||||||
|
## Run Unit Tests
|
||||||
|
|
||||||
|
From root of this repository you can run this command to run all the unit tests
|
||||||
|
|
||||||
|
```bash
|
||||||
|
python -m unittest discover ./gguf-py -v
|
||||||
|
```
|
||||||
|
|
||||||
## TODO
|
## TODO
|
||||||
- [ ] Include conversion scripts as command line entry points in this package.
|
- [ ] Include conversion scripts as command line entry points in this package.
|
||||||
|
@ -5,3 +5,5 @@ from .gguf_writer import *
|
|||||||
from .quants import *
|
from .quants import *
|
||||||
from .tensor_mapping import *
|
from .tensor_mapping import *
|
||||||
from .vocab import *
|
from .vocab import *
|
||||||
|
from .utility import *
|
||||||
|
from .metadata import *
|
||||||
|
@ -23,15 +23,56 @@ class Keys:
|
|||||||
ARCHITECTURE = "general.architecture"
|
ARCHITECTURE = "general.architecture"
|
||||||
QUANTIZATION_VERSION = "general.quantization_version"
|
QUANTIZATION_VERSION = "general.quantization_version"
|
||||||
ALIGNMENT = "general.alignment"
|
ALIGNMENT = "general.alignment"
|
||||||
|
FILE_TYPE = "general.file_type"
|
||||||
|
|
||||||
|
# Authorship Metadata
|
||||||
NAME = "general.name"
|
NAME = "general.name"
|
||||||
AUTHOR = "general.author"
|
AUTHOR = "general.author"
|
||||||
VERSION = "general.version"
|
VERSION = "general.version"
|
||||||
URL = "general.url"
|
ORGANIZATION = "general.organization"
|
||||||
|
|
||||||
|
FINETUNE = "general.finetune"
|
||||||
|
BASENAME = "general.basename"
|
||||||
|
|
||||||
DESCRIPTION = "general.description"
|
DESCRIPTION = "general.description"
|
||||||
|
QUANTIZED_BY = "general.quantized_by"
|
||||||
|
|
||||||
|
SIZE_LABEL = "general.size_label"
|
||||||
|
|
||||||
|
# Licensing details
|
||||||
LICENSE = "general.license"
|
LICENSE = "general.license"
|
||||||
SOURCE_URL = "general.source.url"
|
LICENSE_NAME = "general.license.name"
|
||||||
SOURCE_HF_REPO = "general.source.huggingface.repository"
|
LICENSE_LINK = "general.license.link"
|
||||||
FILE_TYPE = "general.file_type"
|
|
||||||
|
# Typically represents the converted GGUF repo (Unless native)
|
||||||
|
URL = "general.url" # Model Website/Paper
|
||||||
|
DOI = "general.doi"
|
||||||
|
UUID = "general.uuid"
|
||||||
|
REPO_URL = "general.repo_url" # Model Source Repository (git/svn/etc...)
|
||||||
|
|
||||||
|
# Model Source during conversion
|
||||||
|
SOURCE_URL = "general.source.url" # Model Website/Paper
|
||||||
|
SOURCE_DOI = "general.source.doi"
|
||||||
|
SOURCE_UUID = "general.source.uuid"
|
||||||
|
SOURCE_REPO_URL = "general.source.repo_url" # Model Source Repository (git/svn/etc...)
|
||||||
|
|
||||||
|
# Base Model Source. There can be more than one source if it's a merged
|
||||||
|
# model like with 'Mistral-7B-Merge-14-v0.1'. This will assist in
|
||||||
|
# tracing linage of models as it is finetuned or merged over time.
|
||||||
|
BASE_MODEL_COUNT = "general.base_model.count"
|
||||||
|
BASE_MODEL_NAME = "general.base_model.{id}.name"
|
||||||
|
BASE_MODEL_AUTHOR = "general.base_model.{id}.author"
|
||||||
|
BASE_MODEL_VERSION = "general.base_model.{id}.version"
|
||||||
|
BASE_MODEL_ORGANIZATION = "general.base_model.{id}.organization"
|
||||||
|
BASE_MODEL_URL = "general.base_model.{id}.url" # Model Website/Paper
|
||||||
|
BASE_MODEL_DOI = "general.base_model.{id}.doi"
|
||||||
|
BASE_MODEL_UUID = "general.base_model.{id}.uuid"
|
||||||
|
BASE_MODEL_REPO_URL = "general.base_model.{id}.repo_url" # Model Source Repository (git/svn/etc...)
|
||||||
|
|
||||||
|
# Array based KV stores
|
||||||
|
TAGS = "general.tags"
|
||||||
|
LANGUAGES = "general.languages"
|
||||||
|
DATASETS = "general.datasets"
|
||||||
|
|
||||||
class LLM:
|
class LLM:
|
||||||
VOCAB_SIZE = "{arch}.vocab_size"
|
VOCAB_SIZE = "{arch}.vocab_size"
|
||||||
@ -1233,7 +1274,6 @@ KEY_GENERAL_URL = Keys.General.URL
|
|||||||
KEY_GENERAL_DESCRIPTION = Keys.General.DESCRIPTION
|
KEY_GENERAL_DESCRIPTION = Keys.General.DESCRIPTION
|
||||||
KEY_GENERAL_LICENSE = Keys.General.LICENSE
|
KEY_GENERAL_LICENSE = Keys.General.LICENSE
|
||||||
KEY_GENERAL_SOURCE_URL = Keys.General.SOURCE_URL
|
KEY_GENERAL_SOURCE_URL = Keys.General.SOURCE_URL
|
||||||
KEY_GENERAL_SOURCE_HF_REPO = Keys.General.SOURCE_HF_REPO
|
|
||||||
KEY_GENERAL_FILE_TYPE = Keys.General.FILE_TYPE
|
KEY_GENERAL_FILE_TYPE = Keys.General.FILE_TYPE
|
||||||
|
|
||||||
# LLM
|
# LLM
|
||||||
|
@ -7,6 +7,7 @@ import struct
|
|||||||
import tempfile
|
import tempfile
|
||||||
from dataclasses import dataclass
|
from dataclasses import dataclass
|
||||||
from enum import Enum, auto
|
from enum import Enum, auto
|
||||||
|
from math import prod
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
from io import BufferedWriter
|
from io import BufferedWriter
|
||||||
from typing import IO, Any, Sequence, Mapping
|
from typing import IO, Any, Sequence, Mapping
|
||||||
@ -106,6 +107,53 @@ class GGUFWriter:
|
|||||||
|
|
||||||
self.add_architecture()
|
self.add_architecture()
|
||||||
|
|
||||||
|
def get_total_parameter_count(self) -> tuple[int, int, int, int]:
|
||||||
|
total_params = 0
|
||||||
|
shared_params = 0
|
||||||
|
expert_params = 0
|
||||||
|
|
||||||
|
expert_sum = 0
|
||||||
|
n_expert_tensors = 0
|
||||||
|
|
||||||
|
last_lora_a: tuple[str, TensorInfo] | None = None
|
||||||
|
|
||||||
|
for tensors in self.tensors:
|
||||||
|
for name, info in tensors.items():
|
||||||
|
|
||||||
|
shape = info.shape
|
||||||
|
|
||||||
|
if name.endswith(".lora_a"):
|
||||||
|
last_lora_a = (name, info)
|
||||||
|
continue
|
||||||
|
elif name.endswith(".lora_b"):
|
||||||
|
if last_lora_a is None or last_lora_a[0] != name[:-1] + "a":
|
||||||
|
# Bail when the LoRA pair can't be found trivially
|
||||||
|
logger.warning("can't measure LoRA size correctly, tensor order is unusual")
|
||||||
|
return 0, 0, 0, 0
|
||||||
|
else:
|
||||||
|
shape = (*shape[:-1], last_lora_a[1].shape[-1])
|
||||||
|
|
||||||
|
size = prod(shape)
|
||||||
|
|
||||||
|
if "_exps." in name:
|
||||||
|
expert_params += (size // shape[-3])
|
||||||
|
expert_sum += shape[-3]
|
||||||
|
n_expert_tensors += 1
|
||||||
|
else:
|
||||||
|
shared_params += size
|
||||||
|
|
||||||
|
total_params += size
|
||||||
|
|
||||||
|
# Hopefully this should work even for variable-expert-count models
|
||||||
|
expert_count = (expert_sum // n_expert_tensors) if n_expert_tensors > 0 else 0
|
||||||
|
|
||||||
|
# Negate the total to signal it's likely not exact
|
||||||
|
if last_lora_a is not None:
|
||||||
|
total_params = -total_params
|
||||||
|
|
||||||
|
# NOTE: keep the output in the same order as accepted by 'size_label' in gguf-py/gguf/utility.py
|
||||||
|
return total_params, shared_params, expert_params, expert_count
|
||||||
|
|
||||||
def format_shard_names(self, path: Path) -> list[Path]:
|
def format_shard_names(self, path: Path) -> list[Path]:
|
||||||
if len(self.tensors) == 1:
|
if len(self.tensors) == 1:
|
||||||
return [path]
|
return [path]
|
||||||
@ -115,6 +163,7 @@ class GGUFWriter:
|
|||||||
if self.state is WriterState.EMPTY and self.fout is not None and (path is None or path == self.path):
|
if self.state is WriterState.EMPTY and self.fout is not None and (path is None or path == self.path):
|
||||||
# allow calling this multiple times as long as the path is the same
|
# allow calling this multiple times as long as the path is the same
|
||||||
return
|
return
|
||||||
|
|
||||||
if self.state is not WriterState.NO_FILE:
|
if self.state is not WriterState.NO_FILE:
|
||||||
raise ValueError(f'Expected output file to be not yet opened, got {self.state}')
|
raise ValueError(f'Expected output file to be not yet opened, got {self.state}')
|
||||||
|
|
||||||
@ -136,6 +185,8 @@ class GGUFWriter:
|
|||||||
|
|
||||||
if self.dry_run:
|
if self.dry_run:
|
||||||
logger.info("Dry run, not writing files")
|
logger.info("Dry run, not writing files")
|
||||||
|
for name in filenames:
|
||||||
|
print(name) # noqa: NP100
|
||||||
exit()
|
exit()
|
||||||
|
|
||||||
return filenames
|
return filenames
|
||||||
@ -430,29 +481,12 @@ class GGUFWriter:
|
|||||||
def add_architecture(self) -> None:
|
def add_architecture(self) -> None:
|
||||||
self.add_string(Keys.General.ARCHITECTURE, self.arch)
|
self.add_string(Keys.General.ARCHITECTURE, self.arch)
|
||||||
|
|
||||||
def add_author(self, author: str) -> None:
|
def add_quantization_version(self, quantization_version: int) -> None:
|
||||||
self.add_string(Keys.General.AUTHOR, author)
|
self.add_uint32(Keys.General.QUANTIZATION_VERSION, quantization_version)
|
||||||
|
|
||||||
def add_version(self, version: str) -> None:
|
def add_custom_alignment(self, alignment: int) -> None:
|
||||||
self.add_string(Keys.General.VERSION, version)
|
self.data_alignment = alignment
|
||||||
|
self.add_uint32(Keys.General.ALIGNMENT, alignment)
|
||||||
def add_tensor_data_layout(self, layout: str) -> None:
|
|
||||||
self.add_string(Keys.LLM.TENSOR_DATA_LAYOUT.format(arch=self.arch), layout)
|
|
||||||
|
|
||||||
def add_url(self, url: str) -> None:
|
|
||||||
self.add_string(Keys.General.URL, url)
|
|
||||||
|
|
||||||
def add_description(self, description: str) -> None:
|
|
||||||
self.add_string(Keys.General.DESCRIPTION, description)
|
|
||||||
|
|
||||||
def add_licence(self, licence: str) -> None:
|
|
||||||
self.add_string(Keys.General.LICENSE, licence)
|
|
||||||
|
|
||||||
def add_source_url(self, url: str) -> None:
|
|
||||||
self.add_string(Keys.General.SOURCE_URL, url)
|
|
||||||
|
|
||||||
def add_source_hf_repo(self, repo: str) -> None:
|
|
||||||
self.add_string(Keys.General.SOURCE_HF_REPO, repo)
|
|
||||||
|
|
||||||
def add_file_type(self, ftype: int) -> None:
|
def add_file_type(self, ftype: int) -> None:
|
||||||
self.add_uint32(Keys.General.FILE_TYPE, ftype)
|
self.add_uint32(Keys.General.FILE_TYPE, ftype)
|
||||||
@ -460,13 +494,101 @@ class GGUFWriter:
|
|||||||
def add_name(self, name: str) -> None:
|
def add_name(self, name: str) -> None:
|
||||||
self.add_string(Keys.General.NAME, name)
|
self.add_string(Keys.General.NAME, name)
|
||||||
|
|
||||||
def add_quantization_version(self, quantization_version: int) -> None:
|
def add_author(self, author: str) -> None:
|
||||||
self.add_uint32(
|
self.add_string(Keys.General.AUTHOR, author)
|
||||||
Keys.General.QUANTIZATION_VERSION, quantization_version)
|
|
||||||
|
|
||||||
def add_custom_alignment(self, alignment: int) -> None:
|
def add_version(self, version: str) -> None:
|
||||||
self.data_alignment = alignment
|
self.add_string(Keys.General.VERSION, version)
|
||||||
self.add_uint32(Keys.General.ALIGNMENT, alignment)
|
|
||||||
|
def add_organization(self, organization: str) -> None:
|
||||||
|
self.add_string(Keys.General.ORGANIZATION, organization)
|
||||||
|
|
||||||
|
def add_finetune(self, finetune: str) -> None:
|
||||||
|
self.add_string(Keys.General.FINETUNE, finetune)
|
||||||
|
|
||||||
|
def add_basename(self, basename: str) -> None:
|
||||||
|
self.add_string(Keys.General.BASENAME, basename)
|
||||||
|
|
||||||
|
def add_description(self, description: str) -> None:
|
||||||
|
self.add_string(Keys.General.DESCRIPTION, description)
|
||||||
|
|
||||||
|
def add_quantized_by(self, quantized: str) -> None:
|
||||||
|
self.add_string(Keys.General.QUANTIZED_BY, quantized)
|
||||||
|
|
||||||
|
def add_size_label(self, size_label: str) -> None:
|
||||||
|
self.add_string(Keys.General.SIZE_LABEL, size_label)
|
||||||
|
|
||||||
|
def add_license(self, license: str) -> None:
|
||||||
|
self.add_string(Keys.General.LICENSE, license)
|
||||||
|
|
||||||
|
def add_license_name(self, license: str) -> None:
|
||||||
|
self.add_string(Keys.General.LICENSE_NAME, license)
|
||||||
|
|
||||||
|
def add_license_link(self, license: str) -> None:
|
||||||
|
self.add_string(Keys.General.LICENSE_LINK, license)
|
||||||
|
|
||||||
|
def add_url(self, url: str) -> None:
|
||||||
|
self.add_string(Keys.General.URL, url)
|
||||||
|
|
||||||
|
def add_doi(self, doi: str) -> None:
|
||||||
|
self.add_string(Keys.General.DOI, doi)
|
||||||
|
|
||||||
|
def add_uuid(self, uuid: str) -> None:
|
||||||
|
self.add_string(Keys.General.UUID, uuid)
|
||||||
|
|
||||||
|
def add_repo_url(self, repo_url: str) -> None:
|
||||||
|
self.add_string(Keys.General.REPO_URL, repo_url)
|
||||||
|
|
||||||
|
def add_source_url(self, url: str) -> None:
|
||||||
|
self.add_string(Keys.General.SOURCE_URL, url)
|
||||||
|
|
||||||
|
def add_source_doi(self, doi: str) -> None:
|
||||||
|
self.add_string(Keys.General.SOURCE_DOI, doi)
|
||||||
|
|
||||||
|
def add_source_uuid(self, uuid: str) -> None:
|
||||||
|
self.add_string(Keys.General.SOURCE_UUID, uuid)
|
||||||
|
|
||||||
|
def add_source_repo_url(self, repo_url: str) -> None:
|
||||||
|
self.add_string(Keys.General.SOURCE_REPO_URL, repo_url)
|
||||||
|
|
||||||
|
def add_base_model_count(self, source_count: int) -> None:
|
||||||
|
self.add_uint32(Keys.General.BASE_MODEL_COUNT, source_count)
|
||||||
|
|
||||||
|
def add_base_model_name(self, source_id: int, name: str) -> None:
|
||||||
|
self.add_string(Keys.General.BASE_MODEL_NAME.format(id=source_id), name)
|
||||||
|
|
||||||
|
def add_base_model_author(self, source_id: int, author: str) -> None:
|
||||||
|
self.add_string(Keys.General.BASE_MODEL_AUTHOR.format(id=source_id), author)
|
||||||
|
|
||||||
|
def add_base_model_version(self, source_id: int, version: str) -> None:
|
||||||
|
self.add_string(Keys.General.BASE_MODEL_VERSION.format(id=source_id), version)
|
||||||
|
|
||||||
|
def add_base_model_organization(self, source_id: int, organization: str) -> None:
|
||||||
|
self.add_string(Keys.General.BASE_MODEL_ORGANIZATION.format(id=source_id), organization)
|
||||||
|
|
||||||
|
def add_base_model_url(self, source_id: int, url: str) -> None:
|
||||||
|
self.add_string(Keys.General.BASE_MODEL_URL.format(id=source_id), url)
|
||||||
|
|
||||||
|
def add_base_model_doi(self, source_id: int, doi: str) -> None:
|
||||||
|
self.add_string(Keys.General.BASE_MODEL_DOI.format(id=source_id), doi)
|
||||||
|
|
||||||
|
def add_base_model_uuid(self, source_id: int, uuid: str) -> None:
|
||||||
|
self.add_string(Keys.General.BASE_MODEL_UUID.format(id=source_id), uuid)
|
||||||
|
|
||||||
|
def add_base_model_repo_url(self, source_id: int, repo_url: str) -> None:
|
||||||
|
self.add_string(Keys.General.BASE_MODEL_REPO_URL.format(id=source_id), repo_url)
|
||||||
|
|
||||||
|
def add_tags(self, tags: Sequence[str]) -> None:
|
||||||
|
self.add_array(Keys.General.TAGS, tags)
|
||||||
|
|
||||||
|
def add_languages(self, languages: Sequence[str]) -> None:
|
||||||
|
self.add_array(Keys.General.LANGUAGES, languages)
|
||||||
|
|
||||||
|
def add_datasets(self, datasets: Sequence[str]) -> None:
|
||||||
|
self.add_array(Keys.General.DATASETS, datasets)
|
||||||
|
|
||||||
|
def add_tensor_data_layout(self, layout: str) -> None:
|
||||||
|
self.add_string(Keys.LLM.TENSOR_DATA_LAYOUT.format(arch=self.arch), layout)
|
||||||
|
|
||||||
def add_vocab_size(self, size: int) -> None:
|
def add_vocab_size(self, size: int) -> None:
|
||||||
self.add_uint32(Keys.LLM.VOCAB_SIZE.format(arch=self.arch), size)
|
self.add_uint32(Keys.LLM.VOCAB_SIZE.format(arch=self.arch), size)
|
||||||
|
485
gguf-py/gguf/metadata.py
Normal file
485
gguf-py/gguf/metadata.py
Normal file
@ -0,0 +1,485 @@
|
|||||||
|
from __future__ import annotations
|
||||||
|
|
||||||
|
import re
|
||||||
|
import json
|
||||||
|
import yaml
|
||||||
|
import logging
|
||||||
|
from pathlib import Path
|
||||||
|
from typing import Any, Literal, Optional
|
||||||
|
from dataclasses import dataclass
|
||||||
|
|
||||||
|
from .constants import Keys
|
||||||
|
|
||||||
|
import gguf
|
||||||
|
|
||||||
|
logger = logging.getLogger("metadata")
|
||||||
|
|
||||||
|
|
||||||
|
@dataclass
|
||||||
|
class Metadata:
|
||||||
|
# Authorship Metadata to be written to GGUF KV Store
|
||||||
|
name: Optional[str] = None
|
||||||
|
author: Optional[str] = None
|
||||||
|
version: Optional[str] = None
|
||||||
|
organization: Optional[str] = None
|
||||||
|
finetune: Optional[str] = None
|
||||||
|
basename: Optional[str] = None
|
||||||
|
description: Optional[str] = None
|
||||||
|
quantized_by: Optional[str] = None
|
||||||
|
size_label: Optional[str] = None
|
||||||
|
url: Optional[str] = None
|
||||||
|
doi: Optional[str] = None
|
||||||
|
uuid: Optional[str] = None
|
||||||
|
repo_url: Optional[str] = None
|
||||||
|
source_url: Optional[str] = None
|
||||||
|
source_doi: Optional[str] = None
|
||||||
|
source_uuid: Optional[str] = None
|
||||||
|
source_repo_url: Optional[str] = None
|
||||||
|
license: Optional[str] = None
|
||||||
|
license_name: Optional[str] = None
|
||||||
|
license_link: Optional[str] = None
|
||||||
|
base_models: Optional[list[dict]] = None
|
||||||
|
tags: Optional[list[str]] = None
|
||||||
|
languages: Optional[list[str]] = None
|
||||||
|
datasets: Optional[list[str]] = None
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def load(metadata_override_path: Optional[Path] = None, model_path: Optional[Path] = None, model_name: Optional[str] = None, total_params: int = 0) -> Metadata:
|
||||||
|
# This grabs as many contextual authorship metadata as possible from the model repository
|
||||||
|
# making any conversion as required to match the gguf kv store metadata format
|
||||||
|
# as well as giving users the ability to override any authorship metadata that may be incorrect
|
||||||
|
|
||||||
|
# Create a new Metadata instance
|
||||||
|
metadata = Metadata()
|
||||||
|
|
||||||
|
model_card = Metadata.load_model_card(model_path)
|
||||||
|
hf_params = Metadata.load_hf_parameters(model_path)
|
||||||
|
|
||||||
|
# heuristics
|
||||||
|
metadata = Metadata.apply_metadata_heuristic(metadata, model_card, hf_params, model_path, total_params)
|
||||||
|
|
||||||
|
# Metadata Override File Provided
|
||||||
|
# This is based on LLM_KV_NAMES mapping in llama.cpp
|
||||||
|
metadata_override = Metadata.load_metadata_override(metadata_override_path)
|
||||||
|
|
||||||
|
metadata.author = metadata_override.get(Keys.General.AUTHOR, metadata.author)
|
||||||
|
metadata.version = metadata_override.get(Keys.General.VERSION, metadata.version)
|
||||||
|
metadata.organization = metadata_override.get(Keys.General.ORGANIZATION, metadata.organization)
|
||||||
|
|
||||||
|
metadata.finetune = metadata_override.get(Keys.General.FINETUNE, metadata.finetune)
|
||||||
|
metadata.basename = metadata_override.get(Keys.General.BASENAME, metadata.basename)
|
||||||
|
|
||||||
|
metadata.description = metadata_override.get(Keys.General.DESCRIPTION, metadata.description)
|
||||||
|
metadata.quantized_by = metadata_override.get(Keys.General.QUANTIZED_BY, metadata.quantized_by)
|
||||||
|
|
||||||
|
metadata.size_label = metadata_override.get(Keys.General.SIZE_LABEL, metadata.size_label)
|
||||||
|
metadata.license_name = metadata_override.get(Keys.General.LICENSE_NAME, metadata.license_name)
|
||||||
|
metadata.license_link = metadata_override.get(Keys.General.LICENSE_LINK, metadata.license_link)
|
||||||
|
|
||||||
|
metadata.url = metadata_override.get(Keys.General.URL, metadata.url)
|
||||||
|
metadata.doi = metadata_override.get(Keys.General.DOI, metadata.doi)
|
||||||
|
metadata.uuid = metadata_override.get(Keys.General.UUID, metadata.uuid)
|
||||||
|
metadata.repo_url = metadata_override.get(Keys.General.REPO_URL, metadata.repo_url)
|
||||||
|
|
||||||
|
metadata.source_url = metadata_override.get(Keys.General.SOURCE_URL, metadata.source_url)
|
||||||
|
metadata.source_doi = metadata_override.get(Keys.General.SOURCE_DOI, metadata.source_doi)
|
||||||
|
metadata.source_uuid = metadata_override.get(Keys.General.SOURCE_UUID, metadata.source_uuid)
|
||||||
|
metadata.source_repo_url = metadata_override.get(Keys.General.SOURCE_REPO_URL, metadata.source_repo_url)
|
||||||
|
|
||||||
|
# Base Models is received here as an array of models
|
||||||
|
metadata.base_models = metadata_override.get("general.base_models", metadata.base_models)
|
||||||
|
|
||||||
|
metadata.tags = metadata_override.get(Keys.General.TAGS, metadata.tags)
|
||||||
|
metadata.languages = metadata_override.get(Keys.General.LANGUAGES, metadata.languages)
|
||||||
|
metadata.datasets = metadata_override.get(Keys.General.DATASETS, metadata.datasets)
|
||||||
|
|
||||||
|
# Direct Metadata Override (via direct cli argument)
|
||||||
|
if model_name is not None:
|
||||||
|
metadata.name = model_name
|
||||||
|
|
||||||
|
return metadata
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def load_metadata_override(metadata_override_path: Optional[Path] = None) -> dict[str, Any]:
|
||||||
|
if metadata_override_path is None or not metadata_override_path.is_file():
|
||||||
|
return {}
|
||||||
|
|
||||||
|
with open(metadata_override_path, "r", encoding="utf-8") as f:
|
||||||
|
return json.load(f)
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def load_model_card(model_path: Optional[Path] = None) -> dict[str, Any]:
|
||||||
|
if model_path is None or not model_path.is_dir():
|
||||||
|
return {}
|
||||||
|
|
||||||
|
model_card_path = model_path / "README.md"
|
||||||
|
|
||||||
|
if not model_card_path.is_file():
|
||||||
|
return {}
|
||||||
|
|
||||||
|
# The model card metadata is assumed to always be in YAML
|
||||||
|
# ref: https://github.com/huggingface/transformers/blob/a5c642fe7a1f25d3bdcd76991443ba6ff7ee34b2/src/transformers/modelcard.py#L468-L473
|
||||||
|
with open(model_card_path, "r", encoding="utf-8") as f:
|
||||||
|
if f.readline() == "---\n":
|
||||||
|
raw = f.read().partition("---\n")[0]
|
||||||
|
data = yaml.safe_load(raw)
|
||||||
|
if isinstance(data, dict):
|
||||||
|
return data
|
||||||
|
else:
|
||||||
|
logger.error(f"while reading YAML model card frontmatter, data is {type(data)} instead of dict")
|
||||||
|
return {}
|
||||||
|
else:
|
||||||
|
return {}
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def load_hf_parameters(model_path: Optional[Path] = None) -> dict[str, Any]:
|
||||||
|
if model_path is None or not model_path.is_dir():
|
||||||
|
return {}
|
||||||
|
|
||||||
|
config_path = model_path / "config.json"
|
||||||
|
|
||||||
|
if not config_path.is_file():
|
||||||
|
return {}
|
||||||
|
|
||||||
|
with open(config_path, "r", encoding="utf-8") as f:
|
||||||
|
return json.load(f)
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def id_to_title(string):
|
||||||
|
# Convert capitalization into title form unless acronym or version number
|
||||||
|
return ' '.join([w.title() if w.islower() and not re.match(r'^(v\d+(?:\.\d+)*|\d.*)$', w) else w for w in string.strip().replace('-', ' ').split()])
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def get_model_id_components(model_id: Optional[str] = None, total_params: int = 0) -> tuple[str | None, str | None, str | None, str | None, str | None, str | None]:
|
||||||
|
# Huggingface often store model id as '<org>/<model name>'
|
||||||
|
# so let's parse it and apply some heuristics if possible for model name components
|
||||||
|
|
||||||
|
if model_id is None:
|
||||||
|
# model ID missing
|
||||||
|
return None, None, None, None, None, None
|
||||||
|
|
||||||
|
if ' ' in model_id:
|
||||||
|
# model ID is actually a normal human sentence
|
||||||
|
# which means its most likely a normal model name only
|
||||||
|
# not part of the hugging face naming standard, but whatever
|
||||||
|
return model_id, None, None, None, None, None
|
||||||
|
|
||||||
|
if '/' in model_id:
|
||||||
|
# model ID (huggingface style)
|
||||||
|
org_component, model_full_name_component = model_id.split('/', 1)
|
||||||
|
else:
|
||||||
|
# model ID but missing org components
|
||||||
|
org_component, model_full_name_component = None, model_id
|
||||||
|
|
||||||
|
# Check if we erroneously matched against './' or '../' etc...
|
||||||
|
if org_component is not None and org_component[0] == '.':
|
||||||
|
org_component = None
|
||||||
|
|
||||||
|
name_parts: list[str] = model_full_name_component.split('-')
|
||||||
|
name_types: list[
|
||||||
|
set[Literal["basename", "size_label", "finetune", "version", "type"]]
|
||||||
|
] = [set() for _ in name_parts]
|
||||||
|
|
||||||
|
# Annotate the name
|
||||||
|
for i, part in enumerate(name_parts):
|
||||||
|
# Version
|
||||||
|
if re.fullmatch(r'(v|iter)?\d+([.]\d+)*', part, re.IGNORECASE):
|
||||||
|
name_types[i].add("version")
|
||||||
|
# Quant type (should not be there for base models, but still annotated)
|
||||||
|
elif re.fullmatch(r'i?q\d(_\w)*|b?fp?(16|32)', part, re.IGNORECASE):
|
||||||
|
name_types[i].add("type")
|
||||||
|
name_parts[i] = part.upper()
|
||||||
|
# Model size
|
||||||
|
elif i > 0 and re.fullmatch(r'(([A]|\d+[x])?\d+([._]\d+)?[KMBT][\d]?|small|mini|medium|large|x?xl)', part, re.IGNORECASE):
|
||||||
|
part = part.replace("_", ".")
|
||||||
|
# Handle weird bloom-7b1 notation
|
||||||
|
if part[-1].isdecimal():
|
||||||
|
part = part[:-2] + "." + part[-1] + part[-2]
|
||||||
|
# Normalize the size suffixes
|
||||||
|
if len(part) > 1 and part[-2].isdecimal():
|
||||||
|
if part[-1] in "kmbt":
|
||||||
|
part = part[:-1] + part[-1].upper()
|
||||||
|
if total_params != 0:
|
||||||
|
try:
|
||||||
|
label_params = float(part[:-1]) * pow(1000, " KMBT".find(part[-1]))
|
||||||
|
# Only use it as a size label if it's close or bigger than the model size
|
||||||
|
# Note that LoRA adapters don't necessarily include all layers,
|
||||||
|
# so this is why bigger label sizes are accepted.
|
||||||
|
# Do not use the size label when it's smaller than 1/8 of the model size
|
||||||
|
if (total_params < 0 and label_params < abs(total_params) // 8) or (
|
||||||
|
# Check both directions when the current model isn't a LoRA adapter
|
||||||
|
total_params > 0 and abs(label_params - total_params) > 7 * total_params // 8
|
||||||
|
):
|
||||||
|
# Likely a context length
|
||||||
|
name_types[i].add("finetune")
|
||||||
|
# Lowercase the size when it's a context length
|
||||||
|
part = part[:-1] + part[-1].lower()
|
||||||
|
except ValueError:
|
||||||
|
# Failed to convert the size label to float, use it anyway
|
||||||
|
pass
|
||||||
|
if len(name_types[i]) == 0:
|
||||||
|
name_types[i].add("size_label")
|
||||||
|
name_parts[i] = part
|
||||||
|
# Some easy to recognize finetune names
|
||||||
|
elif i > 0 and re.fullmatch(r'chat|instruct|vision|lora', part, re.IGNORECASE):
|
||||||
|
name_types[i].add("finetune")
|
||||||
|
if part.lower() == "lora":
|
||||||
|
name_parts[i] = "LoRA"
|
||||||
|
|
||||||
|
at_start = True
|
||||||
|
# Find the basename through the annotated name
|
||||||
|
for part, t in zip(name_parts, name_types):
|
||||||
|
if at_start and ((len(t) == 0 and part[0].isalpha()) or "version" in t):
|
||||||
|
t.add("basename")
|
||||||
|
else:
|
||||||
|
if at_start:
|
||||||
|
at_start = False
|
||||||
|
if len(t) == 0:
|
||||||
|
t.add("finetune")
|
||||||
|
|
||||||
|
# Remove the basename annotation from trailing version
|
||||||
|
for part, t in zip(reversed(name_parts), reversed(name_types)):
|
||||||
|
if "basename" in t:
|
||||||
|
if len(t) > 1:
|
||||||
|
t.remove("basename")
|
||||||
|
else:
|
||||||
|
break
|
||||||
|
|
||||||
|
basename = "-".join(n for n, t in zip(name_parts, name_types) if "basename" in t) or None
|
||||||
|
size_label = "-".join(s for s, t in zip(name_parts, name_types) if "size_label" in t) or None
|
||||||
|
finetune = "-".join(f for f, t in zip(name_parts, name_types) if "finetune" in t) or None
|
||||||
|
# TODO: should the basename version always be excluded?
|
||||||
|
# TODO: should multiple versions be joined together?
|
||||||
|
version = ([v for v, t, in zip(name_parts, name_types) if "version" in t and "basename" not in t] or [None])[-1]
|
||||||
|
|
||||||
|
if size_label is None and finetune is None and version is None:
|
||||||
|
# Too ambiguous, output nothing
|
||||||
|
basename = None
|
||||||
|
|
||||||
|
return model_full_name_component, org_component, basename, finetune, version, size_label
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def apply_metadata_heuristic(metadata: Metadata, model_card: Optional[dict] = None, hf_params: Optional[dict] = None, model_path: Optional[Path] = None, total_params: int = 0) -> Metadata:
|
||||||
|
# Reference Model Card Metadata: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1
|
||||||
|
|
||||||
|
# Model Card Heuristics
|
||||||
|
########################
|
||||||
|
if model_card is not None:
|
||||||
|
|
||||||
|
if "model_name" in model_card and metadata.name is None:
|
||||||
|
# Not part of huggingface model card standard but notice some model creator using it
|
||||||
|
# such as TheBloke in 'TheBloke/Mistral-7B-Instruct-v0.2-GGUF'
|
||||||
|
metadata.name = model_card.get("model_name")
|
||||||
|
|
||||||
|
if "model_creator" in model_card and metadata.author is None:
|
||||||
|
# Not part of huggingface model card standard but notice some model creator using it
|
||||||
|
# such as TheBloke in 'TheBloke/Mistral-7B-Instruct-v0.2-GGUF'
|
||||||
|
metadata.author = model_card.get("model_creator")
|
||||||
|
|
||||||
|
if "model_type" in model_card and metadata.basename is None:
|
||||||
|
# Not part of huggingface model card standard but notice some model creator using it
|
||||||
|
# such as TheBloke in 'TheBloke/Mistral-7B-Instruct-v0.2-GGUF'
|
||||||
|
metadata.basename = model_card.get("model_type")
|
||||||
|
|
||||||
|
if "base_model" in model_card:
|
||||||
|
# This represents the parent models that this is based on
|
||||||
|
# Example: stabilityai/stable-diffusion-xl-base-1.0. Can also be a list (for merges)
|
||||||
|
# Example of merges: https://huggingface.co/EmbeddedLLM/Mistral-7B-Merge-14-v0.1/blob/main/README.md
|
||||||
|
metadata_base_models = []
|
||||||
|
base_model_value = model_card.get("base_model", None)
|
||||||
|
|
||||||
|
if base_model_value is not None:
|
||||||
|
if isinstance(base_model_value, str):
|
||||||
|
metadata_base_models.append(base_model_value)
|
||||||
|
elif isinstance(base_model_value, list):
|
||||||
|
metadata_base_models.extend(base_model_value)
|
||||||
|
|
||||||
|
if metadata.base_models is None:
|
||||||
|
metadata.base_models = []
|
||||||
|
|
||||||
|
for model_id in metadata_base_models:
|
||||||
|
# NOTE: model size of base model is assumed to be similar to the size of the current model
|
||||||
|
model_full_name_component, org_component, basename, finetune, version, size_label = Metadata.get_model_id_components(model_id, total_params)
|
||||||
|
base_model = {}
|
||||||
|
if model_full_name_component is not None:
|
||||||
|
base_model["name"] = Metadata.id_to_title(model_full_name_component)
|
||||||
|
if org_component is not None:
|
||||||
|
base_model["organization"] = Metadata.id_to_title(org_component)
|
||||||
|
if version is not None:
|
||||||
|
base_model["version"] = version
|
||||||
|
if org_component is not None and model_full_name_component is not None:
|
||||||
|
base_model["repo_url"] = f"https://huggingface.co/{org_component}/{model_full_name_component}"
|
||||||
|
metadata.base_models.append(base_model)
|
||||||
|
|
||||||
|
if "license" in model_card and metadata.license is None:
|
||||||
|
metadata.license = model_card.get("license")
|
||||||
|
|
||||||
|
if "license_name" in model_card and metadata.license_name is None:
|
||||||
|
metadata.license_name = model_card.get("license_name")
|
||||||
|
|
||||||
|
if "license_link" in model_card and metadata.license_link is None:
|
||||||
|
metadata.license_link = model_card.get("license_link")
|
||||||
|
|
||||||
|
tags_value = model_card.get("tags", None)
|
||||||
|
if tags_value is not None:
|
||||||
|
|
||||||
|
if metadata.tags is None:
|
||||||
|
metadata.tags = []
|
||||||
|
|
||||||
|
if isinstance(tags_value, str):
|
||||||
|
metadata.tags.append(tags_value)
|
||||||
|
elif isinstance(tags_value, list):
|
||||||
|
metadata.tags.extend(tags_value)
|
||||||
|
|
||||||
|
pipeline_tags_value = model_card.get("pipeline_tag", None)
|
||||||
|
if pipeline_tags_value is not None:
|
||||||
|
|
||||||
|
if metadata.tags is None:
|
||||||
|
metadata.tags = []
|
||||||
|
|
||||||
|
if isinstance(pipeline_tags_value, str):
|
||||||
|
metadata.tags.append(pipeline_tags_value)
|
||||||
|
elif isinstance(pipeline_tags_value, list):
|
||||||
|
metadata.tags.extend(pipeline_tags_value)
|
||||||
|
|
||||||
|
language_value = model_card.get("languages", model_card.get("language", None))
|
||||||
|
if language_value is not None:
|
||||||
|
|
||||||
|
if metadata.languages is None:
|
||||||
|
metadata.languages = []
|
||||||
|
|
||||||
|
if isinstance(language_value, str):
|
||||||
|
metadata.languages.append(language_value)
|
||||||
|
elif isinstance(language_value, list):
|
||||||
|
metadata.languages.extend(language_value)
|
||||||
|
|
||||||
|
dataset_value = model_card.get("datasets", model_card.get("dataset", None))
|
||||||
|
if dataset_value is not None:
|
||||||
|
|
||||||
|
if metadata.datasets is None:
|
||||||
|
metadata.datasets = []
|
||||||
|
|
||||||
|
if isinstance(dataset_value, str):
|
||||||
|
metadata.datasets.append(dataset_value)
|
||||||
|
elif isinstance(dataset_value, list):
|
||||||
|
metadata.datasets.extend(dataset_value)
|
||||||
|
|
||||||
|
# Hugging Face Parameter Heuristics
|
||||||
|
####################################
|
||||||
|
|
||||||
|
if hf_params is not None:
|
||||||
|
|
||||||
|
hf_name_or_path = hf_params.get("_name_or_path")
|
||||||
|
if hf_name_or_path is not None and hf_name_or_path.count('/') <= 1:
|
||||||
|
# Use _name_or_path only if its actually a model name and not some computer path
|
||||||
|
# e.g. 'meta-llama/Llama-2-7b-hf'
|
||||||
|
model_id = hf_name_or_path
|
||||||
|
model_full_name_component, org_component, basename, finetune, version, size_label = Metadata.get_model_id_components(model_id, total_params)
|
||||||
|
if metadata.name is None and model_full_name_component is not None:
|
||||||
|
metadata.name = Metadata.id_to_title(model_full_name_component)
|
||||||
|
if metadata.organization is None and org_component is not None:
|
||||||
|
metadata.organization = Metadata.id_to_title(org_component)
|
||||||
|
if metadata.basename is None and basename is not None:
|
||||||
|
metadata.basename = basename
|
||||||
|
if metadata.finetune is None and finetune is not None:
|
||||||
|
metadata.finetune = finetune
|
||||||
|
if metadata.version is None and version is not None:
|
||||||
|
metadata.version = version
|
||||||
|
if metadata.size_label is None and size_label is not None:
|
||||||
|
metadata.size_label = size_label
|
||||||
|
|
||||||
|
# Directory Folder Name Fallback Heuristics
|
||||||
|
############################################
|
||||||
|
if model_path is not None:
|
||||||
|
model_id = model_path.name
|
||||||
|
model_full_name_component, org_component, basename, finetune, version, size_label = Metadata.get_model_id_components(model_id, total_params)
|
||||||
|
if metadata.name is None and model_full_name_component is not None:
|
||||||
|
metadata.name = Metadata.id_to_title(model_full_name_component)
|
||||||
|
if metadata.organization is None and org_component is not None:
|
||||||
|
metadata.organization = Metadata.id_to_title(org_component)
|
||||||
|
if metadata.basename is None and basename is not None:
|
||||||
|
metadata.basename = basename
|
||||||
|
if metadata.finetune is None and finetune is not None:
|
||||||
|
metadata.finetune = finetune
|
||||||
|
if metadata.version is None and version is not None:
|
||||||
|
metadata.version = version
|
||||||
|
if metadata.size_label is None and size_label is not None:
|
||||||
|
metadata.size_label = size_label
|
||||||
|
|
||||||
|
return metadata
|
||||||
|
|
||||||
|
def set_gguf_meta_model(self, gguf_writer: gguf.GGUFWriter):
|
||||||
|
assert self.name is not None
|
||||||
|
gguf_writer.add_name(self.name)
|
||||||
|
|
||||||
|
if self.author is not None:
|
||||||
|
gguf_writer.add_author(self.author)
|
||||||
|
if self.version is not None:
|
||||||
|
gguf_writer.add_version(self.version)
|
||||||
|
if self.organization is not None:
|
||||||
|
gguf_writer.add_organization(self.organization)
|
||||||
|
|
||||||
|
if self.finetune is not None:
|
||||||
|
gguf_writer.add_finetune(self.finetune)
|
||||||
|
if self.basename is not None:
|
||||||
|
gguf_writer.add_basename(self.basename)
|
||||||
|
|
||||||
|
if self.description is not None:
|
||||||
|
gguf_writer.add_description(self.description)
|
||||||
|
if self.quantized_by is not None:
|
||||||
|
gguf_writer.add_quantized_by(self.quantized_by)
|
||||||
|
|
||||||
|
if self.size_label is not None:
|
||||||
|
gguf_writer.add_size_label(self.size_label)
|
||||||
|
|
||||||
|
if self.license is not None:
|
||||||
|
gguf_writer.add_license(self.license)
|
||||||
|
if self.license_name is not None:
|
||||||
|
gguf_writer.add_license_name(self.license_name)
|
||||||
|
if self.license_link is not None:
|
||||||
|
gguf_writer.add_license_link(self.license_link)
|
||||||
|
|
||||||
|
if self.url is not None:
|
||||||
|
gguf_writer.add_url(self.url)
|
||||||
|
if self.doi is not None:
|
||||||
|
gguf_writer.add_doi(self.doi)
|
||||||
|
if self.uuid is not None:
|
||||||
|
gguf_writer.add_uuid(self.uuid)
|
||||||
|
if self.repo_url is not None:
|
||||||
|
gguf_writer.add_repo_url(self.repo_url)
|
||||||
|
|
||||||
|
if self.source_url is not None:
|
||||||
|
gguf_writer.add_source_url(self.source_url)
|
||||||
|
if self.source_doi is not None:
|
||||||
|
gguf_writer.add_source_doi(self.source_doi)
|
||||||
|
if self.source_uuid is not None:
|
||||||
|
gguf_writer.add_source_uuid(self.source_uuid)
|
||||||
|
if self.source_repo_url is not None:
|
||||||
|
gguf_writer.add_source_repo_url(self.source_repo_url)
|
||||||
|
|
||||||
|
if self.base_models is not None:
|
||||||
|
gguf_writer.add_base_model_count(len(self.base_models))
|
||||||
|
for key, base_model_entry in enumerate(self.base_models):
|
||||||
|
if "name" in base_model_entry:
|
||||||
|
gguf_writer.add_base_model_name(key, base_model_entry["name"])
|
||||||
|
if "author" in base_model_entry:
|
||||||
|
gguf_writer.add_base_model_author(key, base_model_entry["author"])
|
||||||
|
if "version" in base_model_entry:
|
||||||
|
gguf_writer.add_base_model_version(key, base_model_entry["version"])
|
||||||
|
if "organization" in base_model_entry:
|
||||||
|
gguf_writer.add_base_model_organization(key, base_model_entry["organization"])
|
||||||
|
if "url" in base_model_entry:
|
||||||
|
gguf_writer.add_base_model_url(key, base_model_entry["url"])
|
||||||
|
if "doi" in base_model_entry:
|
||||||
|
gguf_writer.add_base_model_doi(key, base_model_entry["doi"])
|
||||||
|
if "uuid" in base_model_entry:
|
||||||
|
gguf_writer.add_base_model_uuid(key, base_model_entry["uuid"])
|
||||||
|
if "repo_url" in base_model_entry:
|
||||||
|
gguf_writer.add_base_model_repo_url(key, base_model_entry["repo_url"])
|
||||||
|
|
||||||
|
if self.tags is not None:
|
||||||
|
gguf_writer.add_tags(self.tags)
|
||||||
|
if self.languages is not None:
|
||||||
|
gguf_writer.add_languages(self.languages)
|
||||||
|
if self.datasets is not None:
|
||||||
|
gguf_writer.add_datasets(self.datasets)
|
69
gguf-py/gguf/utility.py
Normal file
69
gguf-py/gguf/utility.py
Normal file
@ -0,0 +1,69 @@
|
|||||||
|
from __future__ import annotations
|
||||||
|
|
||||||
|
from typing import Literal
|
||||||
|
|
||||||
|
|
||||||
|
def fill_templated_filename(filename: str, output_type: str | None) -> str:
|
||||||
|
# Given a file name fill in any type templates e.g. 'some-model-name.{ftype}.gguf'
|
||||||
|
ftype_lowercase: str = output_type.lower() if output_type is not None else ""
|
||||||
|
ftype_uppercase: str = output_type.upper() if output_type is not None else ""
|
||||||
|
return filename.format(ftype_lowercase,
|
||||||
|
outtype=ftype_lowercase, ftype=ftype_lowercase,
|
||||||
|
OUTTYPE=ftype_uppercase, FTYPE=ftype_uppercase)
|
||||||
|
|
||||||
|
|
||||||
|
def model_weight_count_rounded_notation(model_params_count: int, min_digits: int = 2) -> str:
|
||||||
|
if model_params_count > 1e12 :
|
||||||
|
# Trillions Of Parameters
|
||||||
|
scaled_model_params = model_params_count * 1e-12
|
||||||
|
scale_suffix = "T"
|
||||||
|
elif model_params_count > 1e9 :
|
||||||
|
# Billions Of Parameters
|
||||||
|
scaled_model_params = model_params_count * 1e-9
|
||||||
|
scale_suffix = "B"
|
||||||
|
elif model_params_count > 1e6 :
|
||||||
|
# Millions Of Parameters
|
||||||
|
scaled_model_params = model_params_count * 1e-6
|
||||||
|
scale_suffix = "M"
|
||||||
|
else:
|
||||||
|
# Thousands Of Parameters
|
||||||
|
scaled_model_params = model_params_count * 1e-3
|
||||||
|
scale_suffix = "K"
|
||||||
|
|
||||||
|
fix = max(min_digits - len(str(round(scaled_model_params)).lstrip('0')), 0)
|
||||||
|
|
||||||
|
return f"{scaled_model_params:.{fix}f}{scale_suffix}"
|
||||||
|
|
||||||
|
|
||||||
|
def size_label(total_params: int, shared_params: int, expert_params: int, expert_count: int) -> str:
|
||||||
|
|
||||||
|
if expert_count > 0:
|
||||||
|
pretty_size = model_weight_count_rounded_notation(abs(shared_params) + abs(expert_params), min_digits=2)
|
||||||
|
size_class = f"{expert_count}x{pretty_size}"
|
||||||
|
else:
|
||||||
|
size_class = model_weight_count_rounded_notation(abs(total_params), min_digits=2)
|
||||||
|
|
||||||
|
return size_class
|
||||||
|
|
||||||
|
|
||||||
|
def naming_convention(model_name: str | None, base_name: str | None, finetune_string: str | None, version_string: str | None, size_label: str | None, output_type: str | None, model_type: Literal['vocab', 'LoRA'] | None = None) -> str:
|
||||||
|
# Reference: https://github.com/ggerganov/ggml/blob/master/docs/gguf.md#gguf-naming-convention
|
||||||
|
|
||||||
|
if base_name is not None:
|
||||||
|
name = base_name.strip().title().replace(' ', '-').replace('/', '-')
|
||||||
|
elif model_name is not None:
|
||||||
|
name = model_name.strip().title().replace(' ', '-').replace('/', '-')
|
||||||
|
else:
|
||||||
|
name = "ggml-model"
|
||||||
|
|
||||||
|
parameters = f"-{size_label}" if size_label is not None else ""
|
||||||
|
|
||||||
|
finetune = f"-{finetune_string.strip().title().replace(' ', '-')}" if finetune_string is not None else ""
|
||||||
|
|
||||||
|
version = f"-{version_string.strip().replace(' ', '-')}" if version_string is not None else ""
|
||||||
|
|
||||||
|
encoding = f"-{output_type.strip().replace(' ', '-').upper()}" if output_type is not None else ""
|
||||||
|
|
||||||
|
kind = f"-{model_type.strip().replace(' ', '-')}" if model_type is not None else ""
|
||||||
|
|
||||||
|
return f"{name}{parameters}{finetune}{version}{encoding}{kind}"
|
@ -22,6 +22,7 @@ classifiers = [
|
|||||||
python = ">=3.8"
|
python = ">=3.8"
|
||||||
numpy = ">=1.17"
|
numpy = ">=1.17"
|
||||||
tqdm = ">=4.27"
|
tqdm = ">=4.27"
|
||||||
|
pyyaml = ">=5.1"
|
||||||
|
|
||||||
[tool.poetry.dev-dependencies]
|
[tool.poetry.dev-dependencies]
|
||||||
pytest = "^5.2"
|
pytest = "^5.2"
|
||||||
|
1
gguf-py/tests/__init__.py
Normal file
1
gguf-py/tests/__init__.py
Normal file
@ -0,0 +1 @@
|
|||||||
|
from .test_metadata import *
|
@ -1,7 +0,0 @@
|
|||||||
import gguf # noqa: F401 # pyright: ignore[reportUnusedImport]
|
|
||||||
|
|
||||||
# TODO: add tests
|
|
||||||
|
|
||||||
|
|
||||||
def test_write_gguf() -> None:
|
|
||||||
pass
|
|
158
gguf-py/tests/test_metadata.py
Executable file
158
gguf-py/tests/test_metadata.py
Executable file
@ -0,0 +1,158 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
|
||||||
|
import unittest
|
||||||
|
from pathlib import Path
|
||||||
|
import os
|
||||||
|
import sys
|
||||||
|
|
||||||
|
# Necessary to load the local gguf package
|
||||||
|
if "NO_LOCAL_GGUF" not in os.environ and (Path(__file__).parent.parent.parent / 'gguf-py').exists():
|
||||||
|
sys.path.insert(0, str(Path(__file__).parent.parent))
|
||||||
|
|
||||||
|
import gguf
|
||||||
|
|
||||||
|
|
||||||
|
class TestMetadataMethod(unittest.TestCase):
|
||||||
|
|
||||||
|
def test_id_to_title(self):
|
||||||
|
self.assertEqual(gguf.Metadata.id_to_title("Mixtral-8x7B-Instruct-v0.1"), "Mixtral 8x7B Instruct v0.1")
|
||||||
|
self.assertEqual(gguf.Metadata.id_to_title("Meta-Llama-3-8B"), "Meta Llama 3 8B")
|
||||||
|
self.assertEqual(gguf.Metadata.id_to_title("hermes-2-pro-llama-3-8b-DPO"), "Hermes 2 Pro Llama 3 8b DPO")
|
||||||
|
|
||||||
|
def test_get_model_id_components(self):
|
||||||
|
# This is the basic standard form with organization marker
|
||||||
|
self.assertEqual(gguf.Metadata.get_model_id_components("Mistral/Mixtral-8x7B-Instruct-v0.1"),
|
||||||
|
('Mixtral-8x7B-Instruct-v0.1', "Mistral", 'Mixtral', 'Instruct', 'v0.1', '8x7B'))
|
||||||
|
|
||||||
|
# Similar to basic standard form but without organization marker
|
||||||
|
self.assertEqual(gguf.Metadata.get_model_id_components("Mixtral-8x7B-Instruct-v0.1"),
|
||||||
|
('Mixtral-8x7B-Instruct-v0.1', None, 'Mixtral', 'Instruct', 'v0.1', '8x7B'))
|
||||||
|
|
||||||
|
# Missing version
|
||||||
|
self.assertEqual(gguf.Metadata.get_model_id_components("Mixtral-8x7B-Instruct"),
|
||||||
|
('Mixtral-8x7B-Instruct', None, 'Mixtral', 'Instruct', None, '8x7B'))
|
||||||
|
|
||||||
|
# Missing finetune
|
||||||
|
self.assertEqual(gguf.Metadata.get_model_id_components("Mixtral-8x7B-v0.1"),
|
||||||
|
('Mixtral-8x7B-v0.1', None, 'Mixtral', None, 'v0.1', '8x7B'))
|
||||||
|
|
||||||
|
# Base name and size label only
|
||||||
|
self.assertEqual(gguf.Metadata.get_model_id_components("Mixtral-8x7B"),
|
||||||
|
('Mixtral-8x7B', None, 'Mixtral', None, None, '8x7B'))
|
||||||
|
|
||||||
|
# Base name and version only
|
||||||
|
self.assertEqual(gguf.Metadata.get_model_id_components("Mixtral-v0.1"),
|
||||||
|
('Mixtral-v0.1', None, 'Mixtral', None, 'v0.1', None))
|
||||||
|
|
||||||
|
## Edge Cases ##
|
||||||
|
|
||||||
|
# This is too ambiguous... best to err on caution and output nothing
|
||||||
|
self.assertEqual(gguf.Metadata.get_model_id_components("Mixtral"),
|
||||||
|
('Mixtral', None, None, None, None, None))
|
||||||
|
|
||||||
|
# Basename has numbers mixed in and also size label provided. Must avoid capturing number in basename
|
||||||
|
self.assertEqual(gguf.Metadata.get_model_id_components("NousResearch/Meta-Llama-3-8B"),
|
||||||
|
('Meta-Llama-3-8B', "NousResearch", 'Meta-Llama-3', None, None, '8B'))
|
||||||
|
|
||||||
|
# Can't detect all non standard form in a heuristically safe way... best to err in caution and output nothing...
|
||||||
|
self.assertEqual(gguf.Metadata.get_model_id_components("Qwen1.5-MoE-A2.7B-Chat"),
|
||||||
|
('Qwen1.5-MoE-A2.7B-Chat', None, 'Qwen1.5-MoE', 'Chat', None, 'A2.7B'))
|
||||||
|
|
||||||
|
# Capture 'sub size labels' e.g. A14B in '57B-A14B' usually refers to activated params/weight count
|
||||||
|
self.assertEqual(gguf.Metadata.get_model_id_components("Qwen2-57B-A14B-Instruct"),
|
||||||
|
('Qwen2-57B-A14B-Instruct', None, 'Qwen2', 'Instruct', None, '57B-A14B'))
|
||||||
|
|
||||||
|
# Check that it can handle a real model id with no version code
|
||||||
|
# Note that 4k in this string is non standard and microsoft were referring to context length rather than weight count
|
||||||
|
self.assertEqual(gguf.Metadata.get_model_id_components("microsoft/Phi-3-mini-4k-instruct", 4 * 10**9),
|
||||||
|
('Phi-3-mini-4k-instruct', 'microsoft', 'Phi-3', '4k-instruct', None, 'mini'))
|
||||||
|
|
||||||
|
# There is some legitimate models with only thousands of parameters
|
||||||
|
self.assertEqual(gguf.Metadata.get_model_id_components("delphi-suite/stories-llama2-50k", 50 * 10**3),
|
||||||
|
('stories-llama2-50k', 'delphi-suite', 'stories-llama2', None, None, '50K'))
|
||||||
|
|
||||||
|
# None standard and not easy to disambiguate
|
||||||
|
self.assertEqual(gguf.Metadata.get_model_id_components("DeepSeek-Coder-V2-Lite-Instruct"),
|
||||||
|
('DeepSeek-Coder-V2-Lite-Instruct', None, 'DeepSeek-Coder-V2-Lite', 'Instruct', None, None))
|
||||||
|
|
||||||
|
# This is a real model_id where they append 2DPO to refer to Direct Preference Optimization
|
||||||
|
self.assertEqual(gguf.Metadata.get_model_id_components("crestf411/daybreak-kunoichi-2dpo-7b"),
|
||||||
|
('daybreak-kunoichi-2dpo-7b', 'crestf411', 'daybreak-kunoichi', '2dpo', None, '7B'))
|
||||||
|
|
||||||
|
# This is a real model id where the weight size has a decimal point
|
||||||
|
self.assertEqual(gguf.Metadata.get_model_id_components("Qwen2-0.5B-Instruct"),
|
||||||
|
('Qwen2-0.5B-Instruct', None, 'Qwen2', 'Instruct', None, '0.5B'))
|
||||||
|
|
||||||
|
# Uses an underscore in the size label
|
||||||
|
self.assertEqual(gguf.Metadata.get_model_id_components("smallcloudai/Refact-1_6B-fim"),
|
||||||
|
('Refact-1_6B-fim', 'smallcloudai', 'Refact', 'fim', None, '1.6B'))
|
||||||
|
|
||||||
|
# Uses Iter3 for the version
|
||||||
|
self.assertEqual(gguf.Metadata.get_model_id_components("UCLA-AGI/Gemma-2-9B-It-SPPO-Iter3"),
|
||||||
|
('Gemma-2-9B-It-SPPO-Iter3', 'UCLA-AGI', 'Gemma-2', 'It-SPPO', 'Iter3', '9B'))
|
||||||
|
|
||||||
|
# Has two potential versions in the basename
|
||||||
|
self.assertEqual(gguf.Metadata.get_model_id_components("NousResearch/Hermes-2-Theta-Llama-3-8B"),
|
||||||
|
('Hermes-2-Theta-Llama-3-8B', 'NousResearch', 'Hermes-2-Theta-Llama-3', None, None, '8B'))
|
||||||
|
|
||||||
|
# Potential version in the basename
|
||||||
|
self.assertEqual(gguf.Metadata.get_model_id_components("SeaLLMs/SeaLLMs-v3-7B-Chat"),
|
||||||
|
('SeaLLMs-v3-7B-Chat', 'SeaLLMs', 'SeaLLMs-v3', 'Chat', None, '7B'))
|
||||||
|
|
||||||
|
# Underscore in the basename, and 1m for the context size
|
||||||
|
self.assertEqual(gguf.Metadata.get_model_id_components("internlm/internlm2_5-7b-chat-1m", 7 * 10**9),
|
||||||
|
('internlm2_5-7b-chat-1m', 'internlm', 'internlm2_5', 'chat-1m', None, '7B'))
|
||||||
|
|
||||||
|
# Version before the finetune name
|
||||||
|
self.assertEqual(gguf.Metadata.get_model_id_components("pszemraj/jamba-900M-v0.13-KIx2"),
|
||||||
|
('jamba-900M-v0.13-KIx2', 'pszemraj', 'jamba', 'KIx2', 'v0.13', '900M'))
|
||||||
|
|
||||||
|
# TODO: hf suffix which could be ignored but isn't
|
||||||
|
self.assertEqual(gguf.Metadata.get_model_id_components("state-spaces/mamba-2.8b-hf"),
|
||||||
|
('mamba-2.8b-hf', 'state-spaces', 'mamba', 'hf', None, '2.8B'))
|
||||||
|
|
||||||
|
# Two sizes, don't merge them, the other is the number of tokens on which it was trained
|
||||||
|
self.assertEqual(gguf.Metadata.get_model_id_components("abacaj/llama-161M-100B", 161 * 10**6),
|
||||||
|
('llama-161M-100B', 'abacaj', 'llama', '100b', None, '161M'))
|
||||||
|
|
||||||
|
# It's a trap, there is no size label
|
||||||
|
self.assertEqual(gguf.Metadata.get_model_id_components("SparseLLM/relu-100B", 1340 * 10**6),
|
||||||
|
('relu-100B', 'SparseLLM', 'relu', '100b', None, None))
|
||||||
|
|
||||||
|
# Weird size notation
|
||||||
|
self.assertEqual(gguf.Metadata.get_model_id_components("bigscience/bloom-7b1-petals"),
|
||||||
|
('bloom-7b1-petals', 'bigscience', 'bloom', 'petals', None, '7.1B'))
|
||||||
|
|
||||||
|
def test_apply_metadata_heuristic_from_model_card(self):
|
||||||
|
model_card = {
|
||||||
|
'tags': ['Llama-3', 'instruct', 'finetune', 'chatml', 'DPO', 'RLHF', 'gpt4', 'synthetic data', 'distillation', 'function calling', 'json mode', 'axolotl'],
|
||||||
|
'model-index': [{'name': 'Mixtral-8x7B-Instruct-v0.1', 'results': []}],
|
||||||
|
'language': ['en'],
|
||||||
|
'datasets': ['teknium/OpenHermes-2.5'],
|
||||||
|
'widget': [{'example_title': 'Hermes 2 Pro', 'messages': [{'role': 'system', 'content': 'You are a sentient, superintelligent artificial general intelligence, here to teach and assist me.'}, {'role': 'user', 'content': 'Write a short story about Goku discovering kirby has teamed up with Majin Buu to destroy the world.'}]}],
|
||||||
|
'base_model': ["EmbeddedLLM/Mistral-7B-Merge-14-v0", "janai-hq/trinity-v1"]
|
||||||
|
}
|
||||||
|
got = gguf.Metadata.apply_metadata_heuristic(gguf.Metadata(), model_card, None, None)
|
||||||
|
expect = gguf.Metadata()
|
||||||
|
expect.base_models=[{'name': 'Mistral 7B Merge 14 v0', 'organization': 'EmbeddedLLM', 'version': 'v0', 'repo_url': 'https://huggingface.co/EmbeddedLLM/Mistral-7B-Merge-14-v0'}, {'name': 'Trinity v1', 'organization': 'Janai Hq', 'version': 'v1', 'repo_url': 'https://huggingface.co/janai-hq/trinity-v1'}]
|
||||||
|
expect.tags=['Llama-3', 'instruct', 'finetune', 'chatml', 'DPO', 'RLHF', 'gpt4', 'synthetic data', 'distillation', 'function calling', 'json mode', 'axolotl']
|
||||||
|
expect.languages=['en']
|
||||||
|
expect.datasets=['teknium/OpenHermes-2.5']
|
||||||
|
|
||||||
|
self.assertEqual(got, expect)
|
||||||
|
|
||||||
|
def test_apply_metadata_heuristic_from_hf_parameters(self):
|
||||||
|
hf_params = {"_name_or_path": "./hermes-2-pro-llama-3-8b-DPO"}
|
||||||
|
got = gguf.Metadata.apply_metadata_heuristic(gguf.Metadata(), model_card=None, hf_params=hf_params, model_path=None)
|
||||||
|
expect = gguf.Metadata(name='Hermes 2 Pro Llama 3 8b DPO', finetune='DPO', basename='hermes-2-pro-llama-3', size_label='8B')
|
||||||
|
self.assertEqual(got, expect)
|
||||||
|
|
||||||
|
def test_apply_metadata_heuristic_from_model_dir(self):
|
||||||
|
model_dir_path = Path("./hermes-2-pro-llama-3-8b-DPO")
|
||||||
|
got = gguf.Metadata.apply_metadata_heuristic(gguf.Metadata(), model_card=None, hf_params=None, model_path=model_dir_path)
|
||||||
|
expect = gguf.Metadata(name='Hermes 2 Pro Llama 3 8b DPO', finetune='DPO', basename='hermes-2-pro-llama-3', size_label='8B')
|
||||||
|
self.assertEqual(got, expect)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
unittest.main()
|
Loading…
Reference in New Issue
Block a user