Merge branch 'master' into compilade/fix-mpt-pretok

This commit is contained in:
Francis Couture-Harpin 2024-07-07 15:33:20 -04:00
commit 6b961e3d24
35 changed files with 370 additions and 223 deletions

View File

@ -89,6 +89,22 @@ let
ps.tiktoken ps.tiktoken
ps.torchWithoutCuda ps.torchWithoutCuda
ps.transformers ps.transformers
# server bench
ps.matplotlib
# server tests
ps.openai
ps.behave
ps.prometheus-client
# for examples/pydantic-models-to-grammar-examples.py
ps.docstring-parser
ps.pydantic
# for scripts/compare-llama-bench.py
ps.gitpython
ps.tabulate
] ]
); );

38
.github/workflows/python-type-check.yml vendored Normal file
View File

@ -0,0 +1,38 @@
name: Python Type-Check
on:
push:
paths:
- '.github/workflows/python-type-check.yml'
- '**.py'
- '**/requirements*.txt'
pull_request:
paths:
- '.github/workflows/python-type-check.yml'
- '**.py'
- '**/requirements*.txt'
concurrency:
group: ${{ github.workflow }}-${{ github.head_ref && github.ref || github.run_id }}
cancel-in-progress: true
jobs:
python-type-check:
runs-on: ubuntu-latest
name: pyright type-check
steps:
- name: Check out source repository
uses: actions/checkout@v4
- name: Set up Python environment
uses: actions/setup-python@v5
with:
python-version: "3.11"
- name: Install Python dependencies
# TODO: use a venv
run: pip install -r requirements/requirements-all.txt
- name: Type-check with Pyright
uses: jakebailey/pyright-action@v2
with:
version: 1.1.370
level: warning
warnings: true

View File

@ -103,6 +103,9 @@ function gg_run_ctest_debug {
set -e set -e
# Check cmake, make and ctest are installed
gg_check_build_requirements
(time cmake -DCMAKE_BUILD_TYPE=Debug ${CMAKE_EXTRA} .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log (time cmake -DCMAKE_BUILD_TYPE=Debug ${CMAKE_EXTRA} .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
(time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log (time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log
@ -131,6 +134,9 @@ function gg_run_ctest_release {
set -e set -e
# Check cmake, make and ctest are installed
gg_check_build_requirements
(time cmake -DCMAKE_BUILD_TYPE=Release ${CMAKE_EXTRA} .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log (time cmake -DCMAKE_BUILD_TYPE=Release ${CMAKE_EXTRA} .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
(time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log (time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log
@ -701,6 +707,20 @@ function gg_run_embd_bge_small {
set +e set +e
} }
function gg_check_build_requirements {
if ! command -v cmake &> /dev/null; then
gg_printf 'cmake not found, please install'
fi
if ! command -v make &> /dev/null; then
gg_printf 'make not found, please install'
fi
if ! command -v ctest &> /dev/null; then
gg_printf 'ctest not found, please install'
fi
}
function gg_sum_embd_bge_small { function gg_sum_embd_bge_small {
gg_printf '### %s\n\n' "${ci}" gg_printf '### %s\n\n' "${ci}"

View File

@ -265,7 +265,7 @@ class Model:
break break
for new_name, data in ((n, d.squeeze().numpy()) for n, d in self.modify_tensors(data_torch, name, bid)): for new_name, data in ((n, d.squeeze().numpy()) for n, d in self.modify_tensors(data_torch, name, bid)):
data: np.ndarray = data # type hint data: np.ndarray # type hint
n_dims = len(data.shape) n_dims = len(data.shape)
data_dtype = data.dtype data_dtype = data.dtype
data_qtype: gguf.GGMLQuantizationType | None = None data_qtype: gguf.GGMLQuantizationType | None = None
@ -599,10 +599,6 @@ class Model:
tokenizer_path = self.dir_model / 'tokenizer.model' tokenizer_path = self.dir_model / 'tokenizer.model'
tokens: list[bytes] = []
scores: list[float] = []
toktypes: list[int] = []
if not tokenizer_path.is_file(): if not tokenizer_path.is_file():
raise FileNotFoundError(f"File not found: {tokenizer_path}") raise FileNotFoundError(f"File not found: {tokenizer_path}")
@ -2120,7 +2116,7 @@ class InternLM2Model(Model):
logger.error(f'Error: Missing {tokenizer_path}') logger.error(f'Error: Missing {tokenizer_path}')
sys.exit(1) sys.exit(1)
sentencepiece_model = model.ModelProto() sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read()) sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
@ -2972,16 +2968,16 @@ class T5Model(Model):
if not tokenizer_path.is_file(): if not tokenizer_path.is_file():
raise FileNotFoundError(f"File not found: {tokenizer_path}") raise FileNotFoundError(f"File not found: {tokenizer_path}")
sentencepiece_model = model.ModelProto() sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read()) sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
# some models like Pile-T5 family use BPE tokenizer instead of Unigram # some models like Pile-T5 family use BPE tokenizer instead of Unigram
if sentencepiece_model.trainer_spec.model_type == 2: # BPE if sentencepiece_model.trainer_spec.model_type == 2: # BPE
# assure the tokenizer model file name is correct # assure the tokenizer model file name is correct
assert tokenizer_path.name == 'tokenizer.model' assert tokenizer_path.name == 'tokenizer.model'
return self._set_vocab_sentencepiece() return self._set_vocab_sentencepiece()
else: else:
assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
@ -3152,7 +3148,7 @@ class JaisModel(Model):
# but Jais's PyTorch model simply precalculates the slope values and places them # but Jais's PyTorch model simply precalculates the slope values and places them
# in relative_pes.slopes # in relative_pes.slopes
n_head_closest_log2 = 2 ** math.floor(math.log2(self.hparams["n_head"])) n_head_closest_log2 = 2 ** math.floor(math.log2(self.hparams["n_head"]))
first_val = float(data_torch._data[0]) first_val = float(data_torch[0].item())
self.max_alibi_bias = -round(math.log2(first_val) * n_head_closest_log2) self.max_alibi_bias = -round(math.log2(first_val) * n_head_closest_log2)
return tensors return tensors
@ -3186,7 +3182,7 @@ class ChatGLMModel(Model):
def set_vocab_chatglm3(self): def set_vocab_chatglm3(self):
dir_model = self.dir_model dir_model = self.dir_model
hparams = self.hparams hparams = self.hparams
tokens: list[bytearray] = [] tokens: list[bytes] = []
toktypes: list[int] = [] toktypes: list[int] = []
scores: list[float] = [] scores: list[float] = []
@ -3335,7 +3331,7 @@ class ChatGLMModel(Model):
special_vocab.add_to_gguf(self.gguf_writer) special_vocab.add_to_gguf(self.gguf_writer)
def set_gguf_parameters(self): def set_gguf_parameters(self):
self.gguf_writer.add_name(self.hparams.get("_name_or_path").split("/")[1]) # THUDM/glm4-9b-chat or THUDM/chatglm3-6b self.gguf_writer.add_name(self.hparams["_name_or_path"].split("/")[1]) # THUDM/glm4-9b-chat or THUDM/chatglm3-6b
n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed")) n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads")) n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
n_head_kv = self.hparams.get("multi_query_group_num", n_head) n_head_kv = self.hparams.get("multi_query_group_num", n_head)

View File

@ -354,7 +354,8 @@ class GGMLToGGUF:
def handle_metadata(cfg, hp): def handle_metadata(cfg, hp):
import convert import examples.convert_legacy_llama as convert
assert cfg.model_metadata_dir.is_dir(), 'Metadata dir is not a directory' assert cfg.model_metadata_dir.is_dir(), 'Metadata dir is not a directory'
hf_config_path = cfg.model_metadata_dir / "config.json" hf_config_path = cfg.model_metadata_dir / "config.json"
orig_config_path = cfg.model_metadata_dir / "params.json" orig_config_path = cfg.model_metadata_dir / "params.json"

View File

@ -353,7 +353,7 @@ class Metadata:
version: Optional[str] = None version: Optional[str] = None
url: Optional[str] = None url: Optional[str] = None
description: Optional[str] = None description: Optional[str] = None
licence: Optional[str] = None license: Optional[str] = None
source_url: Optional[str] = None source_url: Optional[str] = None
source_hf_repo: Optional[str] = None source_hf_repo: Optional[str] = None
@ -492,12 +492,13 @@ class LazyTensor:
LazyModel: TypeAlias = 'dict[str, LazyTensor]' LazyModel: TypeAlias = 'dict[str, LazyTensor]'
ModelFormat: TypeAlias = Literal['ggml', 'torch', 'safetensors', 'none']
@dataclass @dataclass
class ModelPlus: class ModelPlus:
model: LazyModel model: LazyModel
paths: list[Path] # Where this was read from. paths: list[Path] # Where this was read from.
format: Literal['ggml', 'torch', 'safetensors', 'none'] format: ModelFormat
vocab: BaseVocab | None # For GGML models (which have vocab built in), the vocab. vocab: BaseVocab | None # For GGML models (which have vocab built in), the vocab.
@ -536,7 +537,7 @@ def merge_sharded(models: list[LazyModel]) -> LazyModel:
def merge_multifile_models(models_plus: list[ModelPlus]) -> ModelPlus: def merge_multifile_models(models_plus: list[ModelPlus]) -> ModelPlus:
formats = set(mp.format for mp in models_plus) formats: set[ModelFormat] = set(mp.format for mp in models_plus)
assert len(formats) == 1, "different formats?" assert len(formats) == 1, "different formats?"
format = formats.pop() format = formats.pop()
paths = [path for mp in models_plus for path in mp.paths] paths = [path for mp in models_plus for path in mp.paths]
@ -555,7 +556,7 @@ def merge_multifile_models(models_plus: list[ModelPlus]) -> ModelPlus:
else: else:
model = merge_sharded([mp.model for mp in models_plus]) model = merge_sharded([mp.model for mp in models_plus])
return ModelPlus(model, paths, format, vocab) # pytype: disable=wrong-arg-types return ModelPlus(model, paths, format, vocab)
def permute_lazy(lazy_tensor: LazyTensor, n_head: int, n_head_kv: int) -> LazyTensor: def permute_lazy(lazy_tensor: LazyTensor, n_head: int, n_head_kv: int) -> LazyTensor:
@ -805,7 +806,7 @@ class OutputFile:
def __init__(self, fname_out: Path, endianess:gguf.GGUFEndian = gguf.GGUFEndian.LITTLE): def __init__(self, fname_out: Path, endianess:gguf.GGUFEndian = gguf.GGUFEndian.LITTLE):
self.gguf = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH], endianess=endianess) self.gguf = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH], endianess=endianess)
def add_meta_model(self, params: Params, metadata: Metadata) -> None: def add_meta_model(self, params: Params, metadata: Metadata | None) -> None:
# Metadata About The Model And Its Provenence # Metadata About The Model And Its Provenence
name = "LLaMA" name = "LLaMA"
if metadata is not None and metadata.name is not None: if metadata is not None and metadata.name is not None:
@ -827,8 +828,8 @@ class OutputFile:
self.gguf.add_url(metadata.url) self.gguf.add_url(metadata.url)
if metadata.description is not None: if metadata.description is not None:
self.gguf.add_description(metadata.description) self.gguf.add_description(metadata.description)
if metadata.licence is not None: if metadata.license is not None:
self.gguf.add_licence(metadata.licence) self.gguf.add_licence(metadata.license)
if metadata.source_url is not None: if metadata.source_url is not None:
self.gguf.add_source_url(metadata.source_url) self.gguf.add_source_url(metadata.source_url)
if metadata.source_hf_repo is not None: if metadata.source_hf_repo is not None:
@ -943,7 +944,7 @@ class OutputFile:
@staticmethod @staticmethod
def write_vocab_only( def write_vocab_only(
fname_out: Path, params: Params, vocab: Vocab, svocab: gguf.SpecialVocab, fname_out: Path, params: Params, vocab: Vocab, svocab: gguf.SpecialVocab,
endianess: gguf.GGUFEndian = gguf.GGUFEndian.LITTLE, pad_vocab: bool = False, metadata: Metadata = None, endianess: gguf.GGUFEndian = gguf.GGUFEndian.LITTLE, pad_vocab: bool = False, metadata: Metadata | None = None,
) -> None: ) -> None:
check_vocab_size(params, vocab, pad_vocab=pad_vocab) check_vocab_size(params, vocab, pad_vocab=pad_vocab)
@ -977,7 +978,7 @@ class OutputFile:
fname_out: Path, ftype: GGMLFileType, params: Params, model: LazyModel, vocab: BaseVocab, svocab: gguf.SpecialVocab, fname_out: Path, ftype: GGMLFileType, params: Params, model: LazyModel, vocab: BaseVocab, svocab: gguf.SpecialVocab,
concurrency: int = DEFAULT_CONCURRENCY, endianess: gguf.GGUFEndian = gguf.GGUFEndian.LITTLE, concurrency: int = DEFAULT_CONCURRENCY, endianess: gguf.GGUFEndian = gguf.GGUFEndian.LITTLE,
pad_vocab: bool = False, pad_vocab: bool = False,
metadata: Metadata = None, metadata: Metadata | None = None,
) -> None: ) -> None:
check_vocab_size(params, vocab, pad_vocab=pad_vocab) check_vocab_size(params, vocab, pad_vocab=pad_vocab)
@ -1396,6 +1397,8 @@ def main(args_in: list[str] | None = None) -> None:
if model_plus.vocab is not None and args.vocab_dir is None and not args.no_vocab: if model_plus.vocab is not None and args.vocab_dir is None and not args.no_vocab:
vocab = model_plus.vocab vocab = model_plus.vocab
assert params is not None
logger.info(f"Vocab info: {vocab}") logger.info(f"Vocab info: {vocab}")
logger.info(f"Special vocab info: {special_vocab}") logger.info(f"Special vocab info: {special_vocab}")
model = model_plus.model model = model_plus.model

View File

@ -74,7 +74,7 @@ class Tensor:
if len(self.ne) == 0: if len(self.ne) == 0:
self.nbytes = 0 self.nbytes = 0
else: else:
self.nbytes = int(np.product(self.ne)) * 4 self.nbytes = int(np.prod(self.ne)) * 4
else: else:
raise ValueError(f"Unhandled data type '{self.dtype}'") raise ValueError(f"Unhandled data type '{self.dtype}'")

View File

@ -3,7 +3,7 @@
#! pip install pydantic #! pip install pydantic
#! python json_schema_pydantic_example.py #! python json_schema_pydantic_example.py
from pydantic import BaseModel, Extra, TypeAdapter from pydantic import BaseModel, Field, TypeAdapter
from annotated_types import MinLen from annotated_types import MinLen
from typing import Annotated, List, Optional from typing import Annotated, List, Optional
import json, requests import json, requests
@ -17,6 +17,9 @@ if True:
The response_model param takes a type (+ supports Pydantic) and behaves just as w/ Instructor (see below) The response_model param takes a type (+ supports Pydantic) and behaves just as w/ Instructor (see below)
''' '''
response_format = None
type_adapter = None
if response_model: if response_model:
type_adapter = TypeAdapter(response_model) type_adapter = TypeAdapter(response_model)
schema = type_adapter.json_schema() schema = type_adapter.json_schema()

View File

@ -1,4 +1,6 @@
#!/usr/bin/env python3 #!/usr/bin/env python3
from __future__ import annotations
import argparse import argparse
import itertools import itertools
import json import json
@ -188,7 +190,7 @@ def _generate_min_max_int(min_value: Optional[int], max_value: Optional[int], ou
raise RuntimeError("At least one of min_value or max_value must be set") raise RuntimeError("At least one of min_value or max_value must be set")
class BuiltinRule: class BuiltinRule:
def __init__(self, content: str, deps: list = None): def __init__(self, content: str, deps: list | None = None):
self.content = content self.content = content
self.deps = deps or [] self.deps = deps or []
@ -248,7 +250,7 @@ class SchemaConverter:
def _format_literal(self, literal): def _format_literal(self, literal):
escaped = GRAMMAR_LITERAL_ESCAPE_RE.sub( escaped = GRAMMAR_LITERAL_ESCAPE_RE.sub(
lambda m: GRAMMAR_LITERAL_ESCAPES.get(m.group(0)), literal lambda m: GRAMMAR_LITERAL_ESCAPES.get(m.group(0)) or m.group(0), literal
) )
return f'"{escaped}"' return f'"{escaped}"'
@ -403,11 +405,11 @@ class SchemaConverter:
i = 0 i = 0
length = len(pattern) length = len(pattern)
def to_rule(s: Tuple[str, bool]) -> str: def to_rule(s: tuple[str, bool]) -> str:
(txt, is_literal) = s (txt, is_literal) = s
return "\"" + txt + "\"" if is_literal else txt return "\"" + txt + "\"" if is_literal else txt
def transform() -> Tuple[str, bool]: def transform() -> tuple[str, bool]:
''' '''
Parse a unit at index i (advancing it), and return its string representation + whether it's a literal. Parse a unit at index i (advancing it), and return its string representation + whether it's a literal.
''' '''
@ -420,7 +422,7 @@ class SchemaConverter:
# We only need a flat structure here to apply repetition operators to the last item, and # We only need a flat structure here to apply repetition operators to the last item, and
# to merge literals at the and (we're parsing grouped ( sequences ) recursively and don't treat '|' specially # to merge literals at the and (we're parsing grouped ( sequences ) recursively and don't treat '|' specially
# (GBNF's syntax is luckily very close to regular expressions!) # (GBNF's syntax is luckily very close to regular expressions!)
seq: list[Tuple[str, bool]] = [] seq: list[tuple[str, bool]] = []
def get_dot(): def get_dot():
if self._dotall: if self._dotall:

View File

@ -185,6 +185,8 @@ else:
fout.add_description("two-tower CLIP model") fout.add_description("two-tower CLIP model")
if has_text_encoder: if has_text_encoder:
assert t_hparams is not None
assert tokens is not None
# text_model hparams # text_model hparams
fout.add_uint32(k(KEY_CONTEXT_LENGTH, TEXT), t_hparams["max_position_embeddings"]) fout.add_uint32(k(KEY_CONTEXT_LENGTH, TEXT), t_hparams["max_position_embeddings"])
fout.add_uint32(k(KEY_EMBEDDING_LENGTH, TEXT), t_hparams["hidden_size"]) fout.add_uint32(k(KEY_EMBEDDING_LENGTH, TEXT), t_hparams["hidden_size"])
@ -259,8 +261,8 @@ if has_vision_encoder:
if processor is not None: if processor is not None:
image_mean = processor.image_processor.image_mean if args.image_mean is None or args.image_mean == default_image_mean else args.image_mean image_mean = processor.image_processor.image_mean if args.image_mean is None or args.image_mean == default_image_mean else args.image_mean # pyright: ignore[reportAttributeAccessIssue]
image_std = processor.image_processor.image_std if args.image_std is None or args.image_std == default_image_std else args.image_std image_std = processor.image_processor.image_std if args.image_std is None or args.image_std == default_image_std else args.image_std # pyright: ignore[reportAttributeAccessIssue]
else: else:
image_mean = args.image_mean if args.image_mean is not None else default_image_mean image_mean = args.image_mean if args.image_mean is not None else default_image_mean
image_std = args.image_std if args.image_std is not None else default_image_std image_std = args.image_std if args.image_std is not None else default_image_std
@ -272,7 +274,7 @@ fout.add_bool("clip.use_gelu", use_gelu)
if has_llava_projector: if has_llava_projector:
model.vision_model.encoder.layers.pop(-1) model.vision_model.encoder.layers.pop(-1) # pyright: ignore[reportAttributeAccessIssue]
projector = torch.load(args.llava_projector) projector = torch.load(args.llava_projector)
for name, data in projector.items(): for name, data in projector.items():
name = get_tensor_name(name) name = get_tensor_name(name)
@ -286,7 +288,7 @@ if has_llava_projector:
print("Projector tensors added\n") print("Projector tensors added\n")
state_dict = model.state_dict() state_dict = model.state_dict() # pyright: ignore[reportAttributeAccessIssue]
for name, data in state_dict.items(): for name, data in state_dict.items():
if should_skip_tensor(name, has_text_encoder, has_vision_encoder, has_llava_projector): if should_skip_tensor(name, has_text_encoder, has_vision_encoder, has_llava_projector):
# we don't need this # we don't need this

View File

@ -2,7 +2,9 @@ import argparse
import glob import glob
import os import os
import torch import torch
from safetensors.torch import load as safe_load, save as safe_save, safe_open, save_file from safetensors import safe_open
from safetensors.torch import save_file
from typing import Any, ContextManager, cast
# Function to determine if file is a SafeTensor file # Function to determine if file is a SafeTensor file
def is_safetensor_file(file_path): def is_safetensor_file(file_path):
@ -13,7 +15,7 @@ def is_safetensor_file(file_path):
def load_model(file_path): def load_model(file_path):
if is_safetensor_file(file_path): if is_safetensor_file(file_path):
tensors = {} tensors = {}
with safe_open(file_path, framework="pt", device="cpu") as f: with cast(ContextManager[Any], safe_open(file_path, framework="pt", device="cpu")) as f:
for key in f.keys(): for key in f.keys():
tensors[key] = f.get_tensor(key).clone() tensors[key] = f.get_tensor(key).clone()
# output shape # output shape
@ -134,7 +136,7 @@ if len(mm_tensors) == 0:
if last_checkpoint is not None: if last_checkpoint is not None:
for k, v in last_checkpoint.items(): for k, v in last_checkpoint.items():
print(k) print(k)
print(f"Found {len(mm_tensors)} tensors to extract out of {len(last_checkpoint)} tensors.") print(f"Found {len(mm_tensors)} tensors to extract out of {len(last_checkpoint) if last_checkpoint is not None else 0} tensors.")
print("No tensors found. Is this a LLaVA model?") print("No tensors found. Is this a LLaVA model?")
exit() exit()
@ -143,8 +145,10 @@ print(f"Found additional {len(first_mm_tensors)} tensors to extract.")
# projector = {name: checkpoint.[name].float() for name in mm_tensors} # projector = {name: checkpoint.[name].float() for name in mm_tensors}
projector = {} projector = {}
for name in mm_tensors: for name in mm_tensors:
assert last_checkpoint is not None
projector[name] = last_checkpoint[name].float() projector[name] = last_checkpoint[name].float()
for name in first_mm_tensors: for name in first_mm_tensors:
assert first_checkpoint is not None
projector[name] = first_checkpoint[name].float() projector[name] = first_checkpoint[name].float()
if len(projector) > 0: if len(projector) > 0:

View File

@ -1,6 +1,6 @@
# llama.cpp/examples/main # llama.cpp/examples/main
This example program allows you to use various LLaMA language models in an easy and efficient way. It is specifically designed to work with the [llama.cpp](https://github.com/ggerganov/llama.cpp) project, which provides a plain C/C++ implementation with optional 4-bit quantization support for faster, lower memory inference, and is optimized for desktop CPUs. This program can be used to perform various inference tasks with LLaMA models, including generating text based on user-provided prompts and chat-like interactions with reverse prompts. This example program allows you to use various LLaMA language models easily and efficiently. It is specifically designed to work with the [llama.cpp](https://github.com/ggerganov/llama.cpp) project, which provides a plain C/C++ implementation with optional 4-bit quantization support for faster, lower memory inference, and is optimized for desktop CPUs. This program can be used to perform various inference tasks with LLaMA models, including generating text based on user-provided prompts and chat-like interactions with reverse prompts.
## Table of Contents ## Table of Contents
@ -17,60 +17,59 @@ This example program allows you to use various LLaMA language models in an easy
To get started right away, run the following command, making sure to use the correct path for the model you have: To get started right away, run the following command, making sure to use the correct path for the model you have:
#### Unix-based systems (Linux, macOS, etc.): First, we will need to download a model. In these examples, we will use the Gemma model from the ggml-org repo on Hugging Face.
[https://huggingface.co/ggml-org/gemma-1.1-7b-it-Q4_K_M-GGUF/resolve/main/gemma-1.1-7b-it.Q4_K_M.gguf?download=true](https://huggingface.co/ggml-org/gemma-1.1-7b-it-Q4_K_M-GGUF/resolve/main/gemma-1.1-7b-it.Q4_K_M.gguf?download=true)
Once downloaded, place your model in the models folder in llama.cpp.
### Unix-based systems (Linux, macOS, etc.):
##### Input prompt (One-and-done)
```bash ```bash
./llama-cli -m models/7B/ggml-model.bin --prompt "Once upon a time" ./llama-cli -m models/gemma-1.1-7b-it.Q4_K_M.gguf --prompt "Once upon a time"
``` ```
##### Conversation mode (Allow for continuous interaction with the model)
#### Windows:
```powershell
llama-cli.exe -m models\7B\ggml-model.bin --prompt "Once upon a time"
```
For an interactive experience, try this command:
#### Unix-based systems (Linux, macOS, etc.):
```bash ```bash
./llama-cli -m models/7B/ggml-model.bin -n -1 --color -r "User:" --in-prefix " " -i -p \ ./llama-cli -m models/gemma-1.1-7b-it.Q4_K_M.gguf -cnv --chat-template gemma
'User: Hi
AI: Hello. I am an AI chatbot. Would you like to talk?
User: Sure!
AI: What would you like to talk about?
User:'
``` ```
#### Windows: ##### Infinite text from a starting prompt (you can use `Ctrl-C` to stop it):
```powershell
llama-cli.exe -m models\7B\ggml-model.bin -n -1 --color -r "User:" --in-prefix " " -i -e -p "User: Hi\nAI: Hello. I am an AI chatbot. Would you like to talk?\nUser: Sure!\nAI: What would you like to talk about?\nUser:"
```
The following command generates "infinite" text from a starting prompt (you can use `Ctrl-C` to stop it):
#### Unix-based systems (Linux, macOS, etc.):
```bash ```bash
./llama-cli -m models/7B/ggml-model.bin --ignore-eos -n -1 ./llama-cli -m models\gemma-1.1-7b-it.Q4_K_M.gguf --ignore-eos -n -1
``` ```
#### Windows: ### Windows:
##### Input prompt (One-and-done)
```powershell
./llama-cli.exe -m models\gemma-1.1-7b-it.Q4_K_M.gguf --prompt "Once upon a time"
```
##### Conversation mode (Allow for continuous interaction with the model)
```powershell ```powershell
llama-cli.exe -m models\7B\ggml-model.bin --ignore-eos -n -1 ./llama-cli.exe -m models\gemma-1.1-7b-it.Q4_K_M.gguf -cnv --chat-template gemma
```
#### Infinite text from a starting prompt (you can use `Ctrl-C` to stop it):
```powershell
llama-cli.exe -m models\gemma-1.1-7b-it.Q4_K_M.gguf --ignore-eos -n -1
``` ```
## Common Options ## Common Options
In this section, we cover the most commonly used options for running the `llama-cli` program with the LLaMA models: In this section, we cover the most commonly used options for running the `llama-cli` program with the LLaMA models:
- `-m FNAME, --model FNAME`: Specify the path to the LLaMA model file (e.g., `models/7B/ggml-model.gguf`; inferred from `--model-url` if set). - `-m FNAME, --model FNAME`: Specify the path to the LLaMA model file (e.g., `models/gemma-1.1-7b-it.Q4_K_M.gguf`; inferred from `--model-url` if set).
- `-mu MODEL_URL --model-url MODEL_URL`: Specify a remote http url to download the file (e.g https://huggingface.co/ggml-org/models/resolve/main/phi-2/ggml-model-q4_0.gguf). - `-mu MODEL_URL --model-url MODEL_URL`: Specify a remote http url to download the file (e.g [https://huggingface.co/ggml-org/gemma-1.1-7b-it-Q4_K_M-GGUF/resolve/main/gemma-1.1-7b-it.Q4_K_M.gguf?download=true](https://huggingface.co/ggml-org/gemma-1.1-7b-it-Q4_K_M-GGUF/resolve/main/gemma-1.1-7b-it.Q4_K_M.gguf?download=true)).
- `-i, --interactive`: Run the program in interactive mode, allowing you to provide input directly and receive real-time responses. - `-i, --interactive`: Run the program in interactive mode, allowing you to provide input directly and receive real-time responses.
- `-n N, --n-predict N`: Set the number of tokens to predict when generating text. Adjusting this value can influence the length of the generated text. - `-n N, --n-predict N`: Set the number of tokens to predict when generating text. Adjusting this value can influence the length of the generated text.
- `-c N, --ctx-size N`: Set the size of the prompt context. The default is 512, but LLaMA models were built with a context of 2048, which will provide better results for longer input/inference. - `-c N, --ctx-size N`: Set the size of the prompt context. The default is 512, but LLaMA models were built with a context of 2048, which will provide better results for longer input/inference.
- `-mli, --multiline-input`: Allows you to write or paste multiple lines without ending each in '\'
- `-t N, --threads N`: Set the number of threads to use during generation. For optimal performance, it is recommended to set this value to the number of physical CPU cores your system has.
- - `-ngl N, --n-gpu-layers N`: When compiled with GPU support, this option allows offloading some layers to the GPU for computation. Generally results in increased performance.
## Input Prompts ## Input Prompts
@ -90,6 +89,7 @@ In interactive mode, users can participate in text generation by injecting their
- `-i, --interactive`: Run the program in interactive mode, allowing users to engage in real-time conversations or provide specific instructions to the model. - `-i, --interactive`: Run the program in interactive mode, allowing users to engage in real-time conversations or provide specific instructions to the model.
- `--interactive-first`: Run the program in interactive mode and immediately wait for user input before starting the text generation. - `--interactive-first`: Run the program in interactive mode and immediately wait for user input before starting the text generation.
- `-cnv, --conversation`: Run the program in conversation mode (does not print special tokens and suffix/prefix, use default chat template) (default: false)
- `--color`: Enable colorized output to differentiate visually distinguishing between prompts, user input, and generated text. - `--color`: Enable colorized output to differentiate visually distinguishing between prompts, user input, and generated text.
By understanding and utilizing these interaction options, you can create engaging and dynamic experiences with the LLaMA models, tailoring the text generation process to your specific needs. By understanding and utilizing these interaction options, you can create engaging and dynamic experiences with the LLaMA models, tailoring the text generation process to your specific needs.
@ -117,6 +117,13 @@ The `--in-suffix` flag is used to add a suffix after your input. This is useful
```sh ```sh
./llama-cli -r "User:" --in-prefix " " --in-suffix "Assistant:" ./llama-cli -r "User:" --in-prefix " " --in-suffix "Assistant:"
``` ```
When --in-prefix or --in-suffix options are enabled the chat template ( --chat-template ) is disabled
### Chat templates
`--chat-template JINJA_TEMPLATE`: This option sets a custom jinja chat template. It accepts a string, not a file name. Default: template taken from model's metadata. Llama.cpp only supports [some pre-defined templates](https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template). These include llama2, llama3, gemma, monarch, chatml, orion, vicuna, vicuna-orca, deepseek, command-r, zephyr. When --in-prefix or --in-suffix options are enabled the chat template ( --chat-template ) is disabled.
Example usage: `--chat-template gemma`
## Context Management ## Context Management
@ -124,9 +131,7 @@ During text generation, LLaMA models have a limited context size, which means th
### Context Size ### Context Size
The `--ctx-size` option allows you to set the size of the prompt context used by the LLaMA models during text generation. A larger context size helps the model to better comprehend and generate responses for longer input or conversations. - `-c N, --ctx-size N`: Set the size of the prompt context (default: 0, 0 = loaded from model). The LLaMA models were built with a context of 2048-8192, which will yield the best results on longer input/inference.
- `-c N, --ctx-size N`: Set the size of the prompt context (default: 512). The LLaMA models were built with a context of 2048, which will yield the best results on longer input/inference. However, increasing the context size beyond 2048 may lead to unpredictable results.
### Extended Context Size ### Extended Context Size
@ -148,15 +153,15 @@ The following options allow you to control the text generation process and fine-
### Number of Tokens to Predict ### Number of Tokens to Predict
- `-n N, --n-predict N`: Set the number of tokens to predict when generating text (default: 128, -1 = infinity, -2 = until context filled) - `-n N, --predict N`: Set the number of tokens to predict when generating text (default: -1, -1 = infinity, -2 = until context filled)
The `--n-predict` option controls the number of tokens the model generates in response to the input prompt. By adjusting this value, you can influence the length of the generated text. A higher value will result in longer text, while a lower value will produce shorter text. The `--predict` option controls the number of tokens the model generates in response to the input prompt. By adjusting this value, you can influence the length of the generated text. A higher value will result in longer text, while a lower value will produce shorter text.
A value of -1 will enable infinite text generation, even though we have a finite context window. When the context window is full, some of the earlier tokens (half of the tokens after `--n-keep`) will be discarded. The context must then be re-evaluated before generation can resume. On large models and/or large context windows, this will result in significant pause in output. A value of -1 will enable infinite text generation, even though we have a finite context window. When the context window is full, some of the earlier tokens (half of the tokens after `--keep`) will be discarded. The context must then be re-evaluated before generation can resume. On large models and/or large context windows, this will result in a significant pause in output.
If the pause is undesirable, a value of -2 will stop generation immediately when the context is filled. If the pause is undesirable, a value of -2 will stop generation immediately when the context is filled.
It is important to note that the generated text may be shorter than the specified number of tokens if an End-of-Sequence (EOS) token or a reverse prompt is encountered. In interactive mode text generation will pause and control will be returned to the user. In non-interactive mode, the program will end. In both cases, the text generation may stop before reaching the specified `n-predict` value. If you want the model to keep going without ever producing End-of-Sequence on its own, you can use the `--ignore-eos` parameter. It is important to note that the generated text may be shorter than the specified number of tokens if an End-of-Sequence (EOS) token or a reverse prompt is encountered. In interactive mode, text generation will pause and control will be returned to the user. In non-interactive mode, the program will end. In both cases, the text generation may stop before reaching the specified `--predict` value. If you want the model to keep going without ever producing End-of-Sequence on its own, you can use the `--ignore-eos` parameter.
### Temperature ### Temperature
@ -164,15 +169,15 @@ It is important to note that the generated text may be shorter than the specifie
Temperature is a hyperparameter that controls the randomness of the generated text. It affects the probability distribution of the model's output tokens. A higher temperature (e.g., 1.5) makes the output more random and creative, while a lower temperature (e.g., 0.5) makes the output more focused, deterministic, and conservative. The default value is 0.8, which provides a balance between randomness and determinism. At the extreme, a temperature of 0 will always pick the most likely next token, leading to identical outputs in each run. Temperature is a hyperparameter that controls the randomness of the generated text. It affects the probability distribution of the model's output tokens. A higher temperature (e.g., 1.5) makes the output more random and creative, while a lower temperature (e.g., 0.5) makes the output more focused, deterministic, and conservative. The default value is 0.8, which provides a balance between randomness and determinism. At the extreme, a temperature of 0 will always pick the most likely next token, leading to identical outputs in each run.
Example usage: `--temp 0.5` Example usage: `--temp 0`
### Repeat Penalty ### Repeat Penalty
- `--repeat-penalty N`: Control the repetition of token sequences in the generated text (default: 1.1). - `--repeat-penalty N`: Control the repetition of token sequences in the generated text default: 1.0, 1.0 = disabled).
- `--repeat-last-n N`: Last n tokens to consider for penalizing repetition (default: 64, 0 = disabled, -1 = ctx-size). - `--repeat-last-n N`: Last n tokens to consider for penalizing repetition (default: 64, 0 = disabled, -1 = ctx-size).
- `--no-penalize-nl`: Disable penalization for newline tokens when applying the repeat penalty. - `--no-penalize-nl`: Disable penalization for newline tokens when applying the repeat penalty.
The `repeat-penalty` option helps prevent the model from generating repetitive or monotonous text. A higher value (e.g., 1.5) will penalize repetitions more strongly, while a lower value (e.g., 0.9) will be more lenient. The default value is 1.1. The `repeat-penalty` option helps prevent the model from generating repetitive or monotonous text. A higher value (e.g., 1.5) will penalize repetitions more strongly, while a lower value (e.g., 0.9) will be more lenient. The default value is 1.
The `repeat-last-n` option controls the number of tokens in the history to consider for penalizing repetition. A larger value will look further back in the generated text to prevent repetitions, while a smaller value will only consider recent tokens. A value of 0 disables the penalty, and a value of -1 sets the number of tokens considered equal to the context size (`ctx-size`). The `repeat-last-n` option controls the number of tokens in the history to consider for penalizing repetition. A larger value will look further back in the generated text to prevent repetitions, while a smaller value will only consider recent tokens. A value of 0 disables the penalty, and a value of -1 sets the number of tokens considered equal to the context size (`ctx-size`).
@ -196,19 +201,19 @@ Top-p sampling, also known as nucleus sampling, is another text generation metho
Example usage: `--top-p 0.95` Example usage: `--top-p 0.95`
### Min P Sampling ### Min-P Sampling
- `--min-p N`: Sets a minimum base probability threshold for token selection (default: 0.05). - `--min-p N`: Sets a minimum base probability threshold for token selection (default: 0.1).
The Min-P sampling method was designed as an alternative to Top-P, and aims to ensure a balance of quality and variety. The parameter *p* represents the minimum probability for a token to be considered, relative to the probability of the most likely token. For example, with *p*=0.05 and the most likely token having a probability of 0.9, logits with a value less than 0.045 are filtered out. The Min-P sampling method was designed as an alternative to Top-P, and aims to ensure a balance of quality and variety. The parameter *p* represents the minimum probability for a token to be considered, relative to the probability of the most likely token. For example, with *p*=0.05 and the most likely token having a probability of 0.9, logits with a value less than 0.045 are filtered out.
Example usage: `--min-p 0.05` Example usage: `--min-p 0.05`
### Tail Free Sampling (TFS) ### Tail-Free Sampling (TFS)
- `--tfs N`: Enable tail free sampling with parameter z (default: 1.0, 1.0 = disabled). - `--tfs N`: Enable tail free sampling with parameter z (default: 1.0, 1.0 = disabled).
Tail free sampling (TFS) is a text generation technique that aims to reduce the impact of less likely tokens, which may be less relevant, less coherent, or nonsensical, on the output. Similar to Top-P it tries to determine the bulk of the most likely tokens dynamically. But TFS filters out logits based on the second derivative of their probabilities. Adding tokens is stopped after the sum of the second derivatives reaches the parameter z. In short: TFS looks how quickly the probabilities of the tokens decrease and cuts off the tail of unlikely tokens using the parameter z. Typical values for z are in the range of 0.9 to 0.95. A value of 1.0 would include all tokens, and thus disables the effect of TFS. Tail-free sampling (TFS) is a text generation technique that aims to reduce the impact of less likely tokens, which may be less relevant, less coherent, or nonsensical, on the output. Similar to Top-P it tries to determine the bulk of the most likely tokens dynamically. But TFS filters out logits based on the second derivative of their probabilities. Adding tokens is stopped after the sum of the second derivatives reaches the parameter z. In short: TFS looks at how quickly the probabilities of the tokens decrease and cuts off the tail of unlikely tokens using the parameter z. Typical values for z are in the range of 0.9 to 0.95. A value of 1.0 would include all tokens and thus disables the effect of TFS.
Example usage: `--tfs 0.95` Example usage: `--tfs 0.95`
@ -307,10 +312,8 @@ These options provide extra functionality and customization when running the LLa
- `-h, --help`: Display a help message showing all available options and their default values. This is particularly useful for checking the latest options and default values, as they can change frequently, and the information in this document may become outdated. - `-h, --help`: Display a help message showing all available options and their default values. This is particularly useful for checking the latest options and default values, as they can change frequently, and the information in this document may become outdated.
- `--verbose-prompt`: Print the prompt before generating text. - `--verbose-prompt`: Print the prompt before generating text.
- `-ngl N, --n-gpu-layers N`: When compiled with GPU support, this option allows offloading some layers to the GPU for computation. Generally results in increased performance.
- `-mg i, --main-gpu i`: When using multiple GPUs this option controls which GPU is used for small tensors for which the overhead of splitting the computation across all GPUs is not worthwhile. The GPU in question will use slightly more VRAM to store a scratch buffer for temporary results. By default GPU 0 is used. - `-mg i, --main-gpu i`: When using multiple GPUs this option controls which GPU is used for small tensors for which the overhead of splitting the computation across all GPUs is not worthwhile. The GPU in question will use slightly more VRAM to store a scratch buffer for temporary results. By default GPU 0 is used.
- `-ts SPLIT, --tensor-split SPLIT`: When using multiple GPUs this option controls how large tensors should be split across all GPUs. `SPLIT` is a comma-separated list of non-negative values that assigns the proportion of data that each GPU should get in order. For example, "3,2" will assign 60% of the data to GPU 0 and 40% to GPU 1. By default the data is split in proportion to VRAM but this may not be optimal for performance. - `-ts SPLIT, --tensor-split SPLIT`: When using multiple GPUs this option controls how large tensors should be split across all GPUs. `SPLIT` is a comma-separated list of non-negative values that assigns the proportion of data that each GPU should get in order. For example, "3,2" will assign 60% of the data to GPU 0 and 40% to GPU 1. By default the data is split in proportion to VRAM but this may not be optimal for performance.
- `--lora FNAME`: Apply a LoRA (Low-Rank Adaptation) adapter to the model (implies --no-mmap). This allows you to adapt the pretrained model to specific tasks or domains. - `--lora FNAME`: Apply a LoRA (Low-Rank Adaptation) adapter to the model (implies --no-mmap). This allows you to adapt the pretrained model to specific tasks or domains.
- `--lora-base FNAME`: Optional model to use as a base for the layers modified by the LoRA adapter. This flag is used in conjunction with the `--lora` flag, and specifies the base model for the adaptation. - `--lora-base FNAME`: Optional model to use as a base for the layers modified by the LoRA adapter. This flag is used in conjunction with the `--lora` flag, and specifies the base model for the adaptation.
- `-hfr URL --hf-repo URL`: The url to the Hugging Face model repository. Used in conjunction with `--hf-file` or `-hff`. The model is downloaded and stored in the file provided by `-m` or `--model`. If `-m` is not provided, the model is auto-stored in the path specified by the `LLAMA_CACHE` environment variable or in an OS-specific local cache. - `-hfr URL --hf-repo URL`: The url to the Hugging Face model repository. Used in conjunction with `--hf-file` or `-hff`. The model is downloaded and stored in the file provided by `-m` or `--model`. If `-m` is not provided, the model is auto-stored in the path specified by the `LLAMA_CACHE` environment variable or in an OS-specific local cache.

View File

@ -6,10 +6,10 @@ import re
from copy import copy from copy import copy
from enum import Enum from enum import Enum
from inspect import getdoc, isclass from inspect import getdoc, isclass
from typing import TYPE_CHECKING, Any, Callable, List, Optional, Union, get_args, get_origin, get_type_hints from typing import TYPE_CHECKING, Any, Callable, List, Optional, Union, get_args, get_origin
from docstring_parser import parse from docstring_parser import parse
from pydantic import BaseModel, Field, create_model from pydantic import BaseModel, create_model
if TYPE_CHECKING: if TYPE_CHECKING:
from types import GenericAlias from types import GenericAlias
@ -17,6 +17,9 @@ else:
# python 3.8 compat # python 3.8 compat
from typing import _GenericAlias as GenericAlias from typing import _GenericAlias as GenericAlias
# TODO: fix this
# pyright: reportAttributeAccessIssue=information
class PydanticDataType(Enum): class PydanticDataType(Enum):
""" """
@ -234,8 +237,9 @@ def generate_gbnf_float_rules(max_digit=None, min_digit=None, max_precision=None
# Define the integer part rule # Define the integer part rule
integer_part_rule = ( integer_part_rule = (
"integer-part" + (f"-max{max_digit}" if max_digit is not None else "") + ( "integer-part"
f"-min{min_digit}" if min_digit is not None else "") + (f"-max{max_digit}" if max_digit is not None else "")
+ (f"-min{min_digit}" if min_digit is not None else "")
) )
# Define the fractional part rule based on precision constraints # Define the fractional part rule based on precision constraints
@ -458,7 +462,7 @@ def generate_gbnf_grammar(model: type[BaseModel], processed_models: set[type[Bas
if not issubclass(model, BaseModel): if not issubclass(model, BaseModel):
# For non-Pydantic classes, generate model_fields from __annotations__ or __init__ # For non-Pydantic classes, generate model_fields from __annotations__ or __init__
if hasattr(model, "__annotations__") and model.__annotations__: if hasattr(model, "__annotations__") and model.__annotations__:
model_fields = {name: (typ, ...) for name, typ in model.__annotations__.items()} model_fields = {name: (typ, ...) for name, typ in model.__annotations__.items()} # pyright: ignore[reportGeneralTypeIssues]
else: else:
init_signature = inspect.signature(model.__init__) init_signature = inspect.signature(model.__init__)
parameters = init_signature.parameters parameters = init_signature.parameters
@ -680,7 +684,7 @@ def generate_markdown_documentation(
str: Generated text documentation. str: Generated text documentation.
""" """
documentation = "" documentation = ""
pyd_models = [(model, True) for model in pydantic_models] pyd_models: list[tuple[type[BaseModel], bool]] = [(model, True) for model in pydantic_models]
for model, add_prefix in pyd_models: for model, add_prefix in pyd_models:
if add_prefix: if add_prefix:
documentation += f"{model_prefix}: {model.__name__}\n" documentation += f"{model_prefix}: {model.__name__}\n"
@ -700,7 +704,7 @@ def generate_markdown_documentation(
# Indenting the fields section # Indenting the fields section
documentation += f" {fields_prefix}:\n" documentation += f" {fields_prefix}:\n"
else: else:
documentation += f" Fields:\n" documentation += f" Fields:\n" # noqa: F541
if isclass(model) and issubclass(model, BaseModel): if isclass(model) and issubclass(model, BaseModel):
for name, field_type in model.__annotations__.items(): for name, field_type in model.__annotations__.items():
# if name == "markdown_code_block": # if name == "markdown_code_block":
@ -778,7 +782,7 @@ def generate_field_markdown(
return field_text return field_text
if field_description != "": if field_description != "":
field_text += f" Description: " + field_description + "\n" field_text += f" Description: {field_description}\n"
# Check for and include field-specific examples if available # Check for and include field-specific examples if available
if hasattr(model, "Config") and hasattr(model.Config, if hasattr(model, "Config") and hasattr(model.Config,
@ -833,7 +837,7 @@ def generate_text_documentation(
str: Generated text documentation. str: Generated text documentation.
""" """
documentation = "" documentation = ""
pyd_models = [(model, True) for model in pydantic_models] pyd_models: list[tuple[type[BaseModel], bool]] = [(model, True) for model in pydantic_models]
for model, add_prefix in pyd_models: for model, add_prefix in pyd_models:
if add_prefix: if add_prefix:
documentation += f"{model_prefix}: {model.__name__}\n" documentation += f"{model_prefix}: {model.__name__}\n"
@ -1164,7 +1168,7 @@ def create_dynamic_model_from_function(func: Callable[..., Any]):
dynamic_fields[param.name] = ( dynamic_fields[param.name] = (
param.annotation if param.annotation != inspect.Parameter.empty else str, default_value) param.annotation if param.annotation != inspect.Parameter.empty else str, default_value)
# Creating the dynamic model # Creating the dynamic model
dynamic_model = create_model(f"{func.__name__}", **dynamic_fields) # type: ignore[call-overload] dynamic_model = create_model(f"{func.__name__}", **dynamic_fields)
for name, param_doc in param_docs: for name, param_doc in param_docs:
dynamic_model.model_fields[name].description = param_doc.description dynamic_model.model_fields[name].description = param_doc.description
@ -1228,9 +1232,6 @@ def map_grammar_names_to_pydantic_model_class(pydantic_model_list):
return output return output
from enum import Enum
def json_schema_to_python_types(schema): def json_schema_to_python_types(schema):
type_map = { type_map = {
"any": Any, "any": Any,
@ -1275,7 +1276,7 @@ def convert_dictionary_to_pydantic_model(dictionary: dict[str, Any], model_name:
if items != {}: if items != {}:
array = {"properties": items} array = {"properties": items}
array_type = convert_dictionary_to_pydantic_model(array, f"{model_name}_{field_name}_items") array_type = convert_dictionary_to_pydantic_model(array, f"{model_name}_{field_name}_items")
fields[field_name] = (List[array_type], ...) # type: ignore[valid-type] fields[field_name] = (List[array_type], ...)
else: else:
fields[field_name] = (list, ...) fields[field_name] = (list, ...)
elif field_type == "object": elif field_type == "object":
@ -1285,7 +1286,8 @@ def convert_dictionary_to_pydantic_model(dictionary: dict[str, Any], model_name:
required = field_data.get("enum", []) required = field_data.get("enum", [])
for key, field in fields.items(): for key, field in fields.items():
if key not in required: if key not in required:
fields[key] = (Optional[fields[key][0]], ...) optional_type = fields[key][0]
fields[key] = (Optional[optional_type], ...)
else: else:
field_type = json_schema_to_python_types(field_type) field_type = json_schema_to_python_types(field_type)
fields[field_name] = (field_type, ...) fields[field_name] = (field_type, ...)
@ -1305,6 +1307,7 @@ def convert_dictionary_to_pydantic_model(dictionary: dict[str, Any], model_name:
required = dictionary.get("required", []) required = dictionary.get("required", [])
for key, field in fields.items(): for key, field in fields.items():
if key not in required: if key not in required:
fields[key] = (Optional[fields[key][0]], ...) optional_type = fields[key][0]
fields[key] = (Optional[optional_type], ...)
custom_model = create_model(model_name, **fields) custom_model = create_model(model_name, **fields)
return custom_model return custom_model

View File

@ -1,6 +1,7 @@
# Function calling example using pydantic models. # Function calling example using pydantic models.
from __future__ import annotations
import datetime import datetime
import importlib
import json import json
from enum import Enum from enum import Enum
from typing import Optional, Union from typing import Optional, Union
@ -215,9 +216,9 @@ for call in json_data:
if call["function"] == "Calculator": if call["function"] == "Calculator":
print(Calculator(**call["params"]).run()) print(Calculator(**call["params"]).run())
elif call["function"] == "get_current_datetime": elif call["function"] == "get_current_datetime":
print(current_datetime_model(**call["params"]).run()) print(current_datetime_model(**call["params"]).run()) # pyright: ignore[reportAttributeAccessIssue]
elif call["function"] == "get_current_weather": elif call["function"] == "get_current_weather":
print(current_weather_tool_model(**call["params"]).run()) print(current_weather_tool_model(**call["params"]).run()) # pyright: ignore[reportAttributeAccessIssue]
# Should output something like this: # Should output something like this:
# 2024-01-14 13:36:06 # 2024-01-14 13:36:06
# {"location": "London", "temperature": "42", "unit": "celsius"} # {"location": "London", "temperature": "42", "unit": "celsius"}

View File

@ -1,3 +1,5 @@
from __future__ import annotations
import argparse import argparse
import json import json
import os import os
@ -59,10 +61,11 @@ def main(args_in: list[str] | None = None) -> None:
sys.exit(1) sys.exit(1)
# start the benchmark # start the benchmark
iterations = 0
data = {}
try: try:
start_benchmark(args) start_benchmark(args)
iterations = 0
with open("results.github.env", 'w') as github_env: with open("results.github.env", 'w') as github_env:
# parse output # parse output
with open('k6-results.json', 'r') as bench_results: with open('k6-results.json', 'r') as bench_results:
@ -129,7 +132,7 @@ def main(args_in: list[str] | None = None) -> None:
timestamps, metric_values = zip(*values) timestamps, metric_values = zip(*values)
metric_values = [float(value) for value in metric_values] metric_values = [float(value) for value in metric_values]
prometheus_metrics[metric] = metric_values prometheus_metrics[metric] = metric_values
timestamps_dt = [datetime.fromtimestamp(int(ts)) for ts in timestamps] timestamps_dt = [str(datetime.fromtimestamp(int(ts))) for ts in timestamps]
plt.figure(figsize=(16, 10), dpi=80) plt.figure(figsize=(16, 10), dpi=80)
plt.plot(timestamps_dt, metric_values, label=metric) plt.plot(timestamps_dt, metric_values, label=metric)
plt.xticks(rotation=0, fontsize=14, horizontalalignment='center', alpha=.7) plt.xticks(rotation=0, fontsize=14, horizontalalignment='center', alpha=.7)
@ -156,7 +159,7 @@ def main(args_in: list[str] | None = None) -> None:
plt.close() plt.close()
# Mermaid format in case images upload failed # Mermaid format in case images upload failed
with (open(f"{metric}.mermaid", 'w') as mermaid_f): with open(f"{metric}.mermaid", 'w') as mermaid_f:
mermaid = ( mermaid = (
f"""--- f"""---
config: config:
@ -278,7 +281,7 @@ def start_server_background(args):
} }
server_process = subprocess.Popen( server_process = subprocess.Popen(
args, args,
**pkwargs) **pkwargs) # pyright: ignore[reportArgumentType, reportCallIssue]
def server_log(in_stream, out_stream): def server_log(in_stream, out_stream):
for line in iter(in_stream.readline, b''): for line in iter(in_stream.readline, b''):

View File

@ -1,5 +1,4 @@
import asyncio import asyncio
import collections
import json import json
import os import os
import re import re
@ -8,19 +7,23 @@ import subprocess
import sys import sys
import threading import threading
import time import time
from collections.abc import Sequence
from contextlib import closing from contextlib import closing
from re import RegexFlag from re import RegexFlag
from typing import Any, Literal, cast
import aiohttp import aiohttp
import numpy as np import numpy as np
import openai import openai
from behave import step from openai.types.chat import ChatCompletionChunk
from behave import step # pyright: ignore[reportAttributeAccessIssue]
from behave.api.async_step import async_run_until_complete from behave.api.async_step import async_run_until_complete
from prometheus_client import parser from prometheus_client import parser
# pyright: reportRedeclaration=false
@step("a server listening on {server_fqdn}:{server_port}") @step("a server listening on {server_fqdn}:{server_port}")
def step_server_config(context, server_fqdn, server_port): def step_server_config(context, server_fqdn: str, server_port: str):
context.server_fqdn = server_fqdn context.server_fqdn = server_fqdn
context.server_port = int(server_port) context.server_port = int(server_port)
context.n_threads = None context.n_threads = None
@ -74,34 +77,34 @@ def step_server_config(context, server_fqdn, server_port):
@step('a model file {hf_file} from HF repo {hf_repo}') @step('a model file {hf_file} from HF repo {hf_repo}')
def step_download_hf_model(context, hf_file, hf_repo): def step_download_hf_model(context, hf_file: str, hf_repo: str):
context.model_hf_repo = hf_repo context.model_hf_repo = hf_repo
context.model_hf_file = hf_file context.model_hf_file = hf_file
context.model_file = os.path.basename(hf_file) context.model_file = os.path.basename(hf_file)
@step('a model file {model_file}') @step('a model file {model_file}')
def step_model_file(context, model_file): def step_model_file(context, model_file: str):
context.model_file = model_file context.model_file = model_file
@step('a model url {model_url}') @step('a model url {model_url}')
def step_model_url(context, model_url): def step_model_url(context, model_url: str):
context.model_url = model_url context.model_url = model_url
@step('a model alias {model_alias}') @step('a model alias {model_alias}')
def step_model_alias(context, model_alias): def step_model_alias(context, model_alias: str):
context.model_alias = model_alias context.model_alias = model_alias
@step('{seed:d} as server seed') @step('{seed:d} as server seed')
def step_seed(context, seed): def step_seed(context, seed: int):
context.server_seed = seed context.server_seed = seed
@step('{ngl:d} GPU offloaded layers') @step('{ngl:d} GPU offloaded layers')
def step_n_gpu_layer(context, ngl): def step_n_gpu_layer(context, ngl: int):
if 'N_GPU_LAYERS' in os.environ: if 'N_GPU_LAYERS' in os.environ:
new_ngl = int(os.environ['N_GPU_LAYERS']) new_ngl = int(os.environ['N_GPU_LAYERS'])
if context.debug: if context.debug:
@ -111,37 +114,37 @@ def step_n_gpu_layer(context, ngl):
@step('{n_threads:d} threads') @step('{n_threads:d} threads')
def step_n_threads(context, n_threads): def step_n_threads(context, n_threads: int):
context.n_thread = n_threads context.n_thread = n_threads
@step('{draft:d} as draft') @step('{draft:d} as draft')
def step_draft(context, draft): def step_draft(context, draft: int):
context.draft = draft context.draft = draft
@step('{n_ctx:d} KV cache size') @step('{n_ctx:d} KV cache size')
def step_n_ctx(context, n_ctx): def step_n_ctx(context, n_ctx: int):
context.n_ctx = n_ctx context.n_ctx = n_ctx
@step('{n_slots:d} slots') @step('{n_slots:d} slots')
def step_n_slots(context, n_slots): def step_n_slots(context, n_slots: int):
context.n_slots = n_slots context.n_slots = n_slots
@step('{n_predict:d} server max tokens to predict') @step('{n_predict:d} server max tokens to predict')
def step_server_n_predict(context, n_predict): def step_server_n_predict(context, n_predict: int):
context.n_server_predict = n_predict context.n_server_predict = n_predict
@step('{slot_save_path} as slot save path') @step('{slot_save_path} as slot save path')
def step_slot_save_path(context, slot_save_path): def step_slot_save_path(context, slot_save_path: str):
context.slot_save_path = slot_save_path context.slot_save_path = slot_save_path
@step('using slot id {id_slot:d}') @step('using slot id {id_slot:d}')
def step_id_slot(context, id_slot): def step_id_slot(context, id_slot: int):
context.id_slot = id_slot context.id_slot = id_slot
@ -191,7 +194,7 @@ def step_start_server(context):
@step("the server is {expecting_status}") @step("the server is {expecting_status}")
@async_run_until_complete @async_run_until_complete
async def step_wait_for_the_server_to_be_started(context, expecting_status): async def step_wait_for_the_server_to_be_started(context, expecting_status: Literal['healthy', 'ready', 'idle', 'busy'] | str):
match expecting_status: match expecting_status:
case 'healthy': case 'healthy':
await wait_for_health_status(context, context.base_url, 200, 'ok', await wait_for_health_status(context, context.base_url, 200, 'ok',
@ -221,7 +224,7 @@ async def step_wait_for_the_server_to_be_started(context, expecting_status):
@step('all slots are {expected_slot_status_string}') @step('all slots are {expected_slot_status_string}')
@async_run_until_complete @async_run_until_complete
async def step_all_slots_status(context, expected_slot_status_string): async def step_all_slots_status(context, expected_slot_status_string: Literal['idle', 'busy'] | str):
match expected_slot_status_string: match expected_slot_status_string:
case 'idle': case 'idle':
expected_slot_status = 0 expected_slot_status = 0
@ -237,7 +240,7 @@ async def step_all_slots_status(context, expected_slot_status_string):
@step('a completion request with {api_error} api error') @step('a completion request with {api_error} api error')
@async_run_until_complete @async_run_until_complete
async def step_request_completion(context, api_error): async def step_request_completion(context, api_error: Literal['raised'] | str):
expect_api_error = api_error == 'raised' expect_api_error = api_error == 'raised'
seeds = await completions_seed(context, num_seeds=1) seeds = await completions_seed(context, num_seeds=1)
completion = await request_completion(context.prompts.pop(), completion = await request_completion(context.prompts.pop(),
@ -777,8 +780,8 @@ def step_assert_metric_value(context, metric_name, metric_value):
def step_available_models(context): def step_available_models(context):
# openai client always expects an api_key # openai client always expects an api_key
openai.api_key = context.user_api_key if context.user_api_key is not None else 'nope' openai.api_key = context.user_api_key if context.user_api_key is not None else 'nope'
openai.api_base = f'{context.base_url}/v1' openai.base_url = f'{context.base_url}/v1/'
context.models = openai.Model.list().data context.models = openai.models.list().data
@step('{n_model:d} models are supported') @step('{n_model:d} models are supported')
@ -789,7 +792,7 @@ def step_supported_models(context, n_model):
@step('model {i_model:d} is {param} {preposition} {param_value}') @step('model {i_model:d} is {param} {preposition} {param_value}')
def step_supported_models(context, i_model, param, preposition, param_value): def step_supported_models(context, i_model: int, param: Literal['identified', 'trained'] | str, preposition: str, param_value: str):
assert i_model < len(context.models) assert i_model < len(context.models)
model = context.models[i_model] model = context.models[i_model]
@ -798,7 +801,7 @@ def step_supported_models(context, i_model, param, preposition, param_value):
case 'identified': case 'identified':
value = model.id value = model.id
case 'trained': case 'trained':
value = str(model.meta.n_ctx_train) value = str(model.meta["n_ctx_train"])
case _: case _:
assert False, "param {param} not supported" assert False, "param {param} not supported"
assert param_value == value, f"model param {param} {value} != {param_value}" assert param_value == value, f"model param {param} {value} != {param_value}"
@ -810,6 +813,7 @@ async def concurrent_requests(context, f_completion, *args, **kwargs):
print(f"starting {context.n_prompts} concurrent completion requests...") print(f"starting {context.n_prompts} concurrent completion requests...")
assert context.n_prompts > 0 assert context.n_prompts > 0
seeds = await completions_seed(context) seeds = await completions_seed(context)
assert seeds is not None
for prompt_no in range(context.n_prompts): for prompt_no in range(context.n_prompts):
shifted_args = [context.prompts.pop(), seeds[prompt_no], *args] shifted_args = [context.prompts.pop(), seeds[prompt_no], *args]
context.concurrent_tasks.append(asyncio.create_task(f_completion(*shifted_args, **kwargs))) context.concurrent_tasks.append(asyncio.create_task(f_completion(*shifted_args, **kwargs)))
@ -861,7 +865,7 @@ async def request_completion(prompt,
id_slot=None, id_slot=None,
expect_api_error=None, expect_api_error=None,
user_api_key=None, user_api_key=None,
temperature=None): temperature=None) -> int | dict[str, Any]:
if debug: if debug:
print(f"Sending completion request: {prompt}") print(f"Sending completion request: {prompt}")
origin = "my.super.domain" origin = "my.super.domain"
@ -899,8 +903,8 @@ async def request_completion(prompt,
async def oai_chat_completions(user_prompt, async def oai_chat_completions(user_prompt,
seed, seed,
system_prompt, system_prompt,
base_url, base_url: str,
base_path, base_path: str,
async_client, async_client,
debug=False, debug=False,
temperature=None, temperature=None,
@ -909,7 +913,7 @@ async def oai_chat_completions(user_prompt,
enable_streaming=None, enable_streaming=None,
response_format=None, response_format=None,
user_api_key=None, user_api_key=None,
expect_api_error=None): expect_api_error=None) -> int | dict[str, Any]:
if debug: if debug:
print(f"Sending OAI Chat completions request: {user_prompt}") print(f"Sending OAI Chat completions request: {user_prompt}")
# openai client always expects an api key # openai client always expects an api key
@ -989,32 +993,35 @@ async def oai_chat_completions(user_prompt,
else: else:
try: try:
openai.api_key = user_api_key openai.api_key = user_api_key
openai.api_base = f'{base_url}{base_path}' openai.base_url = f'{base_url}{base_path.removesuffix("chat")}'
chat_completion = openai.Completion.create( assert model is not None
chat_completion = openai.chat.completions.create(
messages=payload['messages'], messages=payload['messages'],
model=model, model=model,
max_tokens=n_predict, max_tokens=n_predict,
stream=enable_streaming, stream=enable_streaming,
response_format=payload.get('response_format'), response_format=payload.get('response_format') or openai.NOT_GIVEN,
seed=seed, seed=seed,
temperature=payload['temperature'] temperature=payload['temperature']
) )
except openai.error.AuthenticationError as e: except openai.AuthenticationError as e:
if expect_api_error is not None and expect_api_error: if expect_api_error is not None and expect_api_error:
return 401 return 401
else: else:
assert False, f'error raised: {e}' assert False, f'error raised: {e}'
if enable_streaming: if enable_streaming:
chat_completion = cast(openai.Stream[ChatCompletionChunk], chat_completion)
for chunk in chat_completion: for chunk in chat_completion:
assert len(chunk.choices) == 1 assert len(chunk.choices) == 1
delta = chunk.choices[0].delta delta = chunk.choices[0].delta
if 'content' in delta: if delta.content is not None:
completion_response['content'] += delta['content'] completion_response['content'] += delta.content
completion_response['timings']['predicted_n'] += 1 completion_response['timings']['predicted_n'] += 1
completion_response['truncated'] = chunk.choices[0].finish_reason != 'stop' completion_response['truncated'] = chunk.choices[0].finish_reason != 'stop'
else: else:
assert len(chat_completion.choices) == 1 assert len(chat_completion.choices) == 1
assert chat_completion.usage is not None
completion_response = { completion_response = {
'content': chat_completion.choices[0].message.content, 'content': chat_completion.choices[0].message.content,
'timings': { 'timings': {
@ -1028,7 +1035,7 @@ async def oai_chat_completions(user_prompt,
return completion_response return completion_response
async def request_embedding(content, seed, base_url=None): async def request_embedding(content, seed, base_url=None) -> list[list[float]]:
async with aiohttp.ClientSession() as session: async with aiohttp.ClientSession() as session:
async with session.post(f'{base_url}/embedding', async with session.post(f'{base_url}/embedding',
json={ json={
@ -1041,7 +1048,7 @@ async def request_embedding(content, seed, base_url=None):
async def request_oai_embeddings(input, seed, async def request_oai_embeddings(input, seed,
base_url=None, user_api_key=None, base_url=None, user_api_key=None,
model=None, async_client=False): model=None, async_client=False) -> list[list[float]]:
# openai client always expects an api_key # openai client always expects an api_key
user_api_key = user_api_key if user_api_key is not None else 'nope' user_api_key = user_api_key if user_api_key is not None else 'nope'
if async_client: if async_client:
@ -1063,7 +1070,7 @@ async def request_oai_embeddings(input, seed,
response_json = await response.json() response_json = await response.json()
assert response_json['model'] == model, f"invalid model received: {response_json['model']}" assert response_json['model'] == model, f"invalid model received: {response_json['model']}"
assert response_json['object'] == 'list' assert response_json['object'] == 'list'
if isinstance(input, collections.abc.Sequence): if isinstance(input, Sequence):
embeddings = [] embeddings = []
for an_oai_embeddings in response_json['data']: for an_oai_embeddings in response_json['data']:
embeddings.append(an_oai_embeddings['embedding']) embeddings.append(an_oai_embeddings['embedding'])
@ -1072,19 +1079,14 @@ async def request_oai_embeddings(input, seed,
return embeddings return embeddings
else: else:
openai.api_key = user_api_key openai.api_key = user_api_key
openai.api_base = f'{base_url}/v1' openai.base_url = f'{base_url}/v1/'
oai_embeddings = openai.Embedding.create( assert model is not None
oai_embeddings = openai.embeddings.create(
model=model, model=model,
input=input, input=input,
) )
if isinstance(input, collections.abc.Sequence): return [e.embedding for e in oai_embeddings.data]
embeddings = []
for an_oai_embeddings in oai_embeddings.data:
embeddings.append(an_oai_embeddings.embedding)
else:
embeddings = [oai_embeddings.data.embedding]
return embeddings
def assert_n_tokens_predicted(completion_response, expected_predicted_n=None, re_content=None): def assert_n_tokens_predicted(completion_response, expected_predicted_n=None, re_content=None):
@ -1122,7 +1124,7 @@ def assert_all_predictions_equal(completion_responses):
if i == j: if i == j:
continue continue
content_j = response_j['content'] content_j = response_j['content']
assert content_i == content_j, "contents not equal" assert content_i == content_j, "contents not equal"
def assert_all_predictions_different(completion_responses): def assert_all_predictions_different(completion_responses):
@ -1136,7 +1138,7 @@ def assert_all_predictions_different(completion_responses):
if i == j: if i == j:
continue continue
content_j = response_j['content'] content_j = response_j['content']
assert content_i != content_j, "contents not different" assert content_i != content_j, "contents not different"
def assert_all_token_probabilities_equal(completion_responses): def assert_all_token_probabilities_equal(completion_responses):
@ -1153,7 +1155,7 @@ def assert_all_token_probabilities_equal(completion_responses):
if i == j: if i == j:
continue continue
probs_j = response_j['completion_probabilities'][pos]['probs'] probs_j = response_j['completion_probabilities'][pos]['probs']
assert probs_i == probs_j, "contents not equal" assert probs_i == probs_j, "contents not equal"
async def gather_tasks_results(context): async def gather_tasks_results(context):
@ -1343,7 +1345,7 @@ def start_server_background(context):
} }
context.server_process = subprocess.Popen( context.server_process = subprocess.Popen(
[str(arg) for arg in [context.server_path, *server_args]], [str(arg) for arg in [context.server_path, *server_args]],
**pkwargs) **pkwargs) # pyright: ignore[reportArgumentType, reportCallIssue]
def server_log(in_stream, out_stream): def server_log(in_stream, out_stream):
for line in iter(in_stream.readline, b''): for line in iter(in_stream.readline, b''):

View File

@ -1,6 +1,6 @@
aiohttp~=3.9.3 aiohttp~=3.9.3
behave~=1.2.6 behave~=1.2.6
huggingface_hub~=0.20.3 huggingface_hub~=0.20.3
numpy~=1.24.4 numpy~=1.26.4
openai~=0.25.0 openai~=1.30.3
prometheus-client~=0.20.0 prometheus-client~=0.20.0

View File

@ -1,13 +1,15 @@
import asyncio import asyncio
import asyncio.threads
import requests import requests
import numpy as np import numpy as np
n = 8 n = 8
result = [] result = []
async def requests_post_async(*args, **kwargs): async def requests_post_async(*args, **kwargs):
return await asyncio.to_thread(requests.post, *args, **kwargs) return await asyncio.threads.to_thread(requests.post, *args, **kwargs)
async def main(): async def main():
model_url = "http://127.0.0.1:6900" model_url = "http://127.0.0.1:6900"

View File

@ -66,7 +66,7 @@ class Tensor:
if len(self.ne) == 0: if len(self.ne) == 0:
self.nbytes = 0 self.nbytes = 0
else: else:
self.nbytes = int(np.product(self.ne)) * 4 self.nbytes = int(np.prod(self.ne)) * 4
else: else:
raise ValueError(f"Unhandled data type '{self.dtype}'") raise ValueError(f"Unhandled data type '{self.dtype}'")

View File

@ -99,6 +99,8 @@ async def main():
tasks = [] tasks = []
base_dict = {"FLOAT_TYPE": "float"}
for fp16 in (False, True): for fp16 in (False, True):
# MUL_MAT # MUL_MAT
matmul_shaders(tasks, fp16, False) matmul_shaders(tasks, fp16, False)
@ -106,8 +108,6 @@ async def main():
matmul_shaders(tasks, fp16, True) matmul_shaders(tasks, fp16, True)
for tname in type_names: for tname in type_names:
base_dict = {"FLOAT_TYPE": "float"}
# mul mat vec # mul mat vec
data_a_key = f"DATA_A_{tname.upper()}" data_a_key = f"DATA_A_{tname.upper()}"
shader = f"mul_mat_vec_{tname}.comp" if tname.endswith("_k") else "mul_mat_vec.comp" shader = f"mul_mat_vec_{tname}.comp" if tname.endswith("_k") else "mul_mat_vec.comp"

View File

@ -67,7 +67,7 @@ class ReaderTensor(NamedTuple):
class GGUFReader: class GGUFReader:
# I - same as host, S - swapped # I - same as host, S - swapped
byte_order: Literal['I'] | Literal['S'] = 'I' byte_order: Literal['I', 'S'] = 'I'
alignment: int = GGUF_DEFAULT_ALIGNMENT alignment: int = GGUF_DEFAULT_ALIGNMENT
data_offset: int data_offset: int
@ -86,7 +86,7 @@ class GGUFReader:
GGUFValueType.BOOL: np.bool_, GGUFValueType.BOOL: np.bool_,
} }
def __init__(self, path: os.PathLike[str] | str, mode: Literal['r'] | Literal['r+'] | Literal['c'] = 'r'): def __init__(self, path: os.PathLike[str] | str, mode: Literal['r', 'r+', 'c'] = 'r'):
self.data = np.memmap(path, mode = mode) self.data = np.memmap(path, mode = mode)
offs = 0 offs = 0
@ -140,7 +140,7 @@ class GGUFReader:
return self.tensors[idx] return self.tensors[idx]
def _get( def _get(
self, offset: int, dtype: npt.DTypeLike, count: int = 1, override_order: None | Literal['I'] | Literal['S'] | Literal['<'] = None, self, offset: int, dtype: npt.DTypeLike, count: int = 1, override_order: None | Literal['I', 'S', '<'] = None,
) -> npt.NDArray[Any]: ) -> npt.NDArray[Any]:
count = int(count) count = int(count)
itemsize = int(np.empty([], dtype = dtype).itemsize) itemsize = int(np.empty([], dtype = dtype).itemsize)

View File

@ -16,16 +16,16 @@ logger = logging.getLogger(__name__)
class LazyMeta(ABCMeta): class LazyMeta(ABCMeta):
def __new__(cls, name: str, bases: tuple[type, ...], namespace: dict[str, Any], **kwargs): def __new__(cls, name: str, bases: tuple[type, ...], namespace: dict[str, Any], **kwargs):
def __getattr__(self, __name: str) -> Any: def __getattr__(self, name: str) -> Any:
meta_attr = getattr(self._meta, __name) meta_attr = getattr(self._meta, name)
if callable(meta_attr): if callable(meta_attr):
return type(self)._wrap_fn( return type(self)._wrap_fn(
(lambda s, *args, **kwargs: getattr(s, __name)(*args, **kwargs)), (lambda s, *args, **kwargs: getattr(s, name)(*args, **kwargs)),
use_self=self, use_self=self,
) )
elif isinstance(meta_attr, self._tensor_type): elif isinstance(meta_attr, self._tensor_type):
# e.g. self.T with torch.Tensor should still be wrapped # e.g. self.T with torch.Tensor should still be wrapped
return type(self)._wrap_fn(lambda s: getattr(s, __name))(self) return type(self)._wrap_fn(lambda s: getattr(s, name))(self)
else: else:
# no need to wrap non-tensor properties, # no need to wrap non-tensor properties,
# and they likely don't depend on the actual contents of the tensor # and they likely don't depend on the actual contents of the tensor
@ -141,19 +141,21 @@ class LazyBase(ABC, metaclass=LazyMeta):
res = cls.meta_with_dtype_and_shape(meta_noop, res.shape) res = cls.meta_with_dtype_and_shape(meta_noop, res.shape)
if isinstance(res, cls._tensor_type): if isinstance(res, cls._tensor_type):
def collect_replace(t: LazyBase): class CollectSharedLazy:
if collect_replace.shared_lazy is None: # emulating a static variable
collect_replace.shared_lazy = t._lazy shared_lazy: None | deque[LazyBase] = None
else:
collect_replace.shared_lazy.extend(t._lazy)
t._lazy = collect_replace.shared_lazy
# emulating a static variable @staticmethod
collect_replace.shared_lazy = None def collect_replace(t: LazyBase):
if CollectSharedLazy.shared_lazy is None:
CollectSharedLazy.shared_lazy = t._lazy
else:
CollectSharedLazy.shared_lazy.extend(t._lazy)
t._lazy = CollectSharedLazy.shared_lazy
LazyBase._recurse_apply(args, collect_replace) LazyBase._recurse_apply(args, CollectSharedLazy.collect_replace)
shared_lazy = collect_replace.shared_lazy shared_lazy = CollectSharedLazy.shared_lazy
return cls(meta=cls.eager_to_meta(res), lazy=shared_lazy, args=args, func=lambda a: fn(*a, **kwargs)) return cls(meta=cls.eager_to_meta(res), lazy=shared_lazy, args=args, func=lambda a: fn(*a, **kwargs))
else: else:
@ -184,6 +186,7 @@ class LazyBase(ABC, metaclass=LazyMeta):
lt._args = cls._recurse_apply(lt._args, already_eager_to_eager) lt._args = cls._recurse_apply(lt._args, already_eager_to_eager)
lt._data = lt._func(lt._args) lt._data = lt._func(lt._args)
# sanity check # sanity check
assert lt._data is not None
assert lt._data.dtype == lt._meta.dtype assert lt._data.dtype == lt._meta.dtype
assert lt._data.shape == lt._meta.shape assert lt._data.shape == lt._meta.shape

View File

@ -1,3 +1,5 @@
# pyright: reportUnusedImport=false
from .gguf_convert_endian import main as gguf_convert_endian_entrypoint from .gguf_convert_endian import main as gguf_convert_endian_entrypoint
from .gguf_dump import main as gguf_dump_entrypoint from .gguf_dump import main as gguf_dump_entrypoint
from .gguf_set_metadata import main as gguf_set_metadata_entrypoint from .gguf_set_metadata import main as gguf_set_metadata_entrypoint

View File

@ -63,9 +63,9 @@ def gguf_hash(reader: GGUFReader, filename: str, disable_progress_bar) -> None:
bar.update(sum_weights_in_tensor) bar.update(sum_weights_in_tensor)
sha1_layer = hashlib.sha1() sha1_layer = hashlib.sha1()
sha1_layer.update(tensor.data) sha1_layer.update(tensor.data.data)
sha1.update(tensor.data) sha1.update(tensor.data.data)
uuidv5_sha1.update(tensor.data) uuidv5_sha1.update(tensor.data.data)
print("sha1 {0} {1}:{2}".format(sha1_layer.hexdigest(), filename, tensor.name)) # noqa: NP100 print("sha1 {0} {1}:{2}".format(sha1_layer.hexdigest(), filename, tensor.name)) # noqa: NP100
# Flush Hash Progress Bar # Flush Hash Progress Bar

View File

@ -1,4 +1,6 @@
#!/usr/bin/env python3 #!/usr/bin/env python3
from __future__ import annotations
import logging import logging
import argparse import argparse
import os import os

View File

@ -1,4 +1,4 @@
import gguf # noqa: F401 import gguf # noqa: F401 # pyright: ignore[reportUnusedImport]
# TODO: add tests # TODO: add tests

View File

@ -1,3 +1,21 @@
{ {
"extraPaths": ["gguf-py"], "extraPaths": ["gguf-py"],
} "pythonVersion": "3.9",
"pythonPlatform": "All",
"reportUnusedImport": "warning",
"reportDuplicateImport": "error",
"reportDeprecated": "warning",
"reportUnnecessaryTypeIgnoreComment": "warning",
"executionEnvironments": [
{
// TODO: make this version override work correctly
"root": "gguf-py",
"pythonVersion": "3.8",
},
{
// uses match expressions in steps.py
"root": "examples/server/tests",
"pythonVersion": "3.10",
},
],
}

View File

@ -0,0 +1,12 @@
-r ../examples/llava/requirements.txt
-r ../examples/server/bench/requirements.txt
-r ../examples/server/tests/requirements.txt
-r ./requirements-compare-llama-bench.txt
-r ./requirements-pydantic.txt
-r ./requirements-test-tokenizer-random.txt
-r ./requirements-convert_hf_to_gguf.txt
-r ./requirements-convert_hf_to_gguf_update.txt
-r ./requirements-convert_legacy_llama.txt
-r ./requirements-convert_llama_ggml_to_gguf.txt

View File

@ -0,0 +1,2 @@
tabulate~=0.9.0
GitPython~=3.1.43

View File

@ -0,0 +1,2 @@
docstring_parser~=0.15
pydantic~=2.6.3

View File

@ -0,0 +1 @@
cffi~=1.16.0

View File

@ -108,6 +108,11 @@ check_convert_script() {
fatal "$py missing requirements. Expected: $reqs" fatal "$py missing requirements. Expected: $reqs"
fi fi
# Check that all sub-requirements are added to top-level requirements.txt
if ! grep -qF "$reqs" requirements.txt; then
fatal "$reqs needs to be added to requirements.txt"
fi
local venv="$workdir/$pyname-venv" local venv="$workdir/$pyname-venv"
python3 -m venv "$venv" python3 -m venv "$venv"
@ -134,12 +139,7 @@ EOF
readonly ignore_eq_eq='check_requirements: ignore "=="' readonly ignore_eq_eq='check_requirements: ignore "=="'
for req in "$reqs_dir"/*; do for req in */**/requirements*.txt; do
# Check that all sub-requirements are added to top-level requirements.txt
if ! grep -qF "$req" requirements.txt; then
fatal "$req needs to be added to requirements.txt"
fi
# Make sure exact release versions aren't being pinned in the requirements # Make sure exact release versions aren't being pinned in the requirements
# Filters out the ignore string # Filters out the ignore string
if grep -vF "$ignore_eq_eq" "$req" | grep -q '=='; then if grep -vF "$ignore_eq_eq" "$req" | grep -q '=='; then

View File

@ -123,13 +123,13 @@ builds = cursor.execute("SELECT DISTINCT build_commit FROM test;").fetchall()
try: try:
repo = git.Repo(".", search_parent_directories=True) repo = git.Repo(".", search_parent_directories=True)
except git.exc.InvalidGitRepositoryError: except git.InvalidGitRepositoryError:
repo = None repo = None
def find_parent_in_data(commit): def find_parent_in_data(commit: git.Commit):
"""Helper function to find the most recent parent measured in number of commits for which there is data.""" """Helper function to find the most recent parent measured in number of commits for which there is data."""
heap = [(0, commit)] heap: list[tuple[int, git.Commit]] = [(0, commit)]
seen_hexsha8 = set() seen_hexsha8 = set()
while heap: while heap:
depth, current_commit = heapq.heappop(heap) depth, current_commit = heapq.heappop(heap)
@ -144,7 +144,7 @@ def find_parent_in_data(commit):
return None return None
def get_all_parent_hexsha8s(commit): def get_all_parent_hexsha8s(commit: git.Commit):
"""Helper function to recursively get hexsha8 values for all parents of a commit.""" """Helper function to recursively get hexsha8 values for all parents of a commit."""
unvisited = [commit] unvisited = [commit]
visited = [] visited = []

View File

@ -1,3 +1,5 @@
from __future__ import annotations
import array import array
import unicodedata import unicodedata
import requests import requests
@ -133,7 +135,7 @@ table_nfd.sort()
# group ranges with same flags # group ranges with same flags
ranges_flags = [(0, codepoint_flags[0])] # start, flags ranges_flags: list[tuple[int, int]] = [(0, codepoint_flags[0])] # start, flags
for codepoint, flags in enumerate(codepoint_flags): for codepoint, flags in enumerate(codepoint_flags):
if flags != ranges_flags[-1][1]: if flags != ranges_flags[-1][1]:
ranges_flags.append((codepoint, flags)) ranges_flags.append((codepoint, flags))
@ -141,11 +143,11 @@ ranges_flags.append((MAX_CODEPOINTS, 0x0000))
# group ranges with same nfd # group ranges with same nfd
ranges_nfd = [(0, 0, 0)] # start, last, nfd ranges_nfd: list[tuple[int, int, int]] = [(0, 0, 0)] # start, last, nfd
for codepoint, norm in table_nfd: for codepoint, norm in table_nfd:
start = ranges_nfd[-1][0] start = ranges_nfd[-1][0]
if ranges_nfd[-1] != (start, codepoint - 1, norm): if ranges_nfd[-1] != (start, codepoint - 1, norm):
ranges_nfd.append(None) ranges_nfd.append(None) # type: ignore[arg-type] # dummy, will be replaced below
start = codepoint start = codepoint
ranges_nfd[-1] = (start, codepoint, norm) ranges_nfd[-1] = (start, codepoint, norm)
@ -179,13 +181,13 @@ for codepoint in table_whitespace:
out("};\n") out("};\n")
out("const std::unordered_map<uint32_t, uint32_t> unicode_map_lowercase = {") out("const std::unordered_map<uint32_t, uint32_t> unicode_map_lowercase = {")
for tuple in table_lowercase: for tuple_lw in table_lowercase:
out("{0x%06X, 0x%06X}," % tuple) out("{0x%06X, 0x%06X}," % tuple_lw)
out("};\n") out("};\n")
out("const std::unordered_map<uint32_t, uint32_t> unicode_map_uppercase = {") out("const std::unordered_map<uint32_t, uint32_t> unicode_map_uppercase = {")
for tuple in table_uppercase: for tuple_up in table_uppercase:
out("{0x%06X, 0x%06X}," % tuple) out("{0x%06X, 0x%06X}," % tuple_up)
out("};\n") out("};\n")
out("const std::vector<range_nfd> unicode_ranges_nfd = { // start, last, nfd") out("const std::vector<range_nfd> unicode_ranges_nfd = { // start, last, nfd")

View File

@ -6,6 +6,8 @@
# python3 tests/test-tokenizer-random.py ./models/ggml-vocab-llama-bpe.gguf ./models/tokenizers/llama-bpe # python3 tests/test-tokenizer-random.py ./models/ggml-vocab-llama-bpe.gguf ./models/tokenizers/llama-bpe
# #
from __future__ import annotations
import time import time
import logging import logging
import argparse import argparse
@ -13,7 +15,9 @@ import subprocess
import random import random
import unicodedata import unicodedata
from typing import Iterator from pathlib import Path
from typing import Any, Iterator, cast
from typing_extensions import Buffer
import cffi import cffi
from transformers import AutoTokenizer from transformers import AutoTokenizer
@ -28,15 +32,15 @@ class LibLlama:
DEFAULT_PATH_INCLUDES = ["./ggml/include/", "./include/"] DEFAULT_PATH_INCLUDES = ["./ggml/include/", "./include/"]
DEFAULT_PATH_LIBLLAMA = "./build/src/libllama.so" # CMakeLists.txt: BUILD_SHARED_LIBS ON DEFAULT_PATH_LIBLLAMA = "./build/src/libllama.so" # CMakeLists.txt: BUILD_SHARED_LIBS ON
def __init__(self, path_llama_h: str = None, path_includes: list[str] = [], path_libllama: str = None): def __init__(self, path_llama_h: str | None = None, path_includes: list[str] = [], path_libllama: str | None = None):
path_llama_h = path_llama_h or self.DEFAULT_PATH_LLAMA_H path_llama_h = path_llama_h or self.DEFAULT_PATH_LLAMA_H
path_includes = path_includes or self.DEFAULT_PATH_INCLUDES path_includes = path_includes or self.DEFAULT_PATH_INCLUDES
path_libllama = path_libllama or self.DEFAULT_PATH_LIBLLAMA path_libllama = path_libllama or self.DEFAULT_PATH_LIBLLAMA
(self.ffi, self.lib) = self._load_libllama_cffi(path_llama_h, path_includes, path_libllama) (self.ffi, self.lib) = self._load_libllama_cffi(path_llama_h, path_includes, path_libllama)
self.lib.llama_backend_init() self.lib.llama_backend_init()
def _load_libllama_cffi(self, path_llama_h: str, path_includes: list[str], path_libllama: str): def _load_libllama_cffi(self, path_llama_h: str, path_includes: list[str], path_libllama: str) -> tuple[cffi.FFI, Any]:
cmd = ["gcc", "-E", "-P", "-D__restrict=", "-D__attribute__(x)=", "-D__asm__(x)="] cmd = ["gcc", "-O0", "-E", "-P", "-D__restrict=", "-D__attribute__(x)=", "-D__asm__(x)="]
cmd += ["-I" + path for path in path_includes] + [path_llama_h] cmd += ["-I" + path for path in path_includes] + [path_llama_h]
res = subprocess.run(cmd, stdout=subprocess.PIPE) res = subprocess.run(cmd, stdout=subprocess.PIPE)
assert (res.returncode == 0) assert (res.returncode == 0)
@ -68,7 +72,7 @@ class LibLlama:
class LibLlamaModel: class LibLlamaModel:
def __init__(self, libllama: LibLlama, path_model: str, mparams={}, cparams={}): def __init__(self, libllama: LibLlama, path_model: str, mparams={}, cparams={}):
self.lib = libllama.lib self.lib: Any = libllama.lib
self.ffi = libllama.ffi self.ffi = libllama.ffi
if isinstance(mparams, dict): if isinstance(mparams, dict):
mparams = libllama.model_default_params(**mparams) mparams = libllama.model_default_params(**mparams)
@ -94,11 +98,11 @@ class LibLlamaModel:
self.lib = None self.lib = None
def tokenize(self, text: str, add_special: bool = False, parse_special: bool = False) -> list[int]: def tokenize(self, text: str, add_special: bool = False, parse_special: bool = False) -> list[int]:
text = text.encode("utf-8") encoded_text: bytes = text.encode("utf-8")
num = self.lib.llama_tokenize(self.model, text, len(text), self.token_ids, len(self.token_ids), add_special, parse_special) num = self.lib.llama_tokenize(self.model, encoded_text, len(encoded_text), self.token_ids, len(self.token_ids), add_special, parse_special)
while num < 0 and len(self.token_ids) < (16 << 20): while num < 0 and len(self.token_ids) < (16 << 20):
self.token_ids = self.ffi.new("llama_token[]", -2 * num) self.token_ids = self.ffi.new("llama_token[]", -2 * num)
num = self.lib.llama_tokenize(self.model, text, len(text), self.token_ids, len(self.token_ids), add_special, parse_special) num = self.lib.llama_tokenize(self.model, encoded_text, len(encoded_text), self.token_ids, len(self.token_ids), add_special, parse_special)
return list(self.token_ids[0:num]) return list(self.token_ids[0:num])
def detokenize(self, ids: list[int], remove_special: bool = False, unparse_special: bool = False) -> str: def detokenize(self, ids: list[int], remove_special: bool = False, unparse_special: bool = False) -> str:
@ -110,7 +114,7 @@ class LibLlamaModel:
while num < 0 and len(self.text_buff) < (16 << 20): while num < 0 and len(self.text_buff) < (16 << 20):
self.text_buff = self.ffi.new("uint8_t[]", -2 * num) self.text_buff = self.ffi.new("uint8_t[]", -2 * num)
num = self.lib.llama_detokenize(self.model, self.token_ids, len(ids), self.text_buff, len(self.text_buff), remove_special, unparse_special) num = self.lib.llama_detokenize(self.model, self.token_ids, len(ids), self.text_buff, len(self.text_buff), remove_special, unparse_special)
return str(self.ffi.buffer(self.text_buff, num), encoding="utf-8", errors="replace") # replace errors with '\uFFFD' return str(cast(Buffer, self.ffi.buffer(self.text_buff, num)), encoding="utf-8", errors="replace") # replace errors with '\uFFFD'
class Tokenizer: class Tokenizer:
@ -152,7 +156,7 @@ class TokenizerGroundtruth (Tokenizer):
class TokenizerLlamaCpp (Tokenizer): class TokenizerLlamaCpp (Tokenizer):
libllama: LibLlama = None libllama: LibLlama | None = None
def __init__(self, vocab_file: str): def __init__(self, vocab_file: str):
if not self.libllama: if not self.libllama:
@ -404,7 +408,7 @@ def generator_random_vocab_words(tokenizer: TokenizerGroundtruth, iterations=100
def compare_tokenizers(tokenizer1: TokenizerGroundtruth, tokenizer2: TokenizerLlamaCpp, generator: Iterator[str]): def compare_tokenizers(tokenizer1: TokenizerGroundtruth, tokenizer2: TokenizerLlamaCpp, generator: Iterator[str]):
def find_first_mismatch(ids1: list[int], ids2: list[int]): def find_first_mismatch(ids1: list[int] | str, ids2: list[int] | str):
for i, (a, b) in enumerate(zip(ids1, ids2)): for i, (a, b) in enumerate(zip(ids1, ids2)):
if a != b: if a != b:
return i return i
@ -433,7 +437,7 @@ def compare_tokenizers(tokenizer1: TokenizerGroundtruth, tokenizer2: TokenizerLl
decode_errors = 0 decode_errors = 0
MAX_ERRORS = 10 MAX_ERRORS = 10
logger.info("%s: %s" % (generator.__name__, "ini")) logger.info("%s: %s" % (generator.__qualname__, "ini"))
for text in generator: for text in generator:
# print(repr(text), text.encode()) # print(repr(text), text.encode())
# print(repr(text), hex(ord(text[0])), text.encode()) # print(repr(text), hex(ord(text[0])), text.encode())
@ -472,13 +476,13 @@ def compare_tokenizers(tokenizer1: TokenizerGroundtruth, tokenizer2: TokenizerLl
break break
t_total = time.perf_counter() - t_start t_total = time.perf_counter() - t_start
logger.info(f"{generator.__name__}: end, {t_encode1=:.3f} {t_encode2=:.3f} {t_decode1=:.3f} {t_decode2=:.3f} {t_total=:.3f}") logger.info(f"{generator.__qualname__}: end, {t_encode1=:.3f} {t_encode2=:.3f} {t_decode1=:.3f} {t_decode2=:.3f} {t_total=:.3f}")
def main(argv: list[str] = None): def main(argv: list[str] | None = None):
parser = argparse.ArgumentParser() parser = argparse.ArgumentParser()
parser.add_argument("vocab_file", help="path to vocab 'gguf' file") parser.add_argument("vocab_file", type=str, help="path to vocab 'gguf' file")
parser.add_argument("dir_tokenizer", help="directory containing 'tokenizer.model' file") parser.add_argument("dir_tokenizer", type=str, help="directory containing 'tokenizer.model' file")
parser.add_argument("--verbose", action="store_true", help="increase output verbosity") parser.add_argument("--verbose", action="store_true", help="increase output verbosity")
args = parser.parse_args(argv) args = parser.parse_args(argv)
@ -520,7 +524,7 @@ if __name__ == "__main__":
format = "%(levelname)s %(message)s", format = "%(levelname)s %(message)s",
) )
path_tokenizers = "./models/tokenizers/" path_tokenizers = Path("./models/tokenizers/")
path_vocab_format = "./models/ggml-vocab-%s.gguf" path_vocab_format = "./models/ggml-vocab-%s.gguf"
tokenizers = [ tokenizers = [
@ -556,6 +560,6 @@ if __name__ == "__main__":
for tokenizer in tokenizers: for tokenizer in tokenizers:
logger.info("-" * 50) logger.info("-" * 50)
logger.info(f"TOKENIZER: '{tokenizer}'") logger.info(f"TOKENIZER: '{tokenizer}'")
vocab_file = path_vocab_format % tokenizer vocab_file = Path(path_vocab_format % tokenizer)
dir_tokenizer = path_tokenizers + "/" + tokenizer dir_tokenizer = path_tokenizers / tokenizer
main([vocab_file, dir_tokenizer, "--verbose"]) main([str(vocab_file), str(dir_tokenizer), "--verbose"])