mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-12-24 10:24:35 +00:00
convert-llama2c-to-ggml : enable conversion of GQA models (#6237)
* convert-llama2c-to-ggml: enable conversion of multiqueries, #5608 * add test in build action * Update build.yml * Update build.yml * Update build.yml * gg patch
This commit is contained in:
parent
1d0331c12a
commit
92397d87a4
11
.github/workflows/build.yml
vendored
11
.github/workflows/build.yml
vendored
@ -225,6 +225,17 @@ jobs:
|
|||||||
cd build
|
cd build
|
||||||
ctest -L main --verbose --timeout 900
|
ctest -L main --verbose --timeout 900
|
||||||
|
|
||||||
|
- name: Test llama2c conversion
|
||||||
|
id: llama2c_test
|
||||||
|
run: |
|
||||||
|
cd build
|
||||||
|
echo "Fetch tokenizer"
|
||||||
|
wget https://huggingface.co/karpathy/tinyllamas/resolve/main/stories260K/tok512.bin
|
||||||
|
echo "Fetch llama2c model"
|
||||||
|
wget https://huggingface.co/karpathy/tinyllamas/resolve/main/stories260K/stories260K.bin
|
||||||
|
./bin/convert-llama2c-to-ggml --copy-vocab-from-model ./tok512.bin --llama2c-model stories260K.bin --llama2c-output-model stories260K.gguf
|
||||||
|
./bin/main -m stories260K.gguf -p "One day, Lily met a Shoggoth" -n 500 -c 256
|
||||||
|
|
||||||
# ubuntu-latest-cmake-sanitizer:
|
# ubuntu-latest-cmake-sanitizer:
|
||||||
# runs-on: ubuntu-latest
|
# runs-on: ubuntu-latest
|
||||||
#
|
#
|
||||||
|
@ -21,6 +21,8 @@ An example command using a model from [karpathy/tinyllamas](https://huggingface.
|
|||||||
|
|
||||||
`$ ./convert-llama2c-to-ggml --copy-vocab-from-model llama-2-7b-chat.gguf.q2_K.bin --llama2c-model stories42M.bin --llama2c-output-model stories42M.gguf.bin`
|
`$ ./convert-llama2c-to-ggml --copy-vocab-from-model llama-2-7b-chat.gguf.q2_K.bin --llama2c-model stories42M.bin --llama2c-output-model stories42M.gguf.bin`
|
||||||
|
|
||||||
|
Note: The vocabulary for `stories260K.bin` should be its own tokenizer `tok512.bin` found in [karpathy/tinyllamas/stories260K](https://huggingface.co/karpathy/tinyllamas/tree/main/stories260K).
|
||||||
|
|
||||||
Now you can use the model with a command like:
|
Now you can use the model with a command like:
|
||||||
|
|
||||||
`$ ./main -m stories42M.gguf.bin -p "One day, Lily met a Shoggoth" -n 500 -c 256`
|
`$ ./main -m stories42M.gguf.bin -p "One day, Lily met a Shoggoth" -n 500 -c 256`
|
||||||
|
@ -1,6 +1,7 @@
|
|||||||
#include "ggml.h"
|
#include "ggml.h"
|
||||||
#include "llama.h"
|
#include "llama.h"
|
||||||
#include "common.h"
|
#include "common.h"
|
||||||
|
#include "log.h"
|
||||||
|
|
||||||
#include <unordered_map>
|
#include <unordered_map>
|
||||||
#include <vector>
|
#include <vector>
|
||||||
@ -78,111 +79,101 @@ typedef struct {
|
|||||||
|
|
||||||
struct TransformerWeights {
|
struct TransformerWeights {
|
||||||
// token embedding table
|
// token embedding table
|
||||||
float* token_embedding_table; // (vocab_size, dim)
|
std::vector<float> token_embedding_table; // (vocab_size, dim)
|
||||||
// weights for rmsnorms
|
// weights for rmsnorms
|
||||||
float* rms_att_weight; // (layer, dim) rmsnorm weights
|
std::vector<float> rms_att_weight; // (layer, dim) rmsnorm weights
|
||||||
float* rms_ffn_weight; // (layer, dim)
|
std::vector<float> rms_ffn_weight; // (layer, dim)
|
||||||
// weights for matmuls
|
// weights for matmuls
|
||||||
float* wq; // (layer, dim, dim)
|
std::vector<float> wq; // (layer, dim, dim)
|
||||||
float* wk; // (layer, dim, dim)
|
std::vector<float> wk; // (layer, dim, dim)
|
||||||
float* wv; // (layer, dim, dim)
|
std::vector<float> wv; // (layer, dim, dim)
|
||||||
float* wo; // (layer, dim, dim)
|
std::vector<float> wo; // (layer, dim, dim)
|
||||||
// weights for ffn
|
// weights for ffn
|
||||||
float* w1; // (layer, hidden_dim, dim)
|
std::vector<float> w1; // (layer, hidden_dim, dim)
|
||||||
float* w2; // (layer, dim, hidden_dim)
|
std::vector<float> w2; // (layer, dim, hidden_dim)
|
||||||
float* w3; // (layer, hidden_dim, dim)
|
std::vector<float> w3; // (layer, hidden_dim, dim)
|
||||||
// final rmsnorm
|
// final rmsnorm
|
||||||
float* rms_final_weight; // (dim,)
|
std::vector<float> rms_final_weight; // (dim,)
|
||||||
// freq_cis for RoPE relatively positional embeddings
|
// freq_cis for RoPE relatively positional embeddings
|
||||||
// float* freq_cis_real; // (seq_len, dim/2)
|
// std::vector<float> freq_cis_real; // (seq_len, dim/2)
|
||||||
// float* freq_cis_imag; // (seq_len, dim/2)
|
// std::vector<float> freq_cis_imag; // (seq_len, dim/2)
|
||||||
// (optional) classifier weights for the logits, on the last layer
|
// (optional) classifier weights for the logits, on the last layer
|
||||||
float* wcls;
|
std::vector<float> wcls;
|
||||||
|
|
||||||
~TransformerWeights() {
|
|
||||||
delete[] token_embedding_table;
|
|
||||||
delete[] rms_att_weight;
|
|
||||||
delete[] rms_ffn_weight;
|
|
||||||
delete[] wq;
|
|
||||||
delete[] wk;
|
|
||||||
delete[] wv;
|
|
||||||
delete[] wo;
|
|
||||||
delete[] w1;
|
|
||||||
delete[] w2;
|
|
||||||
delete[] w3;
|
|
||||||
delete[] rms_final_weight;
|
|
||||||
delete[] wcls;
|
|
||||||
}
|
|
||||||
};
|
};
|
||||||
|
|
||||||
static void malloc_weights(TransformerWeights* w, Config* p, bool shared_weights) {
|
static void alloc_weights(TransformerWeights * w, const Config * p, bool shared_weights) {
|
||||||
// we calloc instead of malloc to keep valgrind happy
|
const int n_multiqueries = p->n_kv_heads <= 0 || p->n_kv_heads >= p->n_heads ? 1 : p->n_heads / p->n_kv_heads;
|
||||||
w->token_embedding_table = new float[p->vocab_size * p->dim]();
|
try {
|
||||||
printf("[%s:AK] Allocating [%d] x [%d] = [%d] float space for w->token_embedding_table\n",__func__,p->vocab_size , p->dim, p->vocab_size * p->dim);
|
w->token_embedding_table.resize(p->vocab_size * p->dim);
|
||||||
|
LOG("%s: Allocating [%d] x [%d] = [%d] float space for w->token_embedding_table\n",__func__,p->vocab_size , p->dim, p->vocab_size * p->dim);
|
||||||
|
|
||||||
w->rms_att_weight = new float[p->n_layers * p->dim]();
|
w->rms_att_weight.resize(p->n_layers * p->dim);
|
||||||
printf("[%s:AK] Allocating [%d] x [%d] = [%d] float space for w->rms_att_weight\n",__func__,p->n_layers, p->dim, p->n_layers * p->dim);
|
LOG("%s: Allocating [%d] x [%d] = [%d] float space for w->rms_att_weight\n",__func__,p->n_layers, p->dim, p->n_layers * p->dim);
|
||||||
|
|
||||||
w->rms_ffn_weight = new float[p->n_layers * p->dim]();
|
w->rms_ffn_weight.resize(p->n_layers * p->dim);
|
||||||
printf("[%s:AK] Allocating [%d] x [%d] = [%d] float space for w->rms_ffn_weight\n",__func__,p->n_layers , p->dim, p->n_layers * p->dim);
|
LOG("%s: Allocating [%d] x [%d] = [%d] float space for w->rms_ffn_weight\n",__func__,p->n_layers , p->dim, p->n_layers * p->dim);
|
||||||
|
|
||||||
w->wq = new float[p->n_layers * p->dim * p->dim]();
|
w->wq.resize(p->n_layers * p->dim * p->dim);
|
||||||
printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->wq\n",__func__,p->n_layers, p->dim, p->dim, p->n_layers * p->dim * p->dim);
|
LOG("%s: Allocating [%d] x [%d] x [%d] = [%d] float space for w->wq\n",__func__,p->n_layers, p->dim, p->dim, p->n_layers * p->dim * p->dim);
|
||||||
|
|
||||||
w->wk = new float[p->n_layers * p->dim * p->dim]();
|
w->wk.resize(p->n_layers * p->dim * p->dim / n_multiqueries);
|
||||||
printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->wk\n",__func__,p->n_layers, p->dim, p->dim, p->n_layers * p->dim * p->dim);
|
LOG("%s: Allocating [%d] x [%d] x [%d] = [%d] float space for w->wk\n",__func__,p->n_layers, p->dim, p->dim / n_multiqueries, p->n_layers * p->dim * p->dim / n_multiqueries);
|
||||||
|
|
||||||
w->wv = new float[p->n_layers * p->dim * p->dim]();
|
w->wv.resize(p->n_layers * p->dim * p->dim / n_multiqueries);
|
||||||
printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->wv\n",__func__, p->n_layers, p->dim, p->dim, p->n_layers * p->dim * p->dim);
|
LOG("%s: Allocating [%d] x [%d] x [%d] = [%d] float space for w->wv\n",__func__, p->n_layers, p->dim, p->dim / n_multiqueries, p->n_layers * p->dim * p->dim / n_multiqueries);
|
||||||
|
|
||||||
w->wo = new float[p->n_layers * p->dim * p->dim]();
|
w->wo.resize(p->n_layers * p->dim * p->dim);
|
||||||
printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->wo\n",__func__,p->n_layers, p->dim, p->dim, p->n_layers * p->dim * p->dim);
|
LOG("%s: Allocating [%d] x [%d] x [%d] = [%d] float space for w->wo\n",__func__,p->n_layers, p->dim, p->dim, p->n_layers * p->dim * p->dim);
|
||||||
|
|
||||||
w->w1 = new float[p->n_layers * p->hidden_dim * p->dim]();
|
w->w1.resize(p->n_layers * p->hidden_dim * p->dim);
|
||||||
printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->w1\n",__func__,p->n_layers, p->hidden_dim, p->dim, p->n_layers * p->hidden_dim * p->dim);
|
LOG("%s: Allocating [%d] x [%d] x [%d] = [%d] float space for w->w1\n",__func__,p->n_layers, p->hidden_dim, p->dim, p->n_layers * p->hidden_dim * p->dim);
|
||||||
|
|
||||||
w->w2 = new float[p->n_layers * p->hidden_dim * p->dim]();
|
w->w2.resize(p->n_layers * p->hidden_dim * p->dim);
|
||||||
printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->w2\n",__func__,p->n_layers, p->dim, p->hidden_dim, p->n_layers * p->hidden_dim * p->dim);
|
LOG("%s: Allocating [%d] x [%d] x [%d] = [%d] float space for w->w2\n",__func__,p->n_layers, p->dim, p->hidden_dim, p->n_layers * p->hidden_dim * p->dim);
|
||||||
|
|
||||||
w->w3 = new float[p->n_layers * p->hidden_dim * p->dim]();
|
w->w3.resize(p->n_layers * p->hidden_dim * p->dim);
|
||||||
printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->w3\n",__func__,p->n_layers, p->hidden_dim, p->dim, p->n_layers * p->hidden_dim * p->dim);
|
LOG("%s: Allocating [%d] x [%d] x [%d] = [%d] float space for w->w3\n",__func__,p->n_layers, p->hidden_dim, p->dim, p->n_layers * p->hidden_dim * p->dim);
|
||||||
|
|
||||||
w->rms_final_weight = new float[p->dim]();
|
w->rms_final_weight.resize(p->dim);
|
||||||
printf("[%s:AK] Allocating [%d] float space for w->rms_final_weight\n",__func__,p->dim);
|
LOG("%s: Allocating [%d] float space for w->rms_final_weight\n",__func__,p->dim);
|
||||||
|
|
||||||
if (shared_weights) {
|
if (shared_weights) {
|
||||||
w->wcls = NULL;
|
w->wcls = {};
|
||||||
} else {
|
} else {
|
||||||
w->wcls = new float[p->vocab_size * p->dim]();
|
w->wcls.resize(p->vocab_size * p->dim);
|
||||||
printf("[%s:AK] Allocating [%d] x [%d] = [%d] float space for w->wcls\n",__func__,p->vocab_size , p->dim, p->vocab_size * p->dim);
|
LOG("%s: Allocating [%d] x [%d] = [%d] float space for w->wcls\n",__func__,p->vocab_size , p->dim, p->vocab_size * p->dim);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
catch (std::length_error &) {
|
||||||
|
die("Invalid configuration. Failed to allocate memory for weights");
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
static int checkpoint_init_weights(TransformerWeights *w, Config* p, FILE* f, bool shared_weights) {
|
static int checkpoint_init_weights(TransformerWeights * w, const Config * p, FILE * f, bool shared_weights) {
|
||||||
if (fread(w->token_embedding_table, sizeof(float), p->vocab_size * p->dim, f) != static_cast<size_t>(p->vocab_size * p->dim)) return 1;
|
if (fread(w->token_embedding_table.data(), sizeof(float), w->token_embedding_table.size(), f) != w->token_embedding_table.size()) return 1;
|
||||||
if (fread(w->rms_att_weight, sizeof(float), p->n_layers * p->dim, f) != static_cast<size_t>(p->n_layers * p->dim)) return 1;
|
if (fread(w->rms_att_weight.data(), sizeof(float), w->rms_att_weight.size(), f) != w->rms_att_weight.size()) return 1;
|
||||||
if (fread(w->wq, sizeof(float), p->n_layers * p->dim * p->dim, f) != static_cast<size_t>(p->n_layers * p->dim * p->dim)) return 1;
|
if (fread(w->wq.data(), sizeof(float), w->wq.size(), f) != w->wq.size()) return 1;
|
||||||
if (fread(w->wk, sizeof(float), p->n_layers * p->dim * p->dim, f) != static_cast<size_t>(p->n_layers * p->dim * p->dim)) return 1;
|
if (fread(w->wk.data(), sizeof(float), w->wk.size(), f) != w->wk.size()) return 1;
|
||||||
if (fread(w->wv, sizeof(float), p->n_layers * p->dim * p->dim, f) != static_cast<size_t>(p->n_layers * p->dim * p->dim)) return 1;
|
if (fread(w->wv.data(), sizeof(float), w->wv.size(), f) != w->wv.size()) return 1;
|
||||||
if (fread(w->wo, sizeof(float), p->n_layers * p->dim * p->dim, f) != static_cast<size_t>(p->n_layers * p->dim * p->dim)) return 1;
|
if (fread(w->wo.data(), sizeof(float), w->wo.size(), f) != w->wo.size()) return 1;
|
||||||
if (fread(w->rms_ffn_weight, sizeof(float), p->n_layers * p->dim, f) != static_cast<size_t>(p->n_layers * p->dim)) return 1;
|
if (fread(w->rms_ffn_weight.data(), sizeof(float), w->rms_ffn_weight.size(), f) != w->rms_ffn_weight.size()) return 1;
|
||||||
if (fread(w->w1, sizeof(float), p->n_layers * p->dim * p->hidden_dim, f) != static_cast<size_t>(p->n_layers * p->dim * p->hidden_dim)) return 1;
|
if (fread(w->w1.data(), sizeof(float), w->w1.size(), f) != w->w1.size()) return 1;
|
||||||
if (fread(w->w2, sizeof(float), p->n_layers * p->hidden_dim * p->dim, f) != static_cast<size_t>(p->n_layers * p->hidden_dim * p->dim)) return 1;
|
if (fread(w->w2.data(), sizeof(float), w->w2.size(), f) != w->w2.size()) return 1;
|
||||||
if (fread(w->w3, sizeof(float), p->n_layers * p->dim * p->hidden_dim, f) != static_cast<size_t>(p->n_layers * p->dim * p->hidden_dim)) return 1;
|
if (fread(w->w3.data(), sizeof(float), w->w3.size(), f) != w->w3.size()) return 1;
|
||||||
if (fread(w->rms_final_weight, sizeof(float), p->dim, f) != static_cast<size_t>(p->dim)) return 1;
|
if (fread(w->rms_final_weight.data(), sizeof(float), w->rms_final_weight.size(), f) != w->rms_final_weight.size()) return 1;
|
||||||
|
|
||||||
// Skip freq_cis_real & freq_cis_imag
|
// Skip freq_cis_real & freq_cis_imag
|
||||||
int head_size = p->dim / p->n_heads;
|
int head_size = p->dim / p->n_heads;
|
||||||
fseek(f, p->seq_len * head_size * sizeof(float), SEEK_CUR);
|
fseek(f, p->seq_len * head_size * sizeof(float), SEEK_CUR);
|
||||||
|
|
||||||
if (!shared_weights && fread(w->wcls, sizeof(float), p->vocab_size * p->dim, f) != static_cast<size_t>(p->vocab_size * p->dim)) return 1;
|
if (!shared_weights && fread(w->wcls.data(), sizeof(float), w->wcls.size(), f) != w->wcls.size()) return 1;
|
||||||
|
|
||||||
// Check we didn't forget to read anything
|
// Check we didn't forget to read anything
|
||||||
auto curr = ftell(f);
|
auto curr = ftell(f);
|
||||||
fseek(f, 0, SEEK_END);
|
fseek(f, 0, SEEK_END);
|
||||||
auto end = ftell(f);
|
auto end = ftell(f);
|
||||||
if (curr != end) {
|
if (curr != end) {
|
||||||
printf("Error: failed to read the checkpoint file to the end (curr = %ld, end = %ld)\n", curr, end);
|
LOG("%s: Error: failed to read the checkpoint file to the end (curr = %ld, end = %ld)\n", __func__, curr, end);
|
||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -190,20 +181,20 @@ static int checkpoint_init_weights(TransformerWeights *w, Config* p, FILE* f, bo
|
|||||||
}
|
}
|
||||||
|
|
||||||
static void print_sample_weights(TransformerWeights *w){
|
static void print_sample_weights(TransformerWeights *w){
|
||||||
printf("----- Quick print of first of the weight vales of all the variables\n");
|
LOG("----- Quick print of first of the weight vales of all the variables\n");
|
||||||
printf("%f\n", w->token_embedding_table[0]);
|
LOG("%f\n", w->token_embedding_table[0]);
|
||||||
printf("%f\n", w->rms_att_weight[0]);
|
LOG("%f\n", w->rms_att_weight[0]);
|
||||||
printf("%f\n", w->rms_ffn_weight[0]);
|
LOG("%f\n", w->rms_ffn_weight[0]);
|
||||||
|
|
||||||
printf("%f\n", w->wq[0]);
|
LOG("%f\n", w->wq[0]);
|
||||||
printf("%f\n", w->wk[0]);
|
LOG("%f\n", w->wk[0]);
|
||||||
printf("%f\n", w->wv[0]);
|
LOG("%f\n", w->wv[0]);
|
||||||
printf("%f\n", w->wo[0]);
|
LOG("%f\n", w->wo[0]);
|
||||||
printf("%f\n", w->w1[0]);
|
LOG("%f\n", w->w1[0]);
|
||||||
printf("%f\n", w->w2[0]);
|
LOG("%f\n", w->w2[0]);
|
||||||
printf("%f\n", w->w3[0]);
|
LOG("%f\n", w->w3[0]);
|
||||||
printf("%f\n", w->rms_att_weight[0]);
|
LOG("%f\n", w->rms_att_weight[0]);
|
||||||
if (w->wcls) printf("%f\n", w->wcls[0]);
|
if (!w->wcls.empty()) LOG("%f\n", w->wcls[0]);
|
||||||
}
|
}
|
||||||
////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||||
|
|
||||||
@ -225,14 +216,16 @@ struct llama_vocab {
|
|||||||
};
|
};
|
||||||
|
|
||||||
struct my_llama_hparams {
|
struct my_llama_hparams {
|
||||||
uint32_t n_vocab = 32000;
|
uint32_t n_vocab = 32000;
|
||||||
uint32_t n_ctx = 512; // this is provided as user input?
|
uint32_t n_ctx = 512; // this is provided as user input?
|
||||||
uint32_t n_embd = 4096;
|
uint32_t n_embd = 4096;
|
||||||
uint32_t n_ff = 11008;
|
uint32_t n_ff = 11008;
|
||||||
uint32_t n_mult = 4;
|
uint32_t n_mult = 4;
|
||||||
uint32_t n_head = 32;
|
uint32_t n_head = 32;
|
||||||
uint32_t n_layer = 32;
|
uint32_t n_head_kv = 32;
|
||||||
uint32_t n_rot = 64;
|
uint32_t n_layer = 32;
|
||||||
|
uint32_t n_rot = 64;
|
||||||
|
|
||||||
bool operator!=(const my_llama_hparams& other) const {
|
bool operator!=(const my_llama_hparams& other) const {
|
||||||
return memcmp(this, &other, sizeof(my_llama_hparams));
|
return memcmp(this, &other, sizeof(my_llama_hparams));
|
||||||
}
|
}
|
||||||
@ -325,14 +318,30 @@ struct train_params {
|
|||||||
};
|
};
|
||||||
|
|
||||||
static void print_params(struct my_llama_hparams * params) {
|
static void print_params(struct my_llama_hparams * params) {
|
||||||
printf("%s: n_vocab: %u\n", __func__, params->n_vocab);
|
LOG("%s: n_vocab: %u\n", __func__, params->n_vocab);
|
||||||
printf("%s: n_ctx: %u\n", __func__, params->n_ctx);
|
LOG("%s: n_ctx: %u\n", __func__, params->n_ctx);
|
||||||
printf("%s: n_embd: %u\n", __func__, params->n_embd);
|
LOG("%s: n_embd: %u\n", __func__, params->n_embd);
|
||||||
printf("%s: n_mult: %u\n", __func__, params->n_mult);
|
LOG("%s: n_mult: %u\n", __func__, params->n_mult);
|
||||||
printf("%s: n_head: %u\n", __func__, params->n_head);
|
LOG("%s: n_head: %u\n", __func__, params->n_head);
|
||||||
printf("%s: n_ff: %u\n", __func__, params->n_ff);
|
LOG("%s: n_head_kv: %u\n", __func__, params->n_head_kv);
|
||||||
printf("%s: n_layer: %u\n", __func__, params->n_layer);
|
LOG("%s: n_ff: %u\n", __func__, params->n_ff);
|
||||||
printf("%s: n_rot: %u\n", __func__, params->n_rot);
|
LOG("%s: n_layer: %u\n", __func__, params->n_layer);
|
||||||
|
LOG("%s: n_rot: %u\n", __func__, params->n_rot);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void print_tensor_info(const struct ggml_context * ctx) {
|
||||||
|
for (auto t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
|
||||||
|
LOG("%s: Allocating ", __func__);
|
||||||
|
int64_t total = 1;
|
||||||
|
int i = 0;
|
||||||
|
for (; i < ggml_n_dims(t); ++i) {
|
||||||
|
if (i > 0) LOG("x ");
|
||||||
|
LOG("[%" PRId64 "] ", t->ne[i]);
|
||||||
|
total *= t->ne[i];
|
||||||
|
}
|
||||||
|
if (i > 1) LOG("= [%" PRId64 "] ", total);
|
||||||
|
LOG("float space for %s\n", ggml_get_name(t));
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
static void init_model(struct my_llama_model * model) {
|
static void init_model(struct my_llama_model * model) {
|
||||||
@ -342,6 +351,8 @@ static void init_model(struct my_llama_model * model) {
|
|||||||
const uint32_t n_layer = hparams.n_layer;
|
const uint32_t n_layer = hparams.n_layer;
|
||||||
const uint32_t n_vocab = hparams.n_vocab;
|
const uint32_t n_vocab = hparams.n_vocab;
|
||||||
|
|
||||||
|
const uint32_t n_multiqueries = hparams.n_head_kv <= 0 || hparams.n_head_kv >= hparams.n_head ? 1 : hparams.n_head / hparams.n_head_kv;
|
||||||
|
|
||||||
const uint32_t n_ff = hparams.n_ff;
|
const uint32_t n_ff = hparams.n_ff;
|
||||||
struct ggml_context * ctx = model->ctx;
|
struct ggml_context * ctx = model->ctx;
|
||||||
|
|
||||||
@ -350,25 +361,8 @@ static void init_model(struct my_llama_model * model) {
|
|||||||
model->train_tokens = 0;
|
model->train_tokens = 0;
|
||||||
|
|
||||||
model->tok_embeddings = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_vocab);
|
model->tok_embeddings = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_vocab);
|
||||||
printf("[%s:GG] Allocating [%u] x [%u] = [%u] float space for model->tok_embeddings\n",__func__,n_embd , n_vocab, n_embd * n_vocab);
|
|
||||||
|
|
||||||
model->norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
model->norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
||||||
printf("[%s:GG] Allocating [%u] float space for model->norm\n",__func__,n_embd);
|
|
||||||
|
|
||||||
model->output = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_vocab);
|
model->output = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_vocab);
|
||||||
printf("[%s:GG] Allocating [%u] x[%u] = [%u] float space for model->output\n",__func__,n_embd, n_vocab, n_embd * n_vocab);
|
|
||||||
|
|
||||||
// printing the per-layer allocations here so we dont print in the for loop.
|
|
||||||
printf("[%s:GG] Allocating [%u] x[%u] = [%u] float space for layer.wq for [%u] layers\n",__func__, n_embd, n_embd, n_embd * n_embd, n_layer);
|
|
||||||
printf("[%s:GG] Allocating [%u] x[%u] = [%u] float space for layer.wk for [%u] layers\n",__func__, n_embd, n_embd, n_embd * n_embd, n_layer);
|
|
||||||
printf("[%s:GG] Allocating [%u] x[%u] = [%u] float space for layer.wv for [%u] layers\n",__func__, n_embd, n_embd, n_embd * n_embd, n_layer);
|
|
||||||
printf("[%s:GG] Allocating [%u] x[%u] = [%u] float space for layer.wo for [%u] layers\n",__func__, n_embd, n_embd, n_embd * n_embd, n_layer);
|
|
||||||
|
|
||||||
printf("[%s:GG] Allocating [%u] float space for layer.ffn_norm for [%u] layers\n",__func__,n_embd, n_layer);
|
|
||||||
|
|
||||||
printf("[%s:GG] Allocating [%u] x[%u] = [%u] float space for layer.w1 for [%u] layers\n",__func__, n_ff, n_embd, n_embd * n_ff, n_layer);
|
|
||||||
printf("[%s:GG] Allocating [%u] x[%u] = [%u] float space for layer.w2 for [%u] layers\n",__func__, n_embd, n_ff, n_ff * n_embd, n_layer);
|
|
||||||
printf("[%s:GG] Allocating [%u] x[%u] = [%u] float space for layer.w3 for [%u] layers\n",__func__, n_ff, n_embd, n_embd * n_ff, n_layer);
|
|
||||||
|
|
||||||
ggml_set_name(model->tok_embeddings, "tok_embeddings.weight");
|
ggml_set_name(model->tok_embeddings, "tok_embeddings.weight");
|
||||||
ggml_set_name(model->norm, "norm.weight");
|
ggml_set_name(model->norm, "norm.weight");
|
||||||
@ -383,8 +377,8 @@ static void init_model(struct my_llama_model * model) {
|
|||||||
layer.attention_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
layer.attention_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
||||||
|
|
||||||
layer.wq = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);
|
layer.wq = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);
|
||||||
layer.wk = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);
|
layer.wk = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd / n_multiqueries);
|
||||||
layer.wv = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);
|
layer.wv = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd / n_multiqueries);
|
||||||
layer.wo = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);
|
layer.wo = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);
|
||||||
|
|
||||||
layer.ffn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
layer.ffn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
||||||
@ -406,6 +400,8 @@ static void init_model(struct my_llama_model * model) {
|
|||||||
ggml_format_name(layer.w2, "%s.feed_forward.w2.weight", layers_i.c_str());
|
ggml_format_name(layer.w2, "%s.feed_forward.w2.weight", layers_i.c_str());
|
||||||
ggml_format_name(layer.w3, "%s.feed_forward.w3.weight", layers_i.c_str());
|
ggml_format_name(layer.w3, "%s.feed_forward.w3.weight", layers_i.c_str());
|
||||||
}
|
}
|
||||||
|
|
||||||
|
print_tensor_info(ctx);
|
||||||
}
|
}
|
||||||
|
|
||||||
static float get_f32_2d(struct ggml_tensor * tensor, int64_t i0, int64_t i1) {
|
static float get_f32_2d(struct ggml_tensor * tensor, int64_t i0, int64_t i1) {
|
||||||
@ -421,9 +417,9 @@ static int32_t get_i32_2d(struct ggml_tensor * tensor, int64_t i0, int64_t i1) {
|
|||||||
static void print_row(struct ggml_tensor * probs, int i) {
|
static void print_row(struct ggml_tensor * probs, int i) {
|
||||||
for (int k = 0; k < probs->ne[0]; ++k) {
|
for (int k = 0; k < probs->ne[0]; ++k) {
|
||||||
float p = get_f32_2d(probs, k, i);
|
float p = get_f32_2d(probs, k, i);
|
||||||
printf(" %f", p);
|
LOG(" %f", p);
|
||||||
}
|
}
|
||||||
printf("\n");
|
LOG("\n");
|
||||||
}
|
}
|
||||||
|
|
||||||
static void print_matrix(struct ggml_tensor * probs) {
|
static void print_matrix(struct ggml_tensor * probs) {
|
||||||
@ -431,33 +427,12 @@ static void print_matrix(struct ggml_tensor * probs) {
|
|||||||
for (int i = 0; i < probs->ne[1]; ++i) {
|
for (int i = 0; i < probs->ne[1]; ++i) {
|
||||||
for (int k = 0; k < probs->ne[0]; ++k) {
|
for (int k = 0; k < probs->ne[0]; ++k) {
|
||||||
float p = get_f32_2d(probs, k, i);
|
float p = get_f32_2d(probs, k, i);
|
||||||
printf(" %.2f", p);
|
LOG(" %.2f", p);
|
||||||
}
|
}
|
||||||
printf("\n");
|
LOG("\n");
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
#ifdef __GNUC__
|
|
||||||
#ifdef __MINGW32__
|
|
||||||
__attribute__((format(gnu_printf, 1, 2)))
|
|
||||||
#else
|
|
||||||
__attribute__((format(printf, 1, 2)))
|
|
||||||
#endif
|
|
||||||
#endif
|
|
||||||
static std::string format(const char * fmt, ...) {
|
|
||||||
va_list ap, ap2;
|
|
||||||
va_start(ap, fmt);
|
|
||||||
va_copy(ap2, ap);
|
|
||||||
int size = vsnprintf(NULL, 0, fmt, ap);
|
|
||||||
GGML_ASSERT(size >= 0 && size < INT_MAX);
|
|
||||||
std::vector<char> buf(size + 1);
|
|
||||||
int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
|
|
||||||
GGML_ASSERT(size2 == size);
|
|
||||||
va_end(ap2);
|
|
||||||
va_end(ap);
|
|
||||||
return std::string(buf.data(), size);
|
|
||||||
}
|
|
||||||
|
|
||||||
struct llama_file {
|
struct llama_file {
|
||||||
// use FILE * so we don't have to re-open the file to mmap
|
// use FILE * so we don't have to re-open the file to mmap
|
||||||
FILE * fp;
|
FILE * fp;
|
||||||
@ -549,8 +524,9 @@ static std::string llama_escape_whitespaces(const std::string & text) {
|
|||||||
return out.str();
|
return out.str();
|
||||||
}
|
}
|
||||||
|
|
||||||
static void load_vocab(const char *filename, Config *config, struct llama_vocab *vocab) {
|
static void load_vocab(const char * filename, const Config * config, struct llama_vocab * vocab) {
|
||||||
if (is_ggml_file(filename)) {
|
if (is_ggml_file(filename)) {
|
||||||
|
LOG("%s: Loading vocabulary from gguf file %s\n", __func__, filename);
|
||||||
struct ggml_context * ctx_data = NULL;
|
struct ggml_context * ctx_data = NULL;
|
||||||
|
|
||||||
struct gguf_init_params params = {
|
struct gguf_init_params params = {
|
||||||
@ -578,6 +554,9 @@ static void load_vocab(const char *filename, Config *config, struct llama_vocab
|
|||||||
const int * toktypes = (const int * ) gguf_get_arr_data(ctx, toktype_idx);
|
const int * toktypes = (const int * ) gguf_get_arr_data(ctx, toktype_idx);
|
||||||
|
|
||||||
const uint32_t n_vocab = gguf_get_arr_n(ctx, token_idx);
|
const uint32_t n_vocab = gguf_get_arr_n(ctx, token_idx);
|
||||||
|
if (n_vocab != static_cast<uint32_t>(config->vocab_size)) {
|
||||||
|
die_fmt("vocab size mismatch: (gguf) %u != (llama2c) %d", n_vocab, config->vocab_size);
|
||||||
|
}
|
||||||
|
|
||||||
vocab->id_to_token.resize(n_vocab);
|
vocab->id_to_token.resize(n_vocab);
|
||||||
|
|
||||||
@ -595,7 +574,7 @@ static void load_vocab(const char *filename, Config *config, struct llama_vocab
|
|||||||
gguf_free(ctx);
|
gguf_free(ctx);
|
||||||
} else {
|
} else {
|
||||||
// assume llama2.c vocabulary
|
// assume llama2.c vocabulary
|
||||||
printf("Assuming llama2.c vocabulary since %s is not a gguf file\n", filename);
|
LOG("%s: Assuming llama2.c vocabulary since %s is not a gguf file\n", __func__, filename);
|
||||||
llama_file file(filename, "rb");
|
llama_file file(filename, "rb");
|
||||||
if (!file.fp) {
|
if (!file.fp) {
|
||||||
die_fmt("%s: %s", strerror(errno), filename);
|
die_fmt("%s: %s", strerror(errno), filename);
|
||||||
@ -638,38 +617,15 @@ static void load_vocab(const char *filename, Config *config, struct llama_vocab
|
|||||||
}
|
}
|
||||||
|
|
||||||
static void convert_weights_ak_to_gg(struct ggml_tensor * gg_weights, const float * karpathy_weights) {
|
static void convert_weights_ak_to_gg(struct ggml_tensor * gg_weights, const float * karpathy_weights) {
|
||||||
int ct;
|
int size = 1;
|
||||||
switch (ggml_n_dims(gg_weights)) {
|
for (int dim = 0; dim < ggml_n_dims(gg_weights); ++dim) {
|
||||||
case 1:
|
size *= gg_weights->ne[dim];
|
||||||
ct = 0;
|
}
|
||||||
for (int i0 = 0; i0 < gg_weights->ne[0]; i0++){
|
for (int ct = 0; ct < size; ++ct) {
|
||||||
float * ptr = (float *) ((char *) gg_weights->data + i0*gg_weights->nb[0]);
|
int64_t i0 = 0; int64_t i1 = 0;
|
||||||
*ptr = karpathy_weights[ct];
|
int64_t i2 = 0; int64_t i3 = 0;
|
||||||
ct++;
|
ggml_unravel_index(gg_weights, ct, &i0, &i1, &i2, &i3);
|
||||||
}
|
ggml_set_f32_nd(gg_weights, i0, i1, i2, i3, karpathy_weights[ct]);
|
||||||
break;
|
|
||||||
case 2:
|
|
||||||
ct = 0;
|
|
||||||
for (int i1 = 0; i1 < gg_weights->ne[1]; i1++) {
|
|
||||||
for (int i0 = 0; i0 < gg_weights->ne[0]; i0++) {
|
|
||||||
float * ptr = (float *) ((char *) gg_weights->data + i0*gg_weights->nb[0] + i1*gg_weights->nb[1]);
|
|
||||||
*ptr = karpathy_weights[ct];
|
|
||||||
ct++;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
break;
|
|
||||||
case 3:
|
|
||||||
ct = 0;
|
|
||||||
for (int i2 = 0; i2 < gg_weights->ne[2]; i2++) {
|
|
||||||
for (int i1 = 0; i1 < gg_weights->ne[1]; i1++) {
|
|
||||||
for (int i0 = 0; i0 < gg_weights->ne[0]; i0++) {
|
|
||||||
float * ptr = (float *) ((char *) gg_weights->data + i0*gg_weights->nb[0] + i1*gg_weights->nb[1] + i2*gg_weights->nb[2]);
|
|
||||||
*ptr = karpathy_weights[ct];
|
|
||||||
ct++;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
break;
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -679,16 +635,18 @@ static void save_as_llama_model(
|
|||||||
// convert AK weights into GG weights one by one.
|
// convert AK weights into GG weights one by one.
|
||||||
// w->token_embedding_table -> model->tok_embeddings
|
// w->token_embedding_table -> model->tok_embeddings
|
||||||
// float* -> struct ggml_tensor
|
// float* -> struct ggml_tensor
|
||||||
convert_weights_ak_to_gg(model->tok_embeddings, w->token_embedding_table);
|
convert_weights_ak_to_gg(model->tok_embeddings, w->token_embedding_table.data());
|
||||||
convert_weights_ak_to_gg(model->output, w->wcls ? w->wcls : w->token_embedding_table);
|
convert_weights_ak_to_gg(model->output, !w->wcls.empty() ? w->wcls.data() : w->token_embedding_table.data());
|
||||||
|
|
||||||
convert_weights_ak_to_gg(model->norm, w->rms_final_weight);
|
convert_weights_ak_to_gg(model->norm, w->rms_final_weight.data());
|
||||||
//print_row(model->norm, 0);
|
//print_row(model->norm, 0);
|
||||||
|
|
||||||
// for rms-att-weight
|
// for rms-att-weight
|
||||||
int row_length = model->hparams.n_embd;
|
int row_length = model->hparams.n_embd;
|
||||||
int n_ff = model->hparams.n_ff;
|
int n_ff = model->hparams.n_ff;
|
||||||
|
|
||||||
|
const uint32_t n_multiqueries = model->hparams.n_head_kv <= 0 || model->hparams.n_head_kv >= model->hparams.n_head ? 1 : model->hparams.n_head / model->hparams.n_head_kv;
|
||||||
|
|
||||||
for (uint32_t i = 0; i < model->hparams.n_layer; ++i){
|
for (uint32_t i = 0; i < model->hparams.n_layer; ++i){
|
||||||
auto & layer = model->layers[i];
|
auto & layer = model->layers[i];
|
||||||
// 1d
|
// 1d
|
||||||
@ -697,9 +655,10 @@ static void save_as_llama_model(
|
|||||||
|
|
||||||
// from 3d matrix layer x dim x dim to 2d matrix dim x dim
|
// from 3d matrix layer x dim x dim to 2d matrix dim x dim
|
||||||
convert_weights_ak_to_gg(layer.wq , &w->wq[i*row_length*row_length]);
|
convert_weights_ak_to_gg(layer.wq , &w->wq[i*row_length*row_length]);
|
||||||
convert_weights_ak_to_gg(layer.wk , &w->wk[i*row_length*row_length]);
|
|
||||||
convert_weights_ak_to_gg(layer.wv , &w->wv[i*row_length*row_length]);
|
|
||||||
convert_weights_ak_to_gg(layer.wo , &w->wo[i*row_length*row_length]);
|
convert_weights_ak_to_gg(layer.wo , &w->wo[i*row_length*row_length]);
|
||||||
|
// from 3d matrix layer x dim x dim to 2d matrix dim x dim / n_multiqueries
|
||||||
|
convert_weights_ak_to_gg(layer.wk , &w->wk[i*row_length*row_length/n_multiqueries]);
|
||||||
|
convert_weights_ak_to_gg(layer.wv , &w->wv[i*row_length*row_length/n_multiqueries]);
|
||||||
|
|
||||||
convert_weights_ak_to_gg(layer.w1 , &w->w1[i*row_length*n_ff]);
|
convert_weights_ak_to_gg(layer.w1 , &w->w1[i*row_length*n_ff]);
|
||||||
convert_weights_ak_to_gg(layer.w2 , &w->w2[i*n_ff*row_length]);
|
convert_weights_ak_to_gg(layer.w2 , &w->w2[i*n_ff*row_length]);
|
||||||
@ -736,8 +695,8 @@ static void save_as_llama_model(
|
|||||||
gguf_set_val_u32(ctx, KV_EMBEDDING_LENGTH, model->hparams.n_embd);
|
gguf_set_val_u32(ctx, KV_EMBEDDING_LENGTH, model->hparams.n_embd);
|
||||||
gguf_set_val_u32(ctx, KV_FEED_FORWARD_LENGTH, model->hparams.n_ff);
|
gguf_set_val_u32(ctx, KV_FEED_FORWARD_LENGTH, model->hparams.n_ff);
|
||||||
gguf_set_val_u32(ctx, KV_ATTENTION_HEAD_COUNT, model->hparams.n_head);
|
gguf_set_val_u32(ctx, KV_ATTENTION_HEAD_COUNT, model->hparams.n_head);
|
||||||
// n_head_kv is optional, default to n_head
|
gguf_set_val_u32(ctx, KV_ATTENTION_HEAD_COUNT, model->hparams.n_head);
|
||||||
// gguf_set_val_u32(ctx, KV_ATTENTION_HEAD_COUNT_KV, ...);
|
gguf_set_val_u32(ctx, KV_ATTENTION_HEAD_COUNT_KV, model->hparams.n_head_kv);
|
||||||
gguf_set_val_u32(ctx, KV_BLOCK_COUNT, model->hparams.n_layer);
|
gguf_set_val_u32(ctx, KV_BLOCK_COUNT, model->hparams.n_layer);
|
||||||
gguf_set_val_u32(ctx, KV_ROPE_DIMENSION_COUNT, model->hparams.n_rot);
|
gguf_set_val_u32(ctx, KV_ROPE_DIMENSION_COUNT, model->hparams.n_rot);
|
||||||
gguf_set_val_f32(ctx, KV_ATTENTION_LAYERNORM_RMS_EPS, 1e-5f);
|
gguf_set_val_f32(ctx, KV_ATTENTION_LAYERNORM_RMS_EPS, 1e-5f);
|
||||||
@ -789,12 +748,12 @@ static void save_as_llama_model(
|
|||||||
|
|
||||||
static struct train_params get_default_train_params() {
|
static struct train_params get_default_train_params() {
|
||||||
struct train_params params;
|
struct train_params params;
|
||||||
params.fn_vocab_model = "models/7B/ggml-model-f16.gguf";
|
params.fn_vocab_model = "models/7B/ggml-model-f16.gguf";
|
||||||
params.fn_llama2c_output_model = "ak_llama_model.bin";
|
params.fn_llama2c_output_model = "ak_llama_model.bin";
|
||||||
params.fn_train_data = "shakespeare.txt";
|
params.fn_train_data = "shakespeare.txt";
|
||||||
params.fn_checkpoint_in = "checkpoint.bin";
|
params.fn_checkpoint_in = "checkpoint.bin";
|
||||||
params.fn_checkpoint_out = "checkpoint.bin";
|
params.fn_checkpoint_out = "checkpoint.bin";
|
||||||
params.fn_model_out = "ggml-checkpoint-f32.bin";
|
params.fn_model_out = "ggml-checkpoint-f32.bin";
|
||||||
|
|
||||||
params.seed = -1;
|
params.seed = -1;
|
||||||
|
|
||||||
@ -829,8 +788,8 @@ static struct train_params get_default_train_params() {
|
|||||||
params.adam_alpha = 1e-3f;
|
params.adam_alpha = 1e-3f;
|
||||||
params.adam_decay = 1e-3f;
|
params.adam_decay = 1e-3f;
|
||||||
|
|
||||||
params.mem_model_gb = 2;
|
params.mem_model_gb = 2;
|
||||||
params.mem_compute_gb = 24;
|
params.mem_compute_gb = 24;
|
||||||
params.mem_compute0_gb = 8;
|
params.mem_compute0_gb = 8;
|
||||||
params.mem_compute1_gb = 2;
|
params.mem_compute1_gb = 2;
|
||||||
|
|
||||||
@ -916,19 +875,30 @@ int main(int argc, char ** argv) {
|
|||||||
if (!params_parse(argc, argv, ¶ms)) {
|
if (!params_parse(argc, argv, ¶ms)) {
|
||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
|
log_set_target(stdout);
|
||||||
Config config;
|
Config config;
|
||||||
TransformerWeights weights = {};
|
TransformerWeights weights = {};
|
||||||
{
|
{
|
||||||
FILE *file = fopen(params.fn_llama2c_model, "rb");
|
LOG("%s: Loading llama2c model from %s\n", __func__, params.fn_llama2c_model);
|
||||||
if (!file) { printf("Unable to open the checkpoint file %s!\n", params.fn_llama2c_model); return 1; }
|
FILE *file = fopen(params.fn_llama2c_model, "r");
|
||||||
|
if (!file) {
|
||||||
|
LOG("%s: Unable to open the checkpoint file %s!\n", __func__, params.fn_llama2c_model);
|
||||||
|
return 1;
|
||||||
|
}
|
||||||
// read in the config header
|
// read in the config header
|
||||||
if(fread(&config, sizeof(Config), 1, file) != 1) { return 1; }
|
if (fread(&config, sizeof(Config), 1, file) != 1) {
|
||||||
|
LOG("%s: Unable to read llama2c config from %s!\n",__func__,params.fn_llama2c_model);
|
||||||
|
return 1;
|
||||||
|
}
|
||||||
auto shared_weights = config.vocab_size > 0;
|
auto shared_weights = config.vocab_size > 0;
|
||||||
config.vocab_size = abs(config.vocab_size);
|
config.vocab_size = abs(config.vocab_size);
|
||||||
|
|
||||||
// read in the Transformer weights
|
// read in the Transformer weights
|
||||||
malloc_weights(&weights, &config, shared_weights);
|
alloc_weights(&weights, &config, shared_weights);
|
||||||
if(checkpoint_init_weights(&weights, &config, file, shared_weights)) { return 1; }
|
if (checkpoint_init_weights(&weights, &config, file, shared_weights)) {
|
||||||
|
LOG("%s: Unable to initialize transformer weights from %s!",__func__,params.fn_llama2c_model);
|
||||||
|
return 1;
|
||||||
|
}
|
||||||
fclose(file);
|
fclose(file);
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -936,15 +906,18 @@ int main(int argc, char ** argv) {
|
|||||||
load_vocab(params.fn_vocab_model, &config, &vocab);
|
load_vocab(params.fn_vocab_model, &config, &vocab);
|
||||||
|
|
||||||
struct my_llama_model model;
|
struct my_llama_model model;
|
||||||
model.hparams.n_vocab = config.vocab_size; //llama_n_vocab(lctx);
|
model.hparams.n_vocab = config.vocab_size; //llama_n_vocab(lctx);
|
||||||
model.hparams.n_ctx = params.n_ctx;
|
model.hparams.n_ctx = params.n_ctx;
|
||||||
model.hparams.n_embd = config.dim; //params.n_embd;
|
model.hparams.n_embd = config.dim; //params.n_embd;
|
||||||
model.hparams.n_ff = config.hidden_dim;
|
model.hparams.n_ff = config.hidden_dim;
|
||||||
model.hparams.n_mult = 32;//params.n_mult;
|
model.hparams.n_mult = 32;//params.n_mult;
|
||||||
model.hparams.n_head = config.n_heads; //params.n_head;
|
model.hparams.n_head = config.n_heads; //params.n_head;
|
||||||
model.hparams.n_layer = config.n_layers; //params.n_layer;
|
model.hparams.n_head_kv = config.n_kv_heads;
|
||||||
model.hparams.n_rot = std::min((uint32_t)params.n_rotmax, model.hparams.n_embd / model.hparams.n_head);
|
model.hparams.n_layer = config.n_layers; //params.n_layer;
|
||||||
|
model.hparams.n_rot = std::min((uint32_t)params.n_rotmax, model.hparams.n_embd / model.hparams.n_head);
|
||||||
|
|
||||||
print_params(&model.hparams);
|
print_params(&model.hparams);
|
||||||
|
|
||||||
struct ggml_init_params lcparams;
|
struct ggml_init_params lcparams;
|
||||||
lcparams.mem_size = 1024ll*1024ll*1024ll*((size_t) params.mem_model_gb);
|
lcparams.mem_size = 1024ll*1024ll*1024ll*((size_t) params.mem_model_gb);
|
||||||
lcparams.mem_buffer = NULL;
|
lcparams.mem_buffer = NULL;
|
||||||
@ -956,7 +929,7 @@ int main(int argc, char ** argv) {
|
|||||||
model.name = basename(params.fn_llama2c_model);
|
model.name = basename(params.fn_llama2c_model);
|
||||||
save_as_llama_model(&vocab, &model, &weights, params.fn_llama2c_output_model);
|
save_as_llama_model(&vocab, &model, &weights, params.fn_llama2c_output_model);
|
||||||
|
|
||||||
printf("Saving llama.c model file %s in ggml format at %s\n", params.fn_llama2c_model, params.fn_llama2c_output_model);
|
LOG("%s: Saving llama.c model file %s in ggml format at %s\n", __func__, params.fn_llama2c_model, params.fn_llama2c_output_model);
|
||||||
|
|
||||||
ggml_free(model.ctx);
|
ggml_free(model.ctx);
|
||||||
return 0;
|
return 0;
|
||||||
|
Loading…
Reference in New Issue
Block a user