ggml : add Flash Attention (#5021)

* ggml : add ggml_flash_attn_ext API

* ggml : fix GQA support in ggml_flash_attn_ext

* ggml : online attention (CPU)

* metal : initial implementation

* metal : f16 precision

* metal : reduce branches

* metal : specialize for head size

* wip : 8 rows per simd group

* wip : 4 rows per simd group

* wip : template for rows per warp

* metal : parallelize across KV size

* metal : parallel reduce across heads

* metal : efficient flash_attn_f16 implementation

* metal : avoid redundant loads of the attention

* metal : scale and mask in matrix form

* metal : fix comment

* llama : avoid ggml_cast, use F32 query

* metal : add parallel reduce version (disabled)

* metal : move output into local memory + optimize

- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments

* metal : add tests, fix scaling, support C > 32

* metal : improve precision

* ggml : fix f16 mad

* metal : minor

* metal : support Q > 8

* tests : add ATTN tests

* metal : disable buffer allocation logs

* tests : more

* metal : faster inner loop for C == 32

* metal : fix array initialization

* tests : ifdef

* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext

* ggml : fix ggml_soft_max mask requirement

* cuda : fix soft_max to use correct mask size

* cuda : add flash_attn kernel (wip)

* metal : optimize softmax for C > 32

* metal : optimize softmax

* tests : minor fix

* cuda : avoid zeroing fragments

* tests : update dims

* cuda : fix __hisinf() result check

* cuda : avoid warp_reduce for smax

* cuda : use int instead of int64_t

Noticeably improves performance (thanks to Johannes)

* cuda : make loops use the same loop values

Thanks Johannes again for the tip

* cuda : unroll some of the loops

* cuda : avoid __hisinf branches

* cuda : use half2 in softmax

* cuda : switch to 1 warp for bs > 16

* cuda : speed-up reduce part of the kernel

* cuda : unroll Q*K^T loop

* cuda : fix -INF block check

* cuda : simplify softmax

* cuda : fix matrix names

* cuda : minor

* llama : adapt to F16 KQ_pos

* llama : adapt new models to F16 KQ_mask

* ggml : fix F16 store (ARM NEON)

* llama : fix type of KQ_mask and KQ_pos

* ggml : fix CPU soft_max

* tests : add hs=256

* cuda : fix build

* metal : improve perf via smaller int registers

* cuda : adapt soft_max to F16 mask and pos

* CUDA: faster FlashAttention, kernel for bs == 1

* 16 cols for Phi-2

* no vec for hs, no hs==256 ncols==32 for Volta

* adjust kernel selection logic

* 4 warps, 256 stride for all D

* no ncols == 64

* Multiple parallel blocks for batch size 1

* fix compile warnings

* fix excessive KQ_b loads

* fix cmake build

* fix KV cache padding, NaN from INFINITY (#6438)

* llama : flash_attn cparam + fix defrag

* server: support flash_attn param

* server: bench: enable flash_attn param

* CUDA: refactor host code, dyn. par. blocks

* fix flash_attn_vec_f16 race condition

* flush softmax exp below threshold to 0

* store temp KQ in registers

* Calculate KQ as FP32 if KQV has GGML_PREC_F32

* Add __hgt2_mask implementation for CUDA 11

* fix KQ FP32 precision fpr parallel_blocks > 1

* llama-bench : add -fa,--flash-attn arg

* metal : add BS=1 kernel for flash attention (#6508)

* metal : add BS=1 kernel for flash attention (wip)

* metal : support more than 1 warps

* metal : opts

* metal : opt

* metal : switch to parallel reduce

* metal : reduce registers

* metal : simplify

* metal : initial FA vec kernel

* metal : use F32 attention accumulators

* batched-bench : add fattn arg

* llama : simplify llama_build_kv_store

ggml-ci

* llama : adapt build_olmo to changes

* ggml : fix arm fp16 store on windows

* metal : clean-up

* metal : clean-up kernel code

* metal : minor

* tests : remove benchmarks

ggml-ci

* ggml : fix avx512 const correctness

ggml-ci

* ggml : fix soft_max with bias on CPU

ggml-ci

* common : print --flash-attn in help

* ggml : fix num dimensions in ggml_flash_attn_ext

* llama : force disable flash attention for incompatible models

* ggml : ggml_soft_max support F16/F32 mask/pos

ggml-ci

* cuda : uint -> uint32_t

* cuda : "constexpr dim3" -> "const dim3"

ggml-ci

* cuda : try to fix __hgt2_mask

ggml-ci

* ggml : add TODO's for F16/F32 mask/pos support in other backends

* llama : replace bool need_kq_pos with use_alibi

* llama : prep ALiBi support for BERT models

ggml-ci

* llama : fix n_batch requirements

ggml-ci

* cont

* server : add help for --flash-attn arg

* llama : disable FA for AMD

* tests : remove TMP_ATTN_BENCH

ggml-ci

* llama : support save/load state with FA enabled

ggml-ci

* ci : add CUDA save-load-state tests

ggml-ci

* llama : llama_kv_cache_clear zeroes data + fix save-load seq

ggml-ci

* llama : fix copy-paste errors, add TODO

* llama : disallow incompatible states

* llama : update llama_state_get_size after v_trans field

* metal : remove tmp log

* llama : add static reminder for llama_state_get_size

* metal : fix max nsg

ggml-ci

* ci : fix arg order

ggml-ci

---------

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
This commit is contained in:
Georgi Gerganov 2024-04-30 12:16:08 +03:00 committed by GitHub
parent 952d03dbea
commit 9c67c2773d
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
22 changed files with 2921 additions and 457 deletions

View File

@ -336,7 +336,8 @@ function gg_run_open_llama_3b_v2 {
(time ./bin/imatrix --model ${model_f16} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-imatrix.log (time ./bin/imatrix --model ${model_f16} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-imatrix.log
(time ./bin/save-load-state --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log (time ./bin/save-load-state --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/save-load-state -fa --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
function check_ppl { function check_ppl {
qnt="$1" qnt="$1"
@ -517,7 +518,10 @@ function gg_run_open_llama_7b_v2 {
(time ./bin/imatrix --model ${model_f16} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-imatrix.log (time ./bin/imatrix --model ${model_f16} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-imatrix.log
(time ./bin/save-load-state --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log (time ./bin/save-load-state -ngl 10 --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/save-load-state -fa -ngl 10 --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/save-load-state -ngl 99 --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/save-load-state -fa -ngl 99 --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
function check_ppl { function check_ppl {
qnt="$1" qnt="$1"

View File

@ -947,6 +947,10 @@ bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_pa
params.cont_batching = true; params.cont_batching = true;
return true; return true;
} }
if (arg == "-fa" || arg == "--flash-attn") {
params.flash_attn = true;
return true;
}
if (arg == "--color") { if (arg == "--color") {
params.use_color = true; params.use_color = true;
return true; return true;
@ -1513,6 +1517,7 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
printf(" -ns N, --sequences N number of sequences to decode (default: %d)\n", params.n_sequences); printf(" -ns N, --sequences N number of sequences to decode (default: %d)\n", params.n_sequences);
printf(" -ps N, --p-split N speculative decoding split probability (default: %.1f)\n", (double)params.p_split); printf(" -ps N, --p-split N speculative decoding split probability (default: %.1f)\n", (double)params.p_split);
printf(" -cb, --cont-batching enable continuous batching (a.k.a dynamic batching) (default: disabled)\n"); printf(" -cb, --cont-batching enable continuous batching (a.k.a dynamic batching) (default: disabled)\n");
printf(" -fa, --flash-attn enable Flash Attention (default: %s)\n", params.flash_attn ? "enabled" : "disabled");
printf(" --mmproj MMPROJ_FILE path to a multimodal projector file for LLaVA. see examples/llava/README.md\n"); printf(" --mmproj MMPROJ_FILE path to a multimodal projector file for LLaVA. see examples/llava/README.md\n");
printf(" --image IMAGE_FILE path to an image file. use with multimodal models. Specify multiple times for batching\n"); printf(" --image IMAGE_FILE path to an image file. use with multimodal models. Specify multiple times for batching\n");
if (llama_supports_mlock()) { if (llama_supports_mlock()) {
@ -1885,6 +1890,7 @@ struct llama_context_params llama_context_params_from_gpt_params(const gpt_param
cparams.cb_eval = params.cb_eval; cparams.cb_eval = params.cb_eval;
cparams.cb_eval_user_data = params.cb_eval_user_data; cparams.cb_eval_user_data = params.cb_eval_user_data;
cparams.offload_kqv = !params.no_kv_offload; cparams.offload_kqv = !params.no_kv_offload;
cparams.flash_attn = params.flash_attn;
cparams.type_k = kv_cache_type_from_str(params.cache_type_k); cparams.type_k = kv_cache_type_from_str(params.cache_type_k);
cparams.type_v = kv_cache_type_from_str(params.cache_type_v); cparams.type_v = kv_cache_type_from_str(params.cache_type_v);
@ -2707,6 +2713,7 @@ void dump_non_result_info_yaml(FILE * stream, const gpt_params & params, const l
fprintf(stream, "seed: %u # default: -1 (random seed)\n", params.seed); fprintf(stream, "seed: %u # default: -1 (random seed)\n", params.seed);
fprintf(stream, "simple_io: %s # default: false\n", params.simple_io ? "true" : "false"); fprintf(stream, "simple_io: %s # default: false\n", params.simple_io ? "true" : "false");
fprintf(stream, "cont_batching: %s # default: false\n", params.cont_batching ? "true" : "false"); fprintf(stream, "cont_batching: %s # default: false\n", params.cont_batching ? "true" : "false");
fprintf(stream, "flash_attn: %s # default: false\n", params.flash_attn ? "true" : "false");
fprintf(stream, "temp: %f # default: 0.8\n", sparams.temp); fprintf(stream, "temp: %f # default: 0.8\n", sparams.temp);
const std::vector<float> tensor_split_vector(params.tensor_split, params.tensor_split + llama_max_devices()); const std::vector<float> tensor_split_vector(params.tensor_split, params.tensor_split + llama_max_devices());

View File

@ -150,6 +150,7 @@ struct gpt_params {
bool multiline_input = false; // reverse the usage of `\` bool multiline_input = false; // reverse the usage of `\`
bool simple_io = false; // improves compatibility with subprocesses and limited consoles bool simple_io = false; // improves compatibility with subprocesses and limited consoles
bool cont_batching = true; // insert new sequences for decoding on-the-fly bool cont_batching = true; // insert new sequences for decoding on-the-fly
bool flash_attn = false; // flash attention
bool input_prefix_bos = false; // prefix BOS to user inputs, preceding input_prefix bool input_prefix_bos = false; // prefix BOS to user inputs, preceding input_prefix
bool ignore_eos = false; // ignore generated EOS tokens bool ignore_eos = false; // ignore generated EOS tokens

View File

@ -32,7 +32,7 @@ int main(int argc, char ** argv) {
gpt_params params; gpt_params params;
if (argc == 1 || argv[1][0] == '-') { if (argc == 1 || argv[1][0] == '-') {
printf("usage: %s MODEL_PATH [N_KV_MAX] [N_BATCH] [N_UBATCH] [IS_PP_SHARED] [NGL] <PP> <TG> <PL>\n" , argv[0]); printf("usage: %s MODEL_PATH [N_KV_MAX] [N_BATCH] [N_UBATCH] [FATTN] [IS_PP_SHARED] [NGL] <PP> <TG> <PL>\n" , argv[0]);
printf(" <PP>, <TG> and PL are comma-separated lists of numbers without spaces\n\n"); printf(" <PP>, <TG> and PL are comma-separated lists of numbers without spaces\n\n");
printf(" example: %s ggml-model-f16.gguf 2048 2048 512 0 999 128,256,512 128,256 1,2,4,8,16,32\n\n", argv[0]); printf(" example: %s ggml-model-f16.gguf 2048 2048 512 0 999 128,256,512 128,256 1,2,4,8,16,32\n\n", argv[0]);
return 1 ; return 1 ;
@ -41,6 +41,7 @@ int main(int argc, char ** argv) {
int n_kv_max = 2048; int n_kv_max = 2048;
int n_batch = 2048; int n_batch = 2048;
int n_ubatch = 512; int n_ubatch = 512;
bool flash_attn = false;
int is_pp_shared = 0; int is_pp_shared = 0;
int n_gpu_layers = 0; int n_gpu_layers = 0;
@ -66,23 +67,27 @@ int main(int argc, char ** argv) {
} }
if (argc >= 6) { if (argc >= 6) {
is_pp_shared = std::atoi(argv[5]); flash_attn = std::atoi(argv[5]);
} }
if (argc >= 7) { if (argc >= 7) {
n_gpu_layers = std::atoi(argv[6]); is_pp_shared = std::atoi(argv[6]);
} }
if (argc >= 8) { if (argc >= 8) {
n_pp = parse_list(argv[7]); n_gpu_layers = std::atoi(argv[7]);
} }
if (argc >= 9) { if (argc >= 9) {
n_tg = parse_list(argv[8]); n_pp = parse_list(argv[8]);
} }
if (argc >= 10) { if (argc >= 10) {
n_pl = parse_list(argv[9]); n_tg = parse_list(argv[9]);
}
if (argc >= 11) {
n_pl = parse_list(argv[10]);
} }
// init LLM // init LLM
@ -108,10 +113,11 @@ int main(int argc, char ** argv) {
llama_context_params ctx_params = llama_context_default_params(); llama_context_params ctx_params = llama_context_default_params();
ctx_params.seed = 1234; ctx_params.seed = 1234;
ctx_params.n_ctx = n_kv_max; ctx_params.n_ctx = n_kv_max;
ctx_params.n_batch = n_batch; ctx_params.n_batch = n_batch;
ctx_params.n_ubatch = n_ubatch; ctx_params.n_ubatch = n_ubatch;
ctx_params.flash_attn = flash_attn;
ctx_params.n_threads = params.n_threads; ctx_params.n_threads = params.n_threads;
ctx_params.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch; ctx_params.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch;
@ -169,7 +175,7 @@ int main(int argc, char ** argv) {
} }
LOG_TEE("\n"); LOG_TEE("\n");
LOG_TEE("%s: n_kv_max = %d, n_batch = %d, n_ubatch = %d, is_pp_shared = %d, n_gpu_layers = %d, n_threads = %u, n_threads_batch = %u\n", __func__, n_kv_max, n_batch, n_ubatch, is_pp_shared, n_gpu_layers, ctx_params.n_threads, ctx_params.n_threads_batch); LOG_TEE("%s: n_kv_max = %d, n_batch = %d, n_ubatch = %d, flash_attn = %d, is_pp_shared = %d, n_gpu_layers = %d, n_threads = %u, n_threads_batch = %u\n", __func__, n_kv_max, n_batch, n_ubatch, flash_attn, is_pp_shared, n_gpu_layers, ctx_params.n_threads, ctx_params.n_threads_batch);
LOG_TEE("\n"); LOG_TEE("\n");
LOG_TEE("|%6s | %6s | %4s | %6s | %8s | %8s | %8s | %8s | %8s | %8s |\n", "PP", "TG", "B", "N_KV", "T_PP s", "S_PP t/s", "T_TG s", "S_TG t/s", "T s", "S t/s"); LOG_TEE("|%6s | %6s | %4s | %6s | %8s | %8s | %8s | %8s | %8s | %8s |\n", "PP", "TG", "B", "N_KV", "T_PP s", "S_PP t/s", "T_TG s", "S_TG t/s", "T s", "S t/s");

View File

@ -174,6 +174,7 @@ struct cmd_params {
std::vector<llama_split_mode> split_mode; std::vector<llama_split_mode> split_mode;
std::vector<int> main_gpu; std::vector<int> main_gpu;
std::vector<bool> no_kv_offload; std::vector<bool> no_kv_offload;
std::vector<bool> flash_attn;
std::vector<std::vector<float>> tensor_split; std::vector<std::vector<float>> tensor_split;
std::vector<bool> use_mmap; std::vector<bool> use_mmap;
std::vector<bool> embeddings; std::vector<bool> embeddings;
@ -195,6 +196,7 @@ static const cmd_params cmd_params_defaults = {
/* split_mode */ {LLAMA_SPLIT_MODE_LAYER}, /* split_mode */ {LLAMA_SPLIT_MODE_LAYER},
/* main_gpu */ {0}, /* main_gpu */ {0},
/* no_kv_offload */ {false}, /* no_kv_offload */ {false},
/* flash_attn */ {false},
/* tensor_split */ {std::vector<float>(llama_max_devices(), 0.0f)}, /* tensor_split */ {std::vector<float>(llama_max_devices(), 0.0f)},
/* use_mmap */ {true}, /* use_mmap */ {true},
/* embeddings */ {false}, /* embeddings */ {false},
@ -220,6 +222,7 @@ static void print_usage(int /* argc */, char ** argv) {
printf(" -sm, --split-mode <none|layer|row> (default: %s)\n", join(transform_to_str(cmd_params_defaults.split_mode, split_mode_str), ",").c_str()); printf(" -sm, --split-mode <none|layer|row> (default: %s)\n", join(transform_to_str(cmd_params_defaults.split_mode, split_mode_str), ",").c_str());
printf(" -mg, --main-gpu <i> (default: %s)\n", join(cmd_params_defaults.main_gpu, ",").c_str()); printf(" -mg, --main-gpu <i> (default: %s)\n", join(cmd_params_defaults.main_gpu, ",").c_str());
printf(" -nkvo, --no-kv-offload <0|1> (default: %s)\n", join(cmd_params_defaults.no_kv_offload, ",").c_str()); printf(" -nkvo, --no-kv-offload <0|1> (default: %s)\n", join(cmd_params_defaults.no_kv_offload, ",").c_str());
printf(" -fa, --flash-attn <0|1> (default: %s)\n", join(cmd_params_defaults.flash_attn, ",").c_str());
printf(" -mmp, --mmap <0|1> (default: %s)\n", join(cmd_params_defaults.use_mmap, ",").c_str()); printf(" -mmp, --mmap <0|1> (default: %s)\n", join(cmd_params_defaults.use_mmap, ",").c_str());
printf(" -embd, --embeddings <0|1> (default: %s)\n", join(cmd_params_defaults.embeddings, ",").c_str()); printf(" -embd, --embeddings <0|1> (default: %s)\n", join(cmd_params_defaults.embeddings, ",").c_str());
printf(" -ts, --tensor-split <ts0/ts1/..> (default: 0)\n"); printf(" -ts, --tensor-split <ts0/ts1/..> (default: 0)\n");
@ -393,6 +396,13 @@ static cmd_params parse_cmd_params(int argc, char ** argv) {
} }
auto p = split<bool>(argv[i], split_delim); auto p = split<bool>(argv[i], split_delim);
params.no_kv_offload.insert(params.no_kv_offload.end(), p.begin(), p.end()); params.no_kv_offload.insert(params.no_kv_offload.end(), p.begin(), p.end());
} else if (arg == "-fa" || arg == "--flash-attn") {
if (++i >= argc) {
invalid_param = true;
break;
}
auto p = split<bool>(argv[i], split_delim);
params.flash_attn.insert(params.flash_attn.end(), p.begin(), p.end());
} else if (arg == "-mmp" || arg == "--mmap") { } else if (arg == "-mmp" || arg == "--mmap") {
if (++i >= argc) { if (++i >= argc) {
invalid_param = true; invalid_param = true;
@ -477,6 +487,7 @@ static cmd_params parse_cmd_params(int argc, char ** argv) {
if (params.split_mode.empty()) { params.split_mode = cmd_params_defaults.split_mode; } if (params.split_mode.empty()) { params.split_mode = cmd_params_defaults.split_mode; }
if (params.main_gpu.empty()) { params.main_gpu = cmd_params_defaults.main_gpu; } if (params.main_gpu.empty()) { params.main_gpu = cmd_params_defaults.main_gpu; }
if (params.no_kv_offload.empty()){ params.no_kv_offload = cmd_params_defaults.no_kv_offload; } if (params.no_kv_offload.empty()){ params.no_kv_offload = cmd_params_defaults.no_kv_offload; }
if (params.flash_attn.empty()) { params.flash_attn = cmd_params_defaults.flash_attn; }
if (params.tensor_split.empty()) { params.tensor_split = cmd_params_defaults.tensor_split; } if (params.tensor_split.empty()) { params.tensor_split = cmd_params_defaults.tensor_split; }
if (params.use_mmap.empty()) { params.use_mmap = cmd_params_defaults.use_mmap; } if (params.use_mmap.empty()) { params.use_mmap = cmd_params_defaults.use_mmap; }
if (params.embeddings.empty()) { params.embeddings = cmd_params_defaults.embeddings; } if (params.embeddings.empty()) { params.embeddings = cmd_params_defaults.embeddings; }
@ -498,6 +509,7 @@ struct cmd_params_instance {
llama_split_mode split_mode; llama_split_mode split_mode;
int main_gpu; int main_gpu;
bool no_kv_offload; bool no_kv_offload;
bool flash_attn;
std::vector<float> tensor_split; std::vector<float> tensor_split;
bool use_mmap; bool use_mmap;
bool embeddings; bool embeddings;
@ -532,6 +544,7 @@ struct cmd_params_instance {
cparams.type_k = type_k; cparams.type_k = type_k;
cparams.type_v = type_v; cparams.type_v = type_v;
cparams.offload_kqv = !no_kv_offload; cparams.offload_kqv = !no_kv_offload;
cparams.flash_attn = flash_attn;
cparams.embeddings = embeddings; cparams.embeddings = embeddings;
return cparams; return cparams;
@ -554,6 +567,7 @@ static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_param
for (const auto & tk : params.type_k) for (const auto & tk : params.type_k)
for (const auto & tv : params.type_v) for (const auto & tv : params.type_v)
for (const auto & nkvo : params.no_kv_offload) for (const auto & nkvo : params.no_kv_offload)
for (const auto & fa : params.flash_attn)
for (const auto & nt : params.n_threads) { for (const auto & nt : params.n_threads) {
for (const auto & n_prompt : params.n_prompt) { for (const auto & n_prompt : params.n_prompt) {
if (n_prompt == 0) { if (n_prompt == 0) {
@ -572,6 +586,7 @@ static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_param
/* .split_mode = */ sm, /* .split_mode = */ sm,
/* .main_gpu = */ mg, /* .main_gpu = */ mg,
/* .no_kv_offload= */ nkvo, /* .no_kv_offload= */ nkvo,
/* .flash_attn = */ fa,
/* .tensor_split = */ ts, /* .tensor_split = */ ts,
/* .use_mmap = */ mmp, /* .use_mmap = */ mmp,
/* .embeddings = */ embd, /* .embeddings = */ embd,
@ -596,6 +611,7 @@ static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_param
/* .split_mode = */ sm, /* .split_mode = */ sm,
/* .main_gpu = */ mg, /* .main_gpu = */ mg,
/* .no_kv_offload= */ nkvo, /* .no_kv_offload= */ nkvo,
/* .flash_attn = */ fa,
/* .tensor_split = */ ts, /* .tensor_split = */ ts,
/* .use_mmap = */ mmp, /* .use_mmap = */ mmp,
/* .embeddings = */ embd, /* .embeddings = */ embd,
@ -633,6 +649,7 @@ struct test {
llama_split_mode split_mode; llama_split_mode split_mode;
int main_gpu; int main_gpu;
bool no_kv_offload; bool no_kv_offload;
bool flash_attn;
std::vector<float> tensor_split; std::vector<float> tensor_split;
bool use_mmap; bool use_mmap;
bool embeddings; bool embeddings;
@ -657,6 +674,7 @@ struct test {
split_mode = inst.split_mode; split_mode = inst.split_mode;
main_gpu = inst.main_gpu; main_gpu = inst.main_gpu;
no_kv_offload = inst.no_kv_offload; no_kv_offload = inst.no_kv_offload;
flash_attn = inst.flash_attn;
tensor_split = inst.tensor_split; tensor_split = inst.tensor_split;
use_mmap = inst.use_mmap; use_mmap = inst.use_mmap;
embeddings = inst.embeddings; embeddings = inst.embeddings;
@ -731,7 +749,7 @@ struct test {
"n_batch", "n_ubatch", "n_batch", "n_ubatch",
"n_threads", "type_k", "type_v", "n_threads", "type_k", "type_v",
"n_gpu_layers", "split_mode", "n_gpu_layers", "split_mode",
"main_gpu", "no_kv_offload", "main_gpu", "no_kv_offload", "flash_attn",
"tensor_split", "use_mmap", "embeddings", "tensor_split", "use_mmap", "embeddings",
"n_prompt", "n_gen", "test_time", "n_prompt", "n_gen", "test_time",
"avg_ns", "stddev_ns", "avg_ns", "stddev_ns",
@ -753,7 +771,7 @@ struct test {
} }
if (field == "cuda" || field == "opencl" || field == "vulkan" || field == "kompute" || field == "metal" || if (field == "cuda" || field == "opencl" || field == "vulkan" || field == "kompute" || field == "metal" ||
field == "gpu_blas" || field == "blas" || field == "sycl" ||field == "f16_kv" || field == "no_kv_offload" || field == "gpu_blas" || field == "blas" || field == "sycl" ||field == "f16_kv" || field == "no_kv_offload" ||
field == "use_mmap" || field == "embeddings") { field == "flash_attn" || field == "use_mmap" || field == "embeddings") {
return BOOL; return BOOL;
} }
if (field == "avg_ts" || field == "stddev_ts") { if (field == "avg_ts" || field == "stddev_ts") {
@ -787,7 +805,7 @@ struct test {
std::to_string(n_batch), std::to_string(n_ubatch), std::to_string(n_batch), std::to_string(n_ubatch),
std::to_string(n_threads), ggml_type_name(type_k), ggml_type_name(type_v), std::to_string(n_threads), ggml_type_name(type_k), ggml_type_name(type_v),
std::to_string(n_gpu_layers), split_mode_str(split_mode), std::to_string(n_gpu_layers), split_mode_str(split_mode),
std::to_string(main_gpu), std::to_string(no_kv_offload), std::to_string(main_gpu), std::to_string(no_kv_offload), std::to_string(flash_attn),
tensor_split_str, std::to_string(use_mmap), std::to_string(embeddings), tensor_split_str, std::to_string(use_mmap), std::to_string(embeddings),
std::to_string(n_prompt), std::to_string(n_gen), test_time, std::to_string(n_prompt), std::to_string(n_gen), test_time,
std::to_string(avg_ns()), std::to_string(stdev_ns()), std::to_string(avg_ns()), std::to_string(stdev_ns()),
@ -955,6 +973,9 @@ struct markdown_printer : public printer {
if (field == "no_kv_offload") { if (field == "no_kv_offload") {
return "nkvo"; return "nkvo";
} }
if (field == "flash_attn") {
return "fa";
}
if (field == "use_mmap") { if (field == "use_mmap") {
return "mmap"; return "mmap";
} }
@ -1001,6 +1022,9 @@ struct markdown_printer : public printer {
if (params.no_kv_offload.size() > 1 || params.no_kv_offload != cmd_params_defaults.no_kv_offload) { if (params.no_kv_offload.size() > 1 || params.no_kv_offload != cmd_params_defaults.no_kv_offload) {
fields.emplace_back("no_kv_offload"); fields.emplace_back("no_kv_offload");
} }
if (params.flash_attn.size() > 1 || params.flash_attn != cmd_params_defaults.flash_attn) {
fields.emplace_back("flash_attn");
}
if (params.tensor_split.size() > 1 || params.tensor_split != cmd_params_defaults.tensor_split) { if (params.tensor_split.size() > 1 || params.tensor_split != cmd_params_defaults.tensor_split) {
fields.emplace_back("tensor_split"); fields.emplace_back("tensor_split");
} }

View File

@ -268,6 +268,7 @@ def start_server_background(args):
server_args.extend(['--defrag-thold', "0.1"]) server_args.extend(['--defrag-thold', "0.1"])
server_args.append('--cont-batching') server_args.append('--cont-batching')
server_args.append('--metrics') server_args.append('--metrics')
server_args.append('--flash-attn')
server_args.extend(['--log-format', "text"]) server_args.extend(['--log-format', "text"])
args = [str(arg) for arg in [server_path, *server_args]] args = [str(arg) for arg in [server_path, *server_args]]
print(f"bench: starting server with: {' '.join(args)}") print(f"bench: starting server with: {' '.join(args)}")

View File

@ -2377,6 +2377,7 @@ static void server_print_usage(const char * argv0, const gpt_params & params, co
printf(" --embeddings enable embedding vector output (default: %s)\n", params.embedding ? "enabled" : "disabled"); printf(" --embeddings enable embedding vector output (default: %s)\n", params.embedding ? "enabled" : "disabled");
printf(" -np N, --parallel N number of slots for process requests (default: %d)\n", params.n_parallel); printf(" -np N, --parallel N number of slots for process requests (default: %d)\n", params.n_parallel);
printf(" -cb, --cont-batching enable continuous batching (a.k.a dynamic batching) (default: enabled)\n"); printf(" -cb, --cont-batching enable continuous batching (a.k.a dynamic batching) (default: enabled)\n");
printf(" -fa, --flash-attn enable Flash Attention (default: %s)\n", params.flash_attn ? "enabled" : "disabled");
printf(" -spf FNAME, --system-prompt-file FNAME\n"); printf(" -spf FNAME, --system-prompt-file FNAME\n");
printf(" set a file to load a system prompt (initial prompt of all slots), this is useful for chat applications.\n"); printf(" set a file to load a system prompt (initial prompt of all slots), this is useful for chat applications.\n");
printf(" -ctk TYPE, --cache-type-k TYPE\n"); printf(" -ctk TYPE, --cache-type-k TYPE\n");
@ -2742,6 +2743,8 @@ static void server_params_parse(int argc, char ** argv, server_params & sparams,
params.embedding = true; params.embedding = true;
} else if (arg == "-cb" || arg == "--cont-batching") { } else if (arg == "-cb" || arg == "--cont-batching") {
params.cont_batching = true; params.cont_batching = true;
} else if (arg == "-fa" || arg == "--flash-attn") {
params.flash_attn = true;
} else if (arg == "-np" || arg == "--parallel") { } else if (arg == "-np" || arg == "--parallel") {
if (++i >= argc) { if (++i >= argc) {
invalid_param = true; invalid_param = true;

View File

@ -14,6 +14,7 @@
#include "ggml-cuda/cpy.cuh" #include "ggml-cuda/cpy.cuh"
#include "ggml-cuda/diagmask.cuh" #include "ggml-cuda/diagmask.cuh"
#include "ggml-cuda/dmmv.cuh" #include "ggml-cuda/dmmv.cuh"
#include "ggml-cuda/fattn.cuh"
#include "ggml-cuda/getrows.cuh" #include "ggml-cuda/getrows.cuh"
#include "ggml-cuda/im2col.cuh" #include "ggml-cuda/im2col.cuh"
#include "ggml-cuda/mmq.cuh" #include "ggml-cuda/mmq.cuh"
@ -140,6 +141,7 @@ static ggml_cuda_device_info ggml_cuda_init() {
info.devices[id].cc = 100*prop.major + 10*prop.minor; info.devices[id].cc = 100*prop.major + 10*prop.minor;
#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) #endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
info.devices[id].smpb = prop.sharedMemPerBlock; info.devices[id].smpb = prop.sharedMemPerBlock;
info.devices[id].nsm = prop.multiProcessorCount;
} }
for (int id = 0; id < info.device_count; ++id) { for (int id = 0; id < info.device_count; ++id) {
@ -2290,6 +2292,9 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg
case GGML_OP_ARGSORT: case GGML_OP_ARGSORT:
ggml_cuda_op_argsort(ctx, dst); ggml_cuda_op_argsort(ctx, dst);
break; break;
case GGML_OP_FLASH_ATTN_EXT:
ggml_cuda_flash_attn_ext(ctx, dst);
break;
default: default:
return false; return false;
} }
@ -2564,6 +2569,7 @@ GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, cons
case GGML_OP_ARANGE: case GGML_OP_ARANGE:
case GGML_OP_TIMESTEP_EMBEDDING: case GGML_OP_TIMESTEP_EMBEDDING:
case GGML_OP_LEAKY_RELU: case GGML_OP_LEAKY_RELU:
case GGML_OP_FLASH_ATTN_EXT:
return true; return true;
default: default:
return false; return false;

View File

@ -142,6 +142,7 @@
#define CC_PASCAL 600 #define CC_PASCAL 600
#define MIN_CC_DP4A 610 // minimum compute capability for __dp4a, an intrinsic for byte-wise dot products #define MIN_CC_DP4A 610 // minimum compute capability for __dp4a, an intrinsic for byte-wise dot products
#define CC_VOLTA 700 #define CC_VOLTA 700
#define CC_AMPERE 800
#define CC_OFFSET_AMD 1000000 #define CC_OFFSET_AMD 1000000
#define CC_RDNA1 (CC_OFFSET_AMD + 1010) #define CC_RDNA1 (CC_OFFSET_AMD + 1010)
#define CC_RDNA2 (CC_OFFSET_AMD + 1030) #define CC_RDNA2 (CC_OFFSET_AMD + 1030)
@ -271,7 +272,6 @@ static __device__ __forceinline__ float2 warp_reduce_sum(float2 a) {
return a; return a;
} }
#ifdef GGML_CUDA_F16
static __device__ __forceinline__ half2 warp_reduce_sum(half2 a) { static __device__ __forceinline__ half2 warp_reduce_sum(half2 a) {
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_PASCAL #if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_PASCAL
#pragma unroll #pragma unroll
@ -284,7 +284,6 @@ static __device__ __forceinline__ half2 warp_reduce_sum(half2 a) {
NO_DEVICE_CODE; NO_DEVICE_CODE;
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_PASCAL #endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_PASCAL
} }
#endif // GGML_CUDA_F16
static __device__ __forceinline__ float warp_reduce_max(float x) { static __device__ __forceinline__ float warp_reduce_max(float x) {
#pragma unroll #pragma unroll
@ -294,19 +293,26 @@ static __device__ __forceinline__ float warp_reduce_max(float x) {
return x; return x;
} }
//static __device__ __forceinline__ half2 warp_reduce_max(half2 x) { static __device__ __forceinline__ half2 warp_reduce_max(half2 x) {
//#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_PASCAL && CUDART_VERSION >= CUDART_HMAX #if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_PASCAL && CUDART_VERSION >= CUDART_HMAX
//#pragma unroll #pragma unroll
// for (int mask = 16; mask > 0; mask >>= 1) { for (int mask = 16; mask > 0; mask >>= 1) {
// x = __hmax2(x, __shfl_xor_sync(0xffffffff, x, mask, 32)); x = __hmax2(x, __shfl_xor_sync(0xffffffff, x, mask, 32));
// } }
// return x; return x;
//#else #else
// GGML_UNUSED(x); GGML_UNUSED(x);
// NO_DEVICE_CODE; NO_DEVICE_CODE;
//#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_PASCAL && CUDART_VERSION >= CUDART_HMAX #endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_PASCAL && CUDART_VERSION >= CUDART_HMAX
//} }
#if CUDART_VERSION < 12000
static __device__ __forceinline__ uint32_t __hgt2_mask(const half2 a, const half2 b) {
const uint32_t mask_low = 0x0000FFFF * (float( __low2half(a)) > float( __low2half(b)));
const uint32_t mask_high = 0xFFFF0000 * (float(__high2half(a)) > float(__high2half(b)));
return mask_low | mask_high;
}
#endif // CUDART_VERSION < 12000
#if defined(GGML_USE_HIPBLAS) #if defined(GGML_USE_HIPBLAS)
#define __CUDA_ARCH__ 1300 #define __CUDA_ARCH__ 1300
@ -391,6 +397,11 @@ static __device__ __forceinline__ int __dp4a(const int a, const int b, int c) {
} }
#endif // defined(GGML_USE_HIPBLAS) #endif // defined(GGML_USE_HIPBLAS)
#define FP16_AVAILABLE defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) ? \
defined(RDNA1) || defined(RDNA2) || defined(RDNA3) : __CUDA_ARCH__ >= CC_PASCAL
#define FP16_MMA_AVAILABLE !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_VOLTA
// TODO: move to ggml-common.h // TODO: move to ggml-common.h
static const __device__ int8_t kvalues_iq4nl[16] = {-127, -104, -83, -65, -49, -35, -22, -10, 1, 13, 25, 38, 53, 69, 89, 113}; static const __device__ int8_t kvalues_iq4nl[16] = {-127, -104, -83, -65, -49, -35, -22, -10, 1, 13, 25, 38, 53, 69, 89, 113};
@ -404,6 +415,7 @@ struct ggml_cuda_device_info {
struct cuda_device_info { struct cuda_device_info {
int cc; // compute capability int cc; // compute capability
int nsm; // number of streaming multiprocessors
size_t smpb; // max. shared memory per block size_t smpb; // max. shared memory per block
bool vmm; // virtual memory support bool vmm; // virtual memory support
size_t vmm_granularity; // granularity of virtual memory size_t vmm_granularity; // granularity of virtual memory

944
ggml-cuda/fattn.cu Normal file
View File

@ -0,0 +1,944 @@
#include "common.cuh"
#include "fattn.cuh"
#include <cstdint>
#if FP16_MMA_AVAILABLE
#include <mma.h>
#endif
#define FATTN_KQ_STRIDE 256
#define HALF_MAX_HALF __float2half(65504.0f/2) // Use neg. of this instead of -INFINITY to initialize KQ max vals to avoid NaN upon subtraction.
#define SOFTMAX_FTZ_THRESHOLD -20.0f // Softmax exp. of values smaller than this are flushed to zero to avoid NaNs.
template<int D, int parallel_blocks> // D == head size
__launch_bounds__(((D + WARP_SIZE - 1) / WARP_SIZE)*WARP_SIZE, 1)
static __global__ void flash_attn_vec_ext_f16(
const char * __restrict__ Q,
const char * __restrict__ K,
const char * __restrict__ V,
const char * __restrict__ mask,
float * __restrict__ dst,
float2 * __restrict__ dst_meta,
const float scale,
const int ne00,
const int ne01,
const int ne02,
const int ne03,
const int ne10,
const int ne11,
const int ne12,
const int ne13,
const int ne31,
const int nb31,
const int nb01,
const int nb02,
const int nb03,
const int nb11,
const int nb12,
const int nb13,
const int ne0,
const int ne1,
const int ne2,
const int ne3) {
#if FP16_AVAILABLE
//In this kernel Q, K, V are matrices while i, j, k are matrix indices.
const int ic = blockIdx.x / parallel_blocks; // Index of the Q/QKV column to work on.
const int ip = blockIdx.x % parallel_blocks; // Index in group of blocks running for the same column in parallel.
const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix.
const float2 * Q_f2 = (const float2 *) (Q + nb02* blockIdx.y + nb01*ic);
const half2 * K_h2 = (const half2 *) (K + nb12*(blockIdx.y / gqa_ratio));
const half * V_h = (const half *) (V + nb12*(blockIdx.y / gqa_ratio)); // K and V have same shape
const half * maskh = (const half *) mask + ne11*ic;
const int stride_KV = nb11 / sizeof(half);
const int stride_KV2 = nb11 / sizeof(half2);
constexpr int nwarps = (D + WARP_SIZE - 1) / WARP_SIZE;
const int tid = WARP_SIZE*threadIdx.y + threadIdx.x;
__builtin_assume(tid < nwarps*WARP_SIZE);
__shared__ half KQ[nwarps*WARP_SIZE];
KQ[tid] = -INFINITY;
half2 * KQ2 = (half2 *) KQ;
half kqmax = -HALF_MAX_HALF;
half kqsum = 0.0f;
__shared__ half kqmax_shared[WARP_SIZE];
__shared__ half kqsum_shared[WARP_SIZE];
if (threadIdx.y == 0) {
kqmax_shared[threadIdx.x] = -HALF_MAX_HALF;
kqsum_shared[threadIdx.x] = 0.0f;
}
__syncthreads();
// Convert Q to half2 and store in registers:
half2 Q_h2[(D/2 + WARP_SIZE - 1) / WARP_SIZE];
#pragma unroll
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
const int i = i0 + threadIdx.x;
if (i0 + WARP_SIZE > D/2 && i >= D/2) {
break;
}
Q_h2[i0/WARP_SIZE] = make_half2(scale, scale) * make_half2(Q_f2[i].x, Q_f2[i].y);
}
half2 VKQ = make_half2(0.0f, 0.0f); // Each thread calculates a single VKQ value.
const int k_start = parallel_blocks == 1 ? 0 : ip*D;
for (int k_VKQ_0 = k_start; k_VKQ_0 < ne11; k_VKQ_0 += parallel_blocks*D) {
// Calculate KQ tile and keep track of new maximum KQ values:
half kqmax_new = kqmax;
#pragma unroll
for (int i_KQ_0 = 0; i_KQ_0 < D; i_KQ_0 += nwarps) {
const int i_KQ = i_KQ_0 + threadIdx.y;
if ((i_KQ_0 + nwarps > D && i_KQ >= D) || (FATTN_KQ_STRIDE % D != 0 && k_VKQ_0 + i_KQ >= ne11)) {
break;
}
half2 sum2 = make_half2(0.0f, 0.0f);
#pragma unroll
for (int k_KQ_0 = 0; k_KQ_0 < D/2; k_KQ_0 += WARP_SIZE) {
const int k_KQ = k_KQ_0 + threadIdx.x;
if (k_KQ_0 + WARP_SIZE > D/2 && k_KQ >= D/2) {
break;
}
const half2 K_ik = K_h2[(k_VKQ_0 + i_KQ)*stride_KV2 + k_KQ];
sum2 += K_ik * Q_h2[k_KQ_0/WARP_SIZE];
}
sum2 = warp_reduce_sum(sum2);
half sum = __low2half(sum2) + __high2half(sum2);
sum += mask ? maskh[k_VKQ_0 + i_KQ] : __float2half(0.0f);
kqmax_new = __hmax(kqmax_new, sum);
if (threadIdx.x == 0) {
KQ[i_KQ] = sum;
}
}
kqmax_new = warp_reduce_max(kqmax_new);
if (threadIdx.x == 0) {
kqmax_shared[threadIdx.y] = kqmax_new;
}
__syncthreads();
kqmax_new = kqmax_shared[threadIdx.x];
kqmax_new = warp_reduce_max(kqmax_new);
const half KQ_max_scale = hexp(kqmax - kqmax_new);
kqmax = kqmax_new;
const half val = hexp(KQ[tid] - kqmax);
kqsum = kqsum*KQ_max_scale + val;
KQ[tid] = val;
VKQ *= __half2half2(KQ_max_scale);
__syncthreads();
if (tid < D) {
#pragma unroll
for (int k0 = 0; k0 < D; k0 += 2) {
if (FATTN_KQ_STRIDE % D != 0 && k_VKQ_0 + k0 >= ne11) {
break;
}
half2 V_k;
reinterpret_cast<half&>(V_k.x) = V_h[(k_VKQ_0 + k0 + 0)*stride_KV + tid];
reinterpret_cast<half&>(V_k.y) = V_h[(k_VKQ_0 + k0 + 1)*stride_KV + tid];
VKQ += V_k*KQ2[k0/2];
}
}
__syncthreads();
}
if (tid >= D) {
kqsum = 0.0f;
}
kqsum = warp_reduce_sum(kqsum);
if (threadIdx.x == 0) {
kqsum_shared[threadIdx.y] = kqsum;
}
__syncthreads();
kqsum = kqsum_shared[threadIdx.x];
kqsum = warp_reduce_sum(kqsum);
if (tid >= D) {
return;
}
half dst_val = (__low2half(VKQ) + __high2half(VKQ));
if (parallel_blocks == 1) {
dst_val /= kqsum;
}
dst[D*gridDim.y*blockIdx.x + D*blockIdx.y + tid] = dst_val;
if (parallel_blocks == 1 || tid != 0) {
return;
}
dst_meta[ic*gridDim.y*parallel_blocks + blockIdx.y*parallel_blocks + ip] = make_float2(kqmax, kqsum);
#else
NO_DEVICE_CODE;
#endif // FP16_AVAILABLE
}
// D == head size, VKQ_stride == num VKQ rows calculated in parallel:
template<int D, int ncols, int nwarps, int VKQ_stride, int parallel_blocks, typename KQ_acc_t>
__launch_bounds__(nwarps*WARP_SIZE, 1)
static __global__ void flash_attn_ext_f16(
const char * __restrict__ Q,
const char * __restrict__ K,
const char * __restrict__ V,
const char * __restrict__ mask,
float * __restrict__ dst,
float2 * __restrict__ dst_meta,
const float scale,
const int ne00,
const int ne01,
const int ne02,
const int ne03,
const int ne10,
const int ne11,
const int ne12,
const int ne13,
const int ne31,
const int nb31,
const int nb01,
const int nb02,
const int nb03,
const int nb11,
const int nb12,
const int nb13,
const int ne0,
const int ne1,
const int ne2,
const int ne3) {
#if FP16_MMA_AVAILABLE
//In this kernel Q, K, V are matrices while i, j, k are matrix indices.
const int ic0 = ncols*(blockIdx.x / parallel_blocks); // Index of the first Q/QKV column to work on.
const int ip = blockIdx.x % parallel_blocks; // Index in group of blocks running for the same column in parallel.
static_assert(D <= FATTN_KQ_STRIDE, "D must be <= FATTN_KQ_STRIDE.");
static_assert(ncols == 8 || ncols % 16 == 0, "ncols must be 8 or a multiple of 16.");
constexpr int frag_m = ncols == 8 ? 32 : 16;
constexpr int frag_n = ncols == 8 ? 8 : 16;
static_assert(D % frag_m == 0, "If ncols == 8 then D % frag_m must be 0.");
typedef nvcuda::wmma::fragment<nvcuda::wmma::matrix_a, frag_m, frag_n, 16, half, nvcuda::wmma::row_major> frag_a_K;
typedef nvcuda::wmma::fragment<nvcuda::wmma::matrix_a, frag_m, frag_n, 16, half, nvcuda::wmma::col_major> frag_a_V;
typedef nvcuda::wmma::fragment<nvcuda::wmma::matrix_b, frag_m, frag_n, 16, half, nvcuda::wmma::col_major> frag_b;
typedef nvcuda::wmma::fragment<nvcuda::wmma::accumulator, frag_m, frag_n, 16, KQ_acc_t> frag_c_KQ;
typedef nvcuda::wmma::fragment<nvcuda::wmma::accumulator, frag_m, frag_n, 16, half> frag_c_VKQ;
constexpr int KQ_stride_tc = nwarps*frag_m; // Number of KQ rows calculated in parallel.
constexpr int VKQ_ratio = KQ_stride_tc/VKQ_stride; // Number of parallel VKQ accumulators needed to keep all warps busy.
static_assert(VKQ_ratio <= nwarps, "VKQ_ratio must be <= nwarps.");
// Pad internal representation of KQ, KQV to reduce shared memory bank conflicts:
constexpr int D_padded = D + 8;
constexpr int kqs_padded = FATTN_KQ_STRIDE + 8;
constexpr int kqar = sizeof(KQ_acc_t)/sizeof(half);
const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix.
const float * Q_f = (const float *) (Q + nb02* blockIdx.y + nb01*ic0);
const half * K_h = (const half *) (K + nb12*(blockIdx.y / gqa_ratio));
const half * V_h = (const half *) (V + nb12*(blockIdx.y / gqa_ratio)); // K and V have same shape
const half * maskh = (const half *) mask + (nb31/sizeof(half))* ic0;
const half2 * mask2 = (const half2 *) mask + (nb31/sizeof(half))*(ic0/2);
const int stride_Q = nb01 / sizeof(float);
const int stride_KV = nb11 / sizeof(half);
frag_b Q_b[D/16][ncols/frag_n];
// A single buffer for temporarily holding tiles of KQ and VKQ parts:
constexpr int mem_KQ = ncols*kqs_padded*kqar;
constexpr int mem_VKQ_parts = VKQ_ratio*ncols*D_padded;
__shared__ half KQ[mem_KQ >= mem_VKQ_parts ? mem_KQ : mem_VKQ_parts];
float * KQ_f = (float *) KQ;
half2 * KQ2 = (half2 *) KQ;
float KQ_rowsum_f[ncols/nwarps] = {0.0f};
float KQ_max_f[ncols/nwarps];
float KQ_max_scale_f[ncols/nwarps] = {0.0f};
#pragma unroll
for (int j = 0; j < ncols/nwarps; ++j) {
KQ_max_f[j] = -FLT_MAX/2.0f;
}
half2 KQ_rowsum_h2[ncols/nwarps] = {{0.0f, 0.0f}};
half2 KQ_max_h2[ncols/nwarps];
half2 KQ_max_scale_h2[ncols/nwarps] = {{0.0f, 0.0f}};
#pragma unroll
for (int j = 0; j < ncols/nwarps; ++j) {
KQ_max_h2[j] = make_half2(-HALF_MAX_HALF, -HALF_MAX_HALF);
}
__shared__ half VKQ[ncols*D_padded]; // Accumulator for final VKQ slice.
half2 * VKQ2 = (half2 *) VKQ;
#pragma unroll
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
const int j = j0 + threadIdx.y;
#pragma unroll
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
const int i = i0 + threadIdx.x;
if (i0 + WARP_SIZE > D/2 && i >= D/2) {
break;
}
VKQ2[j*(D_padded/2) + i] = make_half2(0.0f, 0.0f);
}
}
// Convert Q to half and apply scale, temporarily store in KQ:
#pragma unroll
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
const int j = j0 + threadIdx.y;
#pragma unroll
for (int i0 = 0; i0 < D; i0 += WARP_SIZE) {
const int i = i0 + threadIdx.x;
if (i0 + WARP_SIZE > D && i >= D) {
break;
}
KQ[j*D_padded + i] = ic0 + j < ne01 ? Q_f[j*stride_Q + i] * scale : 0.0f;
}
}
__syncthreads();
// Load Q into tensor core fragments/registers since it will be used frequently:
#pragma unroll
for (int i0 = 0; i0 < D; i0 += 16) {
#pragma unroll
for (int j0 = 0; j0 < ncols; j0 += frag_n) {
nvcuda::wmma::load_matrix_sync(Q_b[i0/16][j0/frag_n], KQ + j0*D_padded + i0, D_padded);
}
}
__syncthreads();
// Iterate over ne11 == previous tokens:
for (int k_VKQ_0 = ip*FATTN_KQ_STRIDE; k_VKQ_0 < ne11; k_VKQ_0 += parallel_blocks*FATTN_KQ_STRIDE) {
// Calculate tile of KQ:
#pragma unroll
for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE; i_KQ_0 += KQ_stride_tc) {
frag_c_KQ KQ_c[ncols/frag_n];
#pragma unroll
for (int j = 0; j < ncols/frag_n; ++j) {
nvcuda::wmma::fill_fragment(KQ_c[j], 0.0f);
}
#pragma unroll
for (int k_KQ_0 = 0; k_KQ_0 < D; k_KQ_0 += 16) {
frag_a_K K_a;
nvcuda::wmma::load_matrix_sync(K_a, K_h + (k_VKQ_0 + i_KQ_0 + frag_m*threadIdx.y)*stride_KV + k_KQ_0, stride_KV);
#pragma unroll
for (int j = 0; j < ncols/frag_n; ++j) {
nvcuda::wmma::mma_sync(KQ_c[j], K_a, Q_b[k_KQ_0/16][j], KQ_c[j]);
}
}
#pragma unroll
for (int j0 = 0; j0 < ncols; j0 += frag_n) {
nvcuda::wmma::store_matrix_sync((KQ_acc_t *) KQ + j0*kqs_padded + i_KQ_0 + frag_m*threadIdx.y, KQ_c[j0/frag_n], kqs_padded, nvcuda::wmma::mem_col_major);
}
}
__syncthreads();
// Calculate softmax for each KQ column using the current max. value.
// The divisor is stored in KQ_rowsum and will be applied at the end.
#pragma unroll
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
const int j = j0 + threadIdx.y;
if (std::is_same<KQ_acc_t, float>::value) {
float KQ_f_tmp[FATTN_KQ_STRIDE / WARP_SIZE];
#pragma unroll
for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += WARP_SIZE) {
const int k = k0 + threadIdx.x;
KQ_f_tmp[k0/WARP_SIZE] = KQ_f[j*kqs_padded + k];
}
float KQ_max_new = KQ_max_f[j0/nwarps];
#pragma unroll
for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += WARP_SIZE) {
const int k = k0 + threadIdx.x;
KQ_f_tmp[k0/WARP_SIZE] += mask ? __half2float(maskh[j*(nb31/sizeof(half)) + k_VKQ_0 + k]) : 0.0f;
KQ_max_new = max(KQ_max_new, KQ_f_tmp[k0/WARP_SIZE]);
}
KQ_max_new = warp_reduce_max(KQ_max_new);
const float diff = KQ_max_f[j0/nwarps] - KQ_max_new;
KQ_max_scale_f[j0/nwarps] = expf(diff);
if (diff <= SOFTMAX_FTZ_THRESHOLD) {
KQ_max_scale_f[j0/nwarps] = 0.0f;
}
KQ_max_f[j0/nwarps] = KQ_max_new;
float KQ_rowsum_add = 0.0f;
#pragma unroll
for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += WARP_SIZE) {
const int k = k0 + threadIdx.x;
const float diff = KQ_f_tmp[k0/WARP_SIZE] - KQ_max_f[j0/nwarps];
KQ_f_tmp[k0/WARP_SIZE] = expf(diff);
if (diff <= SOFTMAX_FTZ_THRESHOLD) {
KQ_f_tmp[k0/WARP_SIZE] = 0.0f;
}
KQ_rowsum_add += KQ_f_tmp[k0/WARP_SIZE];
KQ[j*(kqar*kqs_padded) + k] = KQ_f_tmp[k0/WARP_SIZE];
}
KQ_rowsum_add = warp_reduce_sum(KQ_rowsum_add);
// Scale previous KQ_rowsum to account for a potential increase in KQ_max:
KQ_rowsum_f[j0/nwarps] = KQ_max_scale_f[j0/nwarps]*KQ_rowsum_f[j0/nwarps] + KQ_rowsum_add;
} else {
half2 KQ2_tmp[FATTN_KQ_STRIDE/(2*WARP_SIZE)];
#pragma unroll
for (int k0 = 0; k0 < FATTN_KQ_STRIDE/2; k0 += WARP_SIZE) {
const int k = k0 + threadIdx.x;
KQ2_tmp[k0/WARP_SIZE] = KQ2[j*(kqs_padded/2) + k];
}
half2 KQ_max_new = KQ_max_h2[j0/nwarps];
#pragma unroll
for (int k0 = 0; k0 < FATTN_KQ_STRIDE/2; k0 += WARP_SIZE) {
const int k = k0 + threadIdx.x;
KQ2_tmp[k0/WARP_SIZE] += mask ? mask2[(j*ne11 + k_VKQ_0)/2 + k] : make_half2(0.0f, 0.0f);
KQ_max_new = __hmax2(KQ_max_new, KQ2_tmp[k0/WARP_SIZE]);
}
KQ_max_new = __half2half2(warp_reduce_max(__hmax(__low2half(KQ_max_new), __high2half(KQ_max_new))));
const half2 diff = KQ_max_h2[j0/nwarps] - KQ_max_new;
KQ_max_scale_h2[j0/nwarps] = h2exp(diff);
const uint32_t ftz_mask = __hgt2_mask(diff, make_half2(SOFTMAX_FTZ_THRESHOLD, SOFTMAX_FTZ_THRESHOLD));
*((uint32_t *) &KQ_max_scale_h2[j0/nwarps]) &= ftz_mask;
KQ_max_h2[j0/nwarps] = KQ_max_new;
half2 KQ_rowsum_add = make_half2(0.0f, 0.0f);
#pragma unroll
for (int k0 = 0; k0 < FATTN_KQ_STRIDE/2; k0 += WARP_SIZE) {
const int k = k0 + threadIdx.x;
const half2 diff = KQ2_tmp[k0/WARP_SIZE] - KQ_max_h2[j0/nwarps];
KQ2_tmp[k0/WARP_SIZE] = h2exp(diff);
const uint32_t ftz_mask = __hgt2_mask(diff, make_half2(SOFTMAX_FTZ_THRESHOLD, SOFTMAX_FTZ_THRESHOLD));
*((uint32_t *) &KQ2_tmp[k0/WARP_SIZE]) &= ftz_mask;
KQ_rowsum_add += KQ2_tmp[k0/WARP_SIZE];
KQ2[j*(kqs_padded/2) + k] = KQ2_tmp[k0/WARP_SIZE];
}
KQ_rowsum_add = warp_reduce_sum(KQ_rowsum_add);
// Scale previous KQ_rowsum to account for a potential increase in KQ_max:
KQ_rowsum_h2[j0/nwarps] = KQ_max_scale_h2[j0/nwarps]*KQ_rowsum_h2[j0/nwarps] + KQ_rowsum_add;
}
}
__syncthreads();
frag_b KQ_b[FATTN_KQ_STRIDE/(VKQ_ratio*16)][ncols/frag_n];
#pragma unroll
for (int j0 = 0; j0 < ncols; j0 += frag_n) {
#pragma unroll
for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += VKQ_ratio*16) {
const int k = k0 + (threadIdx.y % VKQ_ratio)*16;
nvcuda::wmma::load_matrix_sync(
KQ_b[k0/(VKQ_ratio*16)][j0/frag_n],
KQ + j0*(kqar*kqs_padded) + k,
kqar*kqs_padded);
}
}
frag_c_VKQ VKQ_c[D/VKQ_stride][ncols/frag_n];
#pragma unroll
for (int i_VKQ_0 = 0; i_VKQ_0 < D; i_VKQ_0 += VKQ_stride) {
#pragma unroll
for (int j = 0; j < ncols/frag_n; ++j) {
nvcuda::wmma::fill_fragment(VKQ_c[i_VKQ_0/VKQ_stride][j], 0.0f);
}
#pragma unroll
for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += VKQ_ratio*16) {
const int k = k0 + (threadIdx.y % VKQ_ratio)*16;
frag_a_V v_a;
nvcuda::wmma::load_matrix_sync(v_a, V_h + (k_VKQ_0 + k)*stride_KV + i_VKQ_0 + frag_m*(threadIdx.y/VKQ_ratio), stride_KV);
#pragma unroll
for (int j = 0; j < ncols/frag_n; ++j) {
nvcuda::wmma::mma_sync(VKQ_c[i_VKQ_0/VKQ_stride][j], v_a, KQ_b[k0/(VKQ_ratio*16)][j], VKQ_c[i_VKQ_0/VKQ_stride][j]);
}
}
}
__syncthreads();
const int offset_k = (threadIdx.y % VKQ_ratio) * (ncols*D_padded);
#pragma unroll
for (int i_KQ_0 = 0; i_KQ_0 < D; i_KQ_0 += VKQ_stride) {
#pragma unroll
for (int j0 = 0; j0 < ncols; j0 += frag_n) {
nvcuda::wmma::store_matrix_sync(
KQ + offset_k + j0*D_padded + i_KQ_0 + frag_m*(threadIdx.y/VKQ_ratio),
VKQ_c[i_KQ_0/VKQ_stride][j0/frag_n],
D_padded, nvcuda::wmma::mem_col_major);
}
}
__syncthreads();
#pragma unroll
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
const int j = j0 + threadIdx.y;
half2 VKQ_scale;
if (std::is_same<KQ_acc_t, float>::value) {
VKQ_scale = make_half2(KQ_max_scale_f[j0/nwarps], KQ_max_scale_f[j0/nwarps]);
} else {
VKQ_scale = KQ_max_scale_h2[j0/nwarps];
}
#pragma unroll
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
const int i = i0 + threadIdx.x;
if (i0 + WARP_SIZE > D/2 && i >= D/2) {
break;
}
half2 VKQ_add = make_half2(0.0f, 0.0f);
#pragma unroll
for (int l = 0; l < VKQ_ratio; ++l) {
VKQ_add += KQ2[l*(ncols*D_padded/2) + j*(D_padded/2) + i];
}
VKQ2[j*(D_padded/2) + i] = VKQ_scale*VKQ2[j*(D_padded/2) + i] + VKQ_add;
}
}
__syncthreads();
}
#pragma unroll
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
const int j_VKQ = j0 + threadIdx.y;
if (ic0 + j_VKQ >= ne01) {
return;
}
const int j_dst = (ic0 + j_VKQ)*parallel_blocks + ip;
float KQ_rowsum_j;
if (std::is_same<KQ_acc_t, float>::value) {
KQ_rowsum_j = KQ_rowsum_f[j0/nwarps];
} else {
KQ_rowsum_j = __low2float(KQ_rowsum_h2[j0/nwarps]) + __high2float(KQ_rowsum_h2[j0/nwarps]);
}
#pragma unroll
for (int i0 = 0; i0 < D; i0 += WARP_SIZE) {
const int i = i0 + threadIdx.x;
if (i0 + WARP_SIZE > D && i >= D) {
break;
}
float dst_val = VKQ[j_VKQ*D_padded + i];
if (parallel_blocks == 1) {
dst_val /= KQ_rowsum_j;
}
dst[j_dst*gridDim.y*D + blockIdx.y*D + i] = dst_val;
}
if (parallel_blocks == 1 || threadIdx.x != 0) {
continue;
}
float2 dst_meta_val;
if (std::is_same<KQ_acc_t, float>::value) {
dst_meta_val.x = KQ_max_f[j0/nwarps];
} else {
dst_meta_val.x = __low2float(KQ_max_h2[j0/nwarps]);
}
dst_meta_val.y = KQ_rowsum_j;
dst_meta[(ic0 + j_VKQ)*gridDim.y*parallel_blocks + blockIdx.y*parallel_blocks + ip] = dst_meta_val;
}
#else
NO_DEVICE_CODE;
#endif // FP16_MMA_AVAILABLE
}
template<int D, int parallel_blocks> // D == head size
__launch_bounds__(D, 1)
static __global__ void flash_attn_combine_results(
const float * __restrict__ VKQ_parts,
const float2 * __restrict__ VKQ_meta,
float * __restrict__ dst) {
#if FP16_AVAILABLE
VKQ_parts += parallel_blocks*D * gridDim.y*blockIdx.x;
VKQ_meta += parallel_blocks * gridDim.y*blockIdx.x;
dst += D * gridDim.y*blockIdx.x;
const int tid = threadIdx.x;
__builtin_assume(tid < D);
__shared__ float2 meta[parallel_blocks];
if (tid < 2*parallel_blocks) {
((float *) meta)[threadIdx.x] = ((const float *)VKQ_meta) [blockIdx.y*(2*parallel_blocks) + tid];
}
__syncthreads();
float kqmax = meta[0].x;
#pragma unroll
for (int l = 1; l < parallel_blocks; ++l) {
kqmax = max(kqmax, meta[l].x);
}
float VKQ_numerator = 0.0f;
float VKQ_denominator = 0.0f;
#pragma unroll
for (int l = 0; l < parallel_blocks; ++l) {
const float diff = meta[l].x - kqmax;
const float KQ_max_scale = expf(diff);
const uint32_t ftz_mask = 0xFFFFFFFF * (diff > SOFTMAX_FTZ_THRESHOLD);
*((uint32_t *) &KQ_max_scale) &= ftz_mask;
VKQ_numerator += KQ_max_scale * VKQ_parts[l*gridDim.y*D + blockIdx.y*D + tid];
VKQ_denominator += KQ_max_scale * meta[l].y;
}
dst[blockIdx.y*D + tid] = VKQ_numerator / VKQ_denominator;
#else
NO_DEVICE_CODE;
#endif // FP16_AVAILABLE
}
constexpr int get_max_power_of_2(int x) {
return x % 2 == 0 ? 2*get_max_power_of_2(x/2) : 1;
}
static_assert(get_max_power_of_2(1) == 1, "Test failed.");
static_assert(get_max_power_of_2(2) == 2, "Test failed.");
static_assert(get_max_power_of_2(4) == 4, "Test failed.");
static_assert(get_max_power_of_2(6) == 2, "Test failed.");
// Number of VKQ rows calculated in parallel:
constexpr int get_VKQ_stride(int D, int nwarps, int frag_m) {
return (get_max_power_of_2(D/frag_m) < nwarps ? get_max_power_of_2(D/frag_m) : nwarps)*frag_m;
}
static_assert(get_VKQ_stride(128, 1, 32) == 32, "Test failed.");
static_assert(get_VKQ_stride(128, 2, 32) == 64, "Test failed.");
static_assert(get_VKQ_stride(128, 4, 32) == 128, "Test failed.");
static_assert(get_VKQ_stride( 64, 1, 32) == 32, "Test failed.");
static_assert(get_VKQ_stride( 64, 2, 32) == 64, "Test failed.");
static_assert(get_VKQ_stride( 64, 4, 32) == 64, "Test failed.");
static_assert(get_VKQ_stride( 80, 1, 16) == 16, "Test failed.");
static_assert(get_VKQ_stride( 80, 2, 16) == 16, "Test failed.");
static_assert(get_VKQ_stride( 80, 4, 16) == 16, "Test failed.");
template <int D, int parallel_blocks> void launch_fattn_vec_f16(
const ggml_tensor * Q, const ggml_tensor * K, const ggml_tensor * V, ggml_tensor * KQV, const ggml_tensor * mask,
ggml_cuda_pool & pool, cudaStream_t main_stream
) {
ggml_cuda_pool_alloc<float> dst_tmp(pool);
ggml_cuda_pool_alloc<float2> dst_tmp_meta(pool);
if (parallel_blocks > 1) {
dst_tmp.alloc(parallel_blocks*ggml_nelements(KQV));
dst_tmp_meta.alloc(parallel_blocks*ggml_nrows(KQV));
}
constexpr int nwarps = (D + WARP_SIZE - 1) / WARP_SIZE;
const dim3 block_dim(WARP_SIZE, nwarps, 1);
const dim3 blocks_num(parallel_blocks*Q->ne[1], Q->ne[2], Q->ne[3]);
const int shmem = 0;
float scale;
memcpy(&scale, KQV->op_params, sizeof(float));
flash_attn_vec_ext_f16<D, parallel_blocks>
<<<blocks_num, block_dim, shmem, main_stream>>> (
(const char *) Q->data,
(const char *) K->data,
(const char *) V->data,
mask ? ((const char *) mask->data) : nullptr,
parallel_blocks == 1 ? (float *) KQV->data : dst_tmp.ptr, dst_tmp_meta.ptr,
scale,
Q->ne[0], Q->ne[1], Q->ne[2], Q->ne[3],
K->ne[0], K->ne[1], K->ne[2], K->ne[3],
mask ? mask->ne[1] : 0, mask ? mask->nb[1] : 0,
Q->nb[1], Q->nb[2], Q->nb[3],
K->nb[1], K->nb[2], K->nb[3],
KQV->ne[0], KQV->ne[1], KQV->ne[2], KQV->ne[3]
);
CUDA_CHECK(cudaGetLastError());
if (parallel_blocks == 1) {
return;
}
const dim3 block_dim_combine(D, 1, 1);
const dim3 blocks_num_combine(Q->ne[1], blocks_num.y, blocks_num.z);
const int shmem_combine = 0;
flash_attn_combine_results<D, parallel_blocks>
<<<blocks_num_combine, block_dim_combine, shmem_combine, main_stream>>>
(dst_tmp.ptr, dst_tmp_meta.ptr, (float *) KQV->data);
CUDA_CHECK(cudaGetLastError());
}
template <int D, int cols_per_block, int nwarps, int parallel_blocks, typename KQ_acc_t> void launch_fattn_f16_impl(
const ggml_tensor * Q, const ggml_tensor * K, const ggml_tensor * V, ggml_tensor * KQV, const ggml_tensor * mask,
ggml_cuda_pool & pool, cudaStream_t main_stream
) {
ggml_cuda_pool_alloc<float> dst_tmp(pool);
ggml_cuda_pool_alloc<float2> dst_tmp_meta(pool);
if (parallel_blocks > 1) {
dst_tmp.alloc(parallel_blocks*ggml_nelements(KQV));
dst_tmp_meta.alloc(parallel_blocks*ggml_nrows(KQV));
}
constexpr int frag_m = (cols_per_block) == 8 && (D) % 32 == 0 ? 32 : 16;
const dim3 block_dim(WARP_SIZE, nwarps, 1);
const dim3 blocks_num(parallel_blocks*(Q->ne[1] + cols_per_block - 1) / cols_per_block, Q->ne[2], Q->ne[3]);
const int shmem = 0;
float scale;
memcpy(&scale, KQV->op_params, sizeof(float));
flash_attn_ext_f16<D, cols_per_block, nwarps, get_VKQ_stride(D, nwarps, frag_m), parallel_blocks, KQ_acc_t>
<<<blocks_num, block_dim, shmem, main_stream>>> (
(const char *) Q->data,
(const char *) K->data,
(const char *) V->data,
mask ? ((const char *) mask->data) : nullptr,
(parallel_blocks) == 1 ? (float *) KQV->data : dst_tmp.ptr, dst_tmp_meta.ptr,
scale,
Q->ne[0], Q->ne[1], Q->ne[2], Q->ne[3],
K->ne[0], K->ne[1], K->ne[2], K->ne[3],
mask ? mask->ne[1] : 0, mask ? mask->nb[1] : 0,
Q->nb[1], Q->nb[2], Q->nb[3],
K->nb[1], K->nb[2], K->nb[3],
KQV->ne[0], KQV->ne[1], KQV->ne[2], KQV->ne[3]
);
CUDA_CHECK(cudaGetLastError());
if ((parallel_blocks) == 1) {
return;
}
const dim3 block_dim_combine(D, 1, 1);
const dim3 blocks_num_combine(Q->ne[1], blocks_num.y, blocks_num.z);
const int shmem_combine = 0;
flash_attn_combine_results<D, parallel_blocks>
<<<blocks_num_combine, block_dim_combine, shmem_combine, main_stream>>>
(dst_tmp.ptr, dst_tmp_meta.ptr, (float *) KQV->data);
CUDA_CHECK(cudaGetLastError());
}
template <int D, int cols_per_block, int nwarps, typename KQ_acc_t> void launch_fattn_f16(
const ggml_tensor * Q, const ggml_tensor * K, const ggml_tensor * V, ggml_tensor * KQV, const ggml_tensor * mask,
const int nsm, ggml_cuda_pool & pool, cudaStream_t main_stream
) {
const int blocks_num_pb1 = ((Q->ne[1] + cols_per_block - 1) / cols_per_block)*Q->ne[2]*Q->ne[3];
if (4*blocks_num_pb1 < 2*nsm) {
launch_fattn_f16_impl<D, cols_per_block, nwarps, 4, KQ_acc_t>(Q, K, V, KQV, mask, pool, main_stream);
return;
}
if (2*blocks_num_pb1 < 2*nsm) {
launch_fattn_f16_impl<D, cols_per_block, nwarps, 2, KQ_acc_t>(Q, K, V, KQV, mask, pool, main_stream);
return;
}
launch_fattn_f16_impl<D, cols_per_block, nwarps, 1, KQ_acc_t>(Q, K, V, KQV, mask, pool, main_stream);
}
void ggml_cuda_flash_attn_ext(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * Q = dst->src[0];
const ggml_tensor * K = dst->src[1];
const ggml_tensor * V = dst->src[2];
const ggml_tensor * mask = dst->src[3];
ggml_tensor * KQV = dst;
GGML_ASSERT(Q->type == GGML_TYPE_F32);
GGML_ASSERT(K->type == GGML_TYPE_F16);
GGML_ASSERT(V->type == GGML_TYPE_F16);
GGML_ASSERT(KQV->type == GGML_TYPE_F32);
GGML_ASSERT(!mask || mask->type == GGML_TYPE_F16);
GGML_ASSERT(!mask || mask->ne[1] >= GGML_PAD(Q->ne[1], 16) &&
"the Flash-Attention CUDA kernel requires the mask to be padded to 16 and at least n_queries big");
GGML_ASSERT(K->ne[1] % FATTN_KQ_STRIDE == 0 && "Incorrect KV cache padding.");
ggml_cuda_set_device(ctx.device);
const int nsm = ggml_cuda_info().devices[ggml_cuda_get_device()].nsm;
const int32_t precision = KQV->op_params[1];
if (precision != GGML_PREC_DEFAULT) {
if (Q->ne[1] <= 32 || Q->ne[0] > 128) {
constexpr int cols_per_block = 16;
constexpr int nwarps = 4;
switch (Q->ne[0]) {
case 64:
launch_fattn_f16< 64, cols_per_block, nwarps, float>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
break;
case 80:
launch_fattn_f16< 80, cols_per_block, nwarps, float>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
break;
case 96:
launch_fattn_f16< 96, cols_per_block, nwarps, float>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
break;
case 112:
launch_fattn_f16<112, cols_per_block, nwarps, float>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
break;
case 128:
launch_fattn_f16<128, cols_per_block, nwarps, float>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
break;
case 256:
launch_fattn_f16<256, cols_per_block, nwarps, float>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
break;
default:
GGML_ASSERT(false);
break;
}
} else {
constexpr int cols_per_block = 32;
constexpr int nwarps = 4;
switch (Q->ne[0]) {
case 64:
launch_fattn_f16< 64, cols_per_block, nwarps, float>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
break;
case 80:
launch_fattn_f16< 80, cols_per_block, nwarps, float>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
break;
case 96:
launch_fattn_f16< 96, cols_per_block, nwarps, float>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
break;
case 112:
launch_fattn_f16<112, cols_per_block, nwarps, float>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
break;
case 128:
launch_fattn_f16<128, cols_per_block, nwarps, float>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
break;
// case 256:
// launch_fattn_f16<256, cols_per_block, nwarps, float>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
// break;
default:
GGML_ASSERT(false);
break;
}
}
return;
}
if (Q->ne[1] == 1 && Q->ne[0] % (2*WARP_SIZE) == 0) {
constexpr int parallel_blocks = 4;
switch (Q->ne[0]) {
case 64:
launch_fattn_vec_f16< 64, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
break;
case 128:
launch_fattn_vec_f16<128, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
break;
case 256:
launch_fattn_vec_f16<256, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
break;
default:
GGML_ASSERT(false);
break;
}
return;
}
if (Q->ne[1] <= 8 && Q->ne[0] % WARP_SIZE == 0) {
constexpr int cols_per_block = 8;
constexpr int nwarps = 4;
switch (Q->ne[0]) {
case 64:
launch_fattn_f16< 64, cols_per_block, nwarps, half>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
break;
case 96:
launch_fattn_f16< 96, cols_per_block, nwarps, half>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
break;
case 128:
launch_fattn_f16<128, cols_per_block, nwarps, half>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
break;
case 256:
launch_fattn_f16<256, cols_per_block, nwarps, half>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
break;
default:
GGML_ASSERT(false);
break;
}
return;
}
if (Q->ne[1] <= 32) {
constexpr int cols_per_block = 16;
constexpr int nwarps = 4;
switch (Q->ne[0]) {
case 64:
launch_fattn_f16< 64, cols_per_block, nwarps, half>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
break;
case 80:
launch_fattn_f16< 80, cols_per_block, nwarps, half>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
break;
case 96:
launch_fattn_f16< 96, cols_per_block, nwarps, half>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
break;
case 112:
launch_fattn_f16<112, cols_per_block, nwarps, half>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
break;
case 128:
launch_fattn_f16<128, cols_per_block, nwarps, half>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
break;
case 256:
launch_fattn_f16<256, cols_per_block, nwarps, half>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
break;
default:
GGML_ASSERT(false);
break;
}
return;
}
constexpr int cols_per_block = 32;
constexpr int nwarps = 4;
switch (Q->ne[0]) {
case 64:
launch_fattn_f16< 64, cols_per_block, nwarps, half>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
break;
case 80:
launch_fattn_f16< 80, cols_per_block, nwarps, half>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
break;
case 96:
launch_fattn_f16< 96, cols_per_block, nwarps, half>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
break;
case 112:
launch_fattn_f16<112, cols_per_block, nwarps, half>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
break;
case 128:
launch_fattn_f16<128, cols_per_block, nwarps, half>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
break;
case 256:
launch_fattn_f16<256, cols_per_block, nwarps, half>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
break;
default:
GGML_ASSERT(false);
break;
}
return;
}

3
ggml-cuda/fattn.cuh Normal file
View File

@ -0,0 +1,3 @@
#include "common.cuh"
void ggml_cuda_flash_attn_ext(ggml_backend_cuda_context & ctx, ggml_tensor * dst);

View File

@ -1,7 +1,17 @@
#include "softmax.cuh" #include "softmax.cuh"
template <bool vals_smem, int ncols_template, int block_size_template> template <typename T>
static __global__ void soft_max_f32(const float * x, const float * mask, const float * pos, float * dst, const int ncols_par, const int nrows_y, const float scale, const float max_bias, const float m0, const float m1, uint32_t n_head_log2) { static __device__ __forceinline__ float t2f32(T val) {
return (float) val;
}
template <>
__device__ float __forceinline__ t2f32<half>(half val) {
return __half2float(val);
}
template <bool vals_smem, int ncols_template, int block_size_template, typename T>
static __global__ void soft_max_f32(const float * x, const T * mask, const T * pos, float * dst, const int ncols_par, const int nrows_y, const float scale, const float max_bias, const float m0, const float m1, uint32_t n_head_log2) {
const int ncols = ncols_template == 0 ? ncols_par : ncols_template; const int ncols = ncols_template == 0 ? ncols_par : ncols_template;
const int tid = threadIdx.x; const int tid = threadIdx.x;
@ -43,7 +53,7 @@ static __global__ void soft_max_f32(const float * x, const float * mask, const f
const int64_t ix = (int64_t)rowx*ncols + col; const int64_t ix = (int64_t)rowx*ncols + col;
const int64_t iy = (int64_t)rowy*ncols + col; const int64_t iy = (int64_t)rowy*ncols + col;
const float val = x[ix]*scale + (mask ? mask[iy] : 0.0f) + (pos ? slope*pos[col] : 0.0f); const float val = x[ix]*scale + (mask ? t2f32(mask[iy]) : 0.0f) + (pos ? slope*t2f32(pos[col]) : 0.0f);
vals[col] = val; vals[col] = val;
max_val = max(max_val, val); max_val = max(max_val, val);
@ -114,7 +124,8 @@ static __global__ void soft_max_f32(const float * x, const float * mask, const f
} }
} }
static void soft_max_f32_cuda(const float * x, const float * mask, const float * pos, float * dst, const int ncols_x, const int nrows_x, const int nrows_y, const float scale, const float max_bias, cudaStream_t stream) { template<typename T>
static void soft_max_f32_cuda(const float * x, const T * mask, const T * pos, float * dst, const int ncols_x, const int nrows_x, const int nrows_y, const float scale, const float max_bias, cudaStream_t stream) {
int nth = WARP_SIZE; int nth = WARP_SIZE;
while (nth < ncols_x && nth < CUDA_SOFT_MAX_BLOCK_SIZE) nth *= 2; while (nth < ncols_x && nth < CUDA_SOFT_MAX_BLOCK_SIZE) nth *= 2;
const dim3 block_dims(nth, 1, 1); const dim3 block_dims(nth, 1, 1);
@ -167,15 +178,19 @@ static void soft_max_f32_cuda(const float * x, const float * mask, const float *
void ggml_cuda_op_soft_max(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { void ggml_cuda_op_soft_max(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0]; const ggml_tensor * src0 = dst->src[0];
const ggml_tensor * src1 = dst->src[1]; const ggml_tensor * src1 = dst->src[1];
const ggml_tensor * src2 = dst->src[2];
const float * src0_d = (const float *)src0->data; const float * src0_d = (const float *)src0->data;
const float * src1_d = src1 ? (const float *)src1->data : nullptr; const void * src1_d = src1 ? (const void *)src1->data : nullptr;
float * dst_d = (float *)dst->data; float * dst_d = (float *)dst->data;
cudaStream_t stream = ctx.stream(); cudaStream_t stream = ctx.stream();
GGML_ASSERT(src0->type == GGML_TYPE_F32); GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32); GGML_ASSERT( dst->type == GGML_TYPE_F32);
GGML_ASSERT(!src1 || src1->type == GGML_TYPE_F32); // src1 contains mask and it is optional GGML_ASSERT(!src1 || src1->type == GGML_TYPE_F16 || src1->type == GGML_TYPE_F32); // src1 contains mask and it is optional
GGML_ASSERT(!src2 || src2->type == GGML_TYPE_F16 || src2->type == GGML_TYPE_F32); // src2 contains positions and it is optional
const int64_t ne00 = src0->ne[0]; const int64_t ne00 = src0->ne[0];
const int64_t nrows_x = ggml_nrows(src0); const int64_t nrows_x = ggml_nrows(src0);
@ -188,14 +203,25 @@ void ggml_cuda_op_soft_max(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float)); memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
// positions tensor // positions tensor
float * src2_dd = nullptr; void * src2_d = nullptr;
ggml_tensor * src2 = dst->src[2];
const bool use_src2 = src2 != nullptr; const bool use_src2 = src2 != nullptr;
if (use_src2) { if (use_src2) {
src2_dd = (float *)src2->data; src2_d = (void *)src2->data;
} }
soft_max_f32_cuda(src0_d, src1_d, src2_dd, dst_d, ne00, nrows_x, nrows_y, scale, max_bias, stream); const bool use_f16 = (src1 && src1->type == GGML_TYPE_F16) || (src2 && src2->type == GGML_TYPE_F16);
if (use_f16) {
const half * src1_dd = (const half *)src1_d;
const half * src2_dd = (const half *)src2_d;
soft_max_f32_cuda(src0_d, src1_dd, src2_dd, dst_d, ne00, nrows_x, nrows_y, scale, max_bias, stream);
} else {
const float * src1_dd = (const float *)src1_d;
const float * src2_dd = (const float *)src2_d;
soft_max_f32_cuda(src0_d, src1_dd, src2_dd, dst_d, ne00, nrows_x, nrows_y, scale, max_bias, stream);
}
} }

View File

@ -1427,6 +1427,7 @@ static void ggml_vk_graph_compute(struct ggml_kompute_context * ctx, struct ggml
for (int i = node_start; i < node_end; ++i) { for (int i = node_start; i < node_end; ++i) {
struct ggml_tensor * src0 = gf->nodes[i]->src[0]; struct ggml_tensor * src0 = gf->nodes[i]->src[0];
struct ggml_tensor * src1 = gf->nodes[i]->src[1]; struct ggml_tensor * src1 = gf->nodes[i]->src[1];
struct ggml_tensor * src2 = gf->nodes[i]->src[2]; GGML_UNUSED(src2);
struct ggml_tensor * dst = gf->nodes[i]; struct ggml_tensor * dst = gf->nodes[i];
GGML_ASSERT(dst->data != nullptr); GGML_ASSERT(dst->data != nullptr);
@ -1559,6 +1560,12 @@ static void ggml_vk_graph_compute(struct ggml_kompute_context * ctx, struct ggml
{ {
float scale; float scale;
memcpy(&scale, dst->op_params, sizeof(float)); memcpy(&scale, dst->op_params, sizeof(float));
#pragma message("TODO: add ggml_vk_soft_max() F16/F32 src1 and src2 support")
#pragma message("ref: https://github.com/ggerganov/llama.cpp/pull/5021")
GGML_ASSERT(!src1 || src1t == GGML_TYPE_F32);
GGML_ASSERT(src2 == nullptr);
ggml_vk_soft_max(seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ne00, ne01, ne02, ne03, scale); ggml_vk_soft_max(seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ne00, ne01, ne02, ne03, scale);
} break; } break;
case GGML_OP_DIAG_MASK_INF: case GGML_OP_DIAG_MASK_INF:

View File

@ -46,8 +46,10 @@ enum ggml_metal_kernel_type {
GGML_METAL_KERNEL_TYPE_GELU_QUICK_4, GGML_METAL_KERNEL_TYPE_GELU_QUICK_4,
GGML_METAL_KERNEL_TYPE_SILU, GGML_METAL_KERNEL_TYPE_SILU,
GGML_METAL_KERNEL_TYPE_SILU_4, GGML_METAL_KERNEL_TYPE_SILU_4,
GGML_METAL_KERNEL_TYPE_SOFT_MAX, GGML_METAL_KERNEL_TYPE_SOFT_MAX_F16,
GGML_METAL_KERNEL_TYPE_SOFT_MAX_4, GGML_METAL_KERNEL_TYPE_SOFT_MAX_F16_4,
GGML_METAL_KERNEL_TYPE_SOFT_MAX_F32,
GGML_METAL_KERNEL_TYPE_SOFT_MAX_F32_4,
GGML_METAL_KERNEL_TYPE_DIAG_MASK_INF, GGML_METAL_KERNEL_TYPE_DIAG_MASK_INF,
GGML_METAL_KERNEL_TYPE_DIAG_MASK_INF_8, GGML_METAL_KERNEL_TYPE_DIAG_MASK_INF_8,
GGML_METAL_KERNEL_TYPE_GET_ROWS_F32, GGML_METAL_KERNEL_TYPE_GET_ROWS_F32,
@ -177,6 +179,14 @@ enum ggml_metal_kernel_type {
GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_ASC, GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_ASC,
GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_DESC, GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_DESC,
GGML_METAL_KERNEL_TYPE_LEAKY_RELU_F32, GGML_METAL_KERNEL_TYPE_LEAKY_RELU_F32,
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H64,
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H80,
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H96,
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H112,
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H128,
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H256,
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H128,
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H256,
GGML_METAL_KERNEL_TYPE_CPY_F32_F16, GGML_METAL_KERNEL_TYPE_CPY_F32_F16,
GGML_METAL_KERNEL_TYPE_CPY_F32_F32, GGML_METAL_KERNEL_TYPE_CPY_F32_F32,
GGML_METAL_KERNEL_TYPE_CPY_F32_Q8_0, GGML_METAL_KERNEL_TYPE_CPY_F32_Q8_0,
@ -443,7 +453,7 @@ static struct ggml_metal_context * ggml_metal_init(int n_cb) {
} }
/* /*
GGML_METAL_LOG_INFO("%s: loaded %-32s %16p | th_max = %4d | th_width = %4d\n", __func__, "kernel_"#name, (void *) kernel->pipeline, \ GGML_METAL_LOG_INFO("%s: loaded %-40s %16p | th_max = %4d | th_width = %4d\n", __func__, "kernel_"#name, (void *) kernel->pipeline, \
(int) kernel->pipeline.maxTotalThreadsPerThreadgroup, \ (int) kernel->pipeline.maxTotalThreadsPerThreadgroup, \
(int) kernel->pipeline.threadExecutionWidth); \ (int) kernel->pipeline.threadExecutionWidth); \
*/ */
@ -459,172 +469,182 @@ static struct ggml_metal_context * ggml_metal_init(int n_cb) {
return NULL; \ return NULL; \
} \ } \
} else { \ } else { \
GGML_METAL_LOG_WARN("%s: skipping %-32s (not supported)\n", __func__, "kernel_"#name); \ GGML_METAL_LOG_WARN("%s: skipping %-40s (not supported)\n", __func__, "kernel_"#name); \
} }
// simd_sum and simd_max requires MTLGPUFamilyApple7 // simd_sum and simd_max requires MTLGPUFamilyApple7
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ADD, add, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ADD, add, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ADD_ROW, add_row, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ADD_ROW, add_row, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL, mul, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL, mul, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_ROW, mul_row, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_ROW, mul_row, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_DIV, div, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_DIV, div, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_DIV_ROW, div_row, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_DIV_ROW, div_row, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SCALE, scale, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SCALE, scale, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SCALE_4, scale_4, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SCALE_4, scale_4, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CLAMP, clamp, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CLAMP, clamp, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_TANH, tanh, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_TANH, tanh, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_RELU, relu, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_RELU, relu, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GELU, gelu, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GELU, gelu, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GELU_4, gelu_4, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GELU_4, gelu_4, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GELU_QUICK, gelu_quick, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GELU_QUICK, gelu_quick, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GELU_QUICK_4, gelu_quick_4, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GELU_QUICK_4, gelu_quick_4, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SILU, silu, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SILU, silu, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SILU_4, silu_4, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SILU_4, silu_4, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SOFT_MAX, soft_max, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SOFT_MAX_F16, soft_max_f16, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SOFT_MAX_4, soft_max_4, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SOFT_MAX_F16_4, soft_max_f16_4, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_DIAG_MASK_INF, diag_mask_inf, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SOFT_MAX_F32, soft_max_f32, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_DIAG_MASK_INF_8, diag_mask_inf_8, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SOFT_MAX_F32_4, soft_max_f32_4, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_F32, get_rows_f32, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_DIAG_MASK_INF, diag_mask_inf, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_F16, get_rows_f16, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_DIAG_MASK_INF_8, diag_mask_inf_8, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q4_0, get_rows_q4_0, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_F32, get_rows_f32, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q4_1, get_rows_q4_1, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_F16, get_rows_f16, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q5_0, get_rows_q5_0, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q4_0, get_rows_q4_0, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q5_1, get_rows_q5_1, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q4_1, get_rows_q4_1, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q8_0, get_rows_q8_0, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q5_0, get_rows_q5_0, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q2_K, get_rows_q2_K, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q5_1, get_rows_q5_1, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q3_K, get_rows_q3_K, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q8_0, get_rows_q8_0, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q4_K, get_rows_q4_K, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q2_K, get_rows_q2_K, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q5_K, get_rows_q5_K, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q3_K, get_rows_q3_K, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q6_K, get_rows_q6_K, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q4_K, get_rows_q4_K, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_XXS, get_rows_iq2_xxs, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q5_K, get_rows_q5_K, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_XS, get_rows_iq2_xs, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q6_K, get_rows_q6_K, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ3_XXS, get_rows_iq3_xxs, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_XXS, get_rows_iq2_xxs, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ3_S, get_rows_iq3_s, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_XS, get_rows_iq2_xs, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_S, get_rows_iq2_s, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ3_XXS, get_rows_iq3_xxs, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ1_S, get_rows_iq1_s, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ3_S, get_rows_iq3_s, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ1_M, get_rows_iq1_m, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_S, get_rows_iq2_s, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_NL, get_rows_iq4_nl, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ1_S, get_rows_iq1_s, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_XS, get_rows_iq4_xs, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ1_M, get_rows_iq1_m, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_I32, get_rows_i32, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_NL, get_rows_iq4_nl, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_RMS_NORM, rms_norm, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_XS, get_rows_iq4_xs, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GROUP_NORM, group_norm, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_I32, get_rows_i32, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_NORM, norm, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_RMS_NORM, rms_norm, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_F32_F32, mul_mv_f32_f32, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GROUP_NORM, group_norm, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F16, mul_mv_f16_f16, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_NORM, norm, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F32, mul_mv_f16_f32, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_F32_F32, mul_mv_f32_f32, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F32_1ROW, mul_mv_f16_f32_1row, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F16, mul_mv_f16_f16, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F32_L4, mul_mv_f16_f32_l4, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F32, mul_mv_f16_f32, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q4_0_F32, mul_mv_q4_0_f32, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F32_1ROW, mul_mv_f16_f32_1row, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q4_1_F32, mul_mv_q4_1_f32, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F32_L4, mul_mv_f16_f32_l4, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q5_0_F32, mul_mv_q5_0_f32, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q4_0_F32, mul_mv_q4_0_f32, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q5_1_F32, mul_mv_q5_1_f32, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q4_1_F32, mul_mv_q4_1_f32, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q8_0_F32, mul_mv_q8_0_f32, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q5_0_F32, mul_mv_q5_0_f32, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q2_K_F32, mul_mv_q2_K_f32, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q5_1_F32, mul_mv_q5_1_f32, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q3_K_F32, mul_mv_q3_K_f32, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q8_0_F32, mul_mv_q8_0_f32, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q4_K_F32, mul_mv_q4_K_f32, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q2_K_F32, mul_mv_q2_K_f32, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q5_K_F32, mul_mv_q5_K_f32, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q3_K_F32, mul_mv_q3_K_f32, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q6_K_F32, mul_mv_q6_K_f32, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q4_K_F32, mul_mv_q4_K_f32, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_XXS_F32, mul_mv_iq2_xxs_f32, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q5_K_F32, mul_mv_q5_K_f32, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_XS_F32, mul_mv_iq2_xs_f32, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q6_K_F32, mul_mv_q6_K_f32, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ3_XXS_F32, mul_mv_iq3_xxs_f32, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_XXS_F32, mul_mv_iq2_xxs_f32, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ3_S_F32, mul_mv_iq3_s_f32, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_XS_F32, mul_mv_iq2_xs_f32, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_S_F32, mul_mv_iq2_s_f32, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ3_XXS_F32, mul_mv_iq3_xxs_f32, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ1_S_F32, mul_mv_iq1_s_f32, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ3_S_F32, mul_mv_iq3_s_f32, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ1_M_F32, mul_mv_iq1_m_f32, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_S_F32, mul_mv_iq2_s_f32, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ4_NL_F32, mul_mv_iq4_nl_f32, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ1_S_F32, mul_mv_iq1_s_f32, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ4_XS_F32, mul_mv_iq4_xs_f32, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ1_M_F32, mul_mv_iq1_m_f32, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F32_F32, mul_mv_id_f32_f32, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ4_NL_F32, mul_mv_iq4_nl_f32, ctx->support_simdgroup_reduction);
//GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F16, mul_mv_id_f16_f16, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ4_XS_F32, mul_mv_iq4_xs_f32, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F32, mul_mv_id_f16_f32, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F32_F32, mul_mv_id_f32_f32, ctx->support_simdgroup_reduction);
//GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F32_1ROW, mul_mv_id_f16_f32_1row, ctx->support_simdgroup_reduction); //GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F16, mul_mv_id_f16_f16, ctx->support_simdgroup_reduction);
//GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F32_L4, mul_mv_id_f16_f32_l4, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F32, mul_mv_id_f16_f32, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q4_0_F32, mul_mv_id_q4_0_f32, ctx->support_simdgroup_reduction); //GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F32_1ROW, mul_mv_id_f16_f32_1row, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q4_1_F32, mul_mv_id_q4_1_f32, ctx->support_simdgroup_reduction); //GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F32_L4, mul_mv_id_f16_f32_l4, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q5_0_F32, mul_mv_id_q5_0_f32, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q4_0_F32, mul_mv_id_q4_0_f32, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q5_1_F32, mul_mv_id_q5_1_f32, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q4_1_F32, mul_mv_id_q4_1_f32, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q8_0_F32, mul_mv_id_q8_0_f32, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q5_0_F32, mul_mv_id_q5_0_f32, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q2_K_F32, mul_mv_id_q2_K_f32, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q5_1_F32, mul_mv_id_q5_1_f32, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q3_K_F32, mul_mv_id_q3_K_f32, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q8_0_F32, mul_mv_id_q8_0_f32, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q4_K_F32, mul_mv_id_q4_K_f32, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q2_K_F32, mul_mv_id_q2_K_f32, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q5_K_F32, mul_mv_id_q5_K_f32, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q3_K_F32, mul_mv_id_q3_K_f32, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q6_K_F32, mul_mv_id_q6_K_f32, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q4_K_F32, mul_mv_id_q4_K_f32, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_XXS_F32, mul_mv_id_iq2_xxs_f32, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q5_K_F32, mul_mv_id_q5_K_f32, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_XS_F32, mul_mv_id_iq2_xs_f32, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q6_K_F32, mul_mv_id_q6_K_f32, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ3_XXS_F32, mul_mv_id_iq3_xxs_f32, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_XXS_F32, mul_mv_id_iq2_xxs_f32, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ3_S_F32, mul_mv_id_iq3_s_f32, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_XS_F32, mul_mv_id_iq2_xs_f32, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_S_F32, mul_mv_id_iq2_s_f32, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ3_XXS_F32, mul_mv_id_iq3_xxs_f32, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ1_S_F32, mul_mv_id_iq1_s_f32, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ3_S_F32, mul_mv_id_iq3_s_f32, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ1_M_F32, mul_mv_id_iq1_m_f32, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_S_F32, mul_mv_id_iq2_s_f32, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_NL_F32, mul_mv_id_iq4_nl_f32, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ1_S_F32, mul_mv_id_iq1_s_f32, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_XS_F32, mul_mv_id_iq4_xs_f32, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ1_M_F32, mul_mv_id_iq1_m_f32, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_F32_F32, mul_mm_f32_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_NL_F32, mul_mv_id_iq4_nl_f32, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_F16_F32, mul_mm_f16_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_XS_F32, mul_mv_id_iq4_xs_f32, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_0_F32, mul_mm_q4_0_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_F32_F32, mul_mm_f32_f32, ctx->support_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_1_F32, mul_mm_q4_1_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_F16_F32, mul_mm_f16_f32, ctx->support_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_0_F32, mul_mm_q5_0_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_0_F32, mul_mm_q4_0_f32, ctx->support_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_1_F32, mul_mm_q5_1_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_1_F32, mul_mm_q4_1_f32, ctx->support_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q8_0_F32, mul_mm_q8_0_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_0_F32, mul_mm_q5_0_f32, ctx->support_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q2_K_F32, mul_mm_q2_K_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_1_F32, mul_mm_q5_1_f32, ctx->support_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q3_K_F32, mul_mm_q3_K_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q8_0_F32, mul_mm_q8_0_f32, ctx->support_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_K_F32, mul_mm_q4_K_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q2_K_F32, mul_mm_q2_K_f32, ctx->support_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_K_F32, mul_mm_q5_K_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q3_K_F32, mul_mm_q3_K_f32, ctx->support_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q6_K_F32, mul_mm_q6_K_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_K_F32, mul_mm_q4_K_f32, ctx->support_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_XXS_F32, mul_mm_iq2_xxs_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_K_F32, mul_mm_q5_K_f32, ctx->support_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_XS_F32, mul_mm_iq2_xs_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q6_K_F32, mul_mm_q6_K_f32, ctx->support_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ3_XXS_F32, mul_mm_iq3_xxs_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_XXS_F32, mul_mm_iq2_xxs_f32, ctx->support_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ3_S_F32, mul_mm_iq3_s_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_XS_F32, mul_mm_iq2_xs_f32, ctx->support_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_S_F32, mul_mm_iq2_s_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ3_XXS_F32, mul_mm_iq3_xxs_f32, ctx->support_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ1_S_F32, mul_mm_iq1_s_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ3_S_F32, mul_mm_iq3_s_f32, ctx->support_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ1_M_F32, mul_mm_iq1_m_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_S_F32, mul_mm_iq2_s_f32, ctx->support_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_NL_F32, mul_mm_iq4_nl_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ1_S_F32, mul_mm_iq1_s_f32, ctx->support_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_XS_F32, mul_mm_iq4_xs_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ1_M_F32, mul_mm_iq1_m_f32, ctx->support_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F32_F32, mul_mm_id_f32_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_NL_F32, mul_mm_iq4_nl_f32, ctx->support_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F16_F32, mul_mm_id_f16_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_XS_F32, mul_mm_iq4_xs_f32, ctx->support_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_0_F32, mul_mm_id_q4_0_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F32_F32, mul_mm_id_f32_f32, ctx->support_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_1_F32, mul_mm_id_q4_1_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F16_F32, mul_mm_id_f16_f32, ctx->support_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_0_F32, mul_mm_id_q5_0_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_0_F32, mul_mm_id_q4_0_f32, ctx->support_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_1_F32, mul_mm_id_q5_1_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_1_F32, mul_mm_id_q4_1_f32, ctx->support_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q8_0_F32, mul_mm_id_q8_0_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_0_F32, mul_mm_id_q5_0_f32, ctx->support_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q2_K_F32, mul_mm_id_q2_K_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_1_F32, mul_mm_id_q5_1_f32, ctx->support_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q3_K_F32, mul_mm_id_q3_K_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q8_0_F32, mul_mm_id_q8_0_f32, ctx->support_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_K_F32, mul_mm_id_q4_K_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q2_K_F32, mul_mm_id_q2_K_f32, ctx->support_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_K_F32, mul_mm_id_q5_K_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q3_K_F32, mul_mm_id_q3_K_f32, ctx->support_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q6_K_F32, mul_mm_id_q6_K_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_K_F32, mul_mm_id_q4_K_f32, ctx->support_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_XXS_F32, mul_mm_id_iq2_xxs_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_K_F32, mul_mm_id_q5_K_f32, ctx->support_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_XS_F32, mul_mm_id_iq2_xs_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q6_K_F32, mul_mm_id_q6_K_f32, ctx->support_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ3_XXS_F32, mul_mm_id_iq3_xxs_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_XXS_F32, mul_mm_id_iq2_xxs_f32, ctx->support_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ3_S_F32, mul_mm_id_iq3_s_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_XS_F32, mul_mm_id_iq2_xs_f32, ctx->support_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_S_F32, mul_mm_id_iq2_s_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ3_XXS_F32, mul_mm_id_iq3_xxs_f32, ctx->support_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ1_S_F32, mul_mm_id_iq1_s_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ3_S_F32, mul_mm_id_iq3_s_f32, ctx->support_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ1_M_F32, mul_mm_id_iq1_m_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_S_F32, mul_mm_id_iq2_s_f32, ctx->support_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_NL_F32, mul_mm_id_iq4_nl_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ1_S_F32, mul_mm_id_iq1_s_f32, ctx->support_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_XS_F32, mul_mm_id_iq4_xs_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ1_M_F32, mul_mm_id_iq1_m_f32, ctx->support_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ROPE_F32, rope_f32, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_NL_F32, mul_mm_id_iq4_nl_f32, ctx->support_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ROPE_F16, rope_f16, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_XS_F32, mul_mm_id_iq4_xs_f32, ctx->support_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ALIBI_F32, alibi_f32, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ROPE_F32, rope_f32, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_IM2COL_F16, im2col_f16, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ROPE_F16, rope_f16, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_IM2COL_F32, im2col_f32, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ALIBI_F32, alibi_f32, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_UPSCALE_F32, upscale_f32, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_IM2COL_F16, im2col_f16, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_PAD_F32, pad_f32, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_IM2COL_F32, im2col_f32, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_TIMESTEP_EMBEDDING_F32, timestep_embedding_f32, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_UPSCALE_F32, upscale_f32, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ARANGE_F32, arange_f32, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_PAD_F32, pad_f32, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_ASC, argsort_f32_i32_asc, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_TIMESTEP_EMBEDDING_F32, timestep_embedding_f32, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_DESC, argsort_f32_i32_desc, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ARANGE_F32, arange_f32, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_LEAKY_RELU_F32, leaky_relu_f32, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_ASC, argsort_f32_i32_asc, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_F16, cpy_f32_f16, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_DESC, argsort_f32_i32_desc, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_F32, cpy_f32_f32, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_LEAKY_RELU_F32, leaky_relu_f32, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_Q8_0, cpy_f32_q8_0, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H64, flash_attn_ext_f16_h64, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_Q4_0, cpy_f32_q4_0, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H80, flash_attn_ext_f16_h80, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_Q4_1, cpy_f32_q4_1, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H96, flash_attn_ext_f16_h96, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_Q5_0, cpy_f32_q5_0, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H112, flash_attn_ext_f16_h112, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_Q5_1, cpy_f32_q5_1, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H128, flash_attn_ext_f16_h128, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_IQ4_NL, cpy_f32_iq4_nl, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H256, flash_attn_ext_f16_h256, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F16_F16, cpy_f16_f16, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H128, flash_attn_ext_vec_f16_h128, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F16_F32, cpy_f16_f32, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H256, flash_attn_ext_vec_f16_h256, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CONCAT, concat, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_F16, cpy_f32_f16, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SQR, sqr, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_F32, cpy_f32_f32, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SUM_ROWS, sum_rows, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_Q8_0, cpy_f32_q8_0, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_Q4_0, cpy_f32_q4_0, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_Q4_1, cpy_f32_q4_1, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_Q5_0, cpy_f32_q5_0, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_Q5_1, cpy_f32_q5_1, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_IQ4_NL, cpy_f32_iq4_nl, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F16_F16, cpy_f16_f16, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F16_F32, cpy_f16_f32, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CONCAT, concat, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SQR, sqr, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SUM_ROWS, sum_rows, true);
} }
[metal_library release]; [metal_library release];
@ -743,6 +763,7 @@ static bool ggml_metal_supports_op(const struct ggml_metal_context * ctx, const
case GGML_OP_TIMESTEP_EMBEDDING: case GGML_OP_TIMESTEP_EMBEDDING:
case GGML_OP_ARGSORT: case GGML_OP_ARGSORT:
case GGML_OP_LEAKY_RELU: case GGML_OP_LEAKY_RELU:
case GGML_OP_FLASH_ATTN_EXT:
return true; return true;
case GGML_OP_MUL_MAT: case GGML_OP_MUL_MAT:
case GGML_OP_MUL_MAT_ID: case GGML_OP_MUL_MAT_ID:
@ -1326,20 +1347,33 @@ static enum ggml_status ggml_metal_graph_compute(
} break; } break;
case GGML_OP_SOFT_MAX: case GGML_OP_SOFT_MAX:
{ {
GGML_ASSERT(!src1 || src1->type == GGML_TYPE_F16 || src1->type == GGML_TYPE_F32);
GGML_ASSERT(!src2 || src2->type == GGML_TYPE_F16 || src2->type == GGML_TYPE_F32);
int nth = 32; // SIMD width int nth = 32; // SIMD width
id<MTLComputePipelineState> pipeline = nil; id<MTLComputePipelineState> pipeline = nil;
const bool use_f16 = (src1 && src1->type == GGML_TYPE_F16) || (src2 && src2->type == GGML_TYPE_F16);
if (ne00%4 == 0) { if (ne00%4 == 0) {
while (nth < ne00/4 && nth < 256) { while (nth < ne00/4 && nth < 256) {
nth *= 2; nth *= 2;
} }
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SOFT_MAX_4].pipeline; if (use_f16) {
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SOFT_MAX_F16_4].pipeline;
} else {
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SOFT_MAX_F32_4].pipeline;
}
} else { } else {
while (nth < ne00 && nth < 1024) { while (nth < ne00 && nth < 1024) {
nth *= 2; nth *= 2;
} }
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SOFT_MAX].pipeline; if (use_f16) {
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SOFT_MAX_F16].pipeline;
} else {
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SOFT_MAX_F32].pipeline;
}
} }
float scale; float scale;
@ -2503,6 +2537,161 @@ static enum ggml_status ggml_metal_graph_compute(
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
} break; } break;
case GGML_OP_FLASH_ATTN_EXT:
{
GGML_ASSERT(ne00 % 4 == 0);
GGML_ASSERT(src0->type == GGML_TYPE_F32);
struct ggml_tensor * src3 = gf->nodes[i]->src[3];
GGML_ASSERT(ggml_are_same_shape(src1, src2));
GGML_ASSERT(src3);
size_t offs_src3 = 0;
id<MTLBuffer> id_src3 = src3 ? ggml_metal_get_buffer(src3, &offs_src3) : nil;
GGML_ASSERT(!src3 || src3->type == GGML_TYPE_F16);
GGML_ASSERT(!src3 || src3->ne[1] >= GGML_PAD(src0->ne[1], 8) &&
"the Flash-Attention Metal kernel requires the mask to be padded to 8 and at least n_queries big");
const int64_t ne30 = src3 ? src3->ne[0] : 0; GGML_UNUSED(ne30);
const int64_t ne31 = src3 ? src3->ne[1] : 0;
const int64_t ne32 = src3 ? src3->ne[2] : 0; GGML_UNUSED(ne32);
const int64_t ne33 = src3 ? src3->ne[3] : 0; GGML_UNUSED(ne33);
const uint64_t nb30 = src3 ? src3->nb[0] : 0; GGML_UNUSED(nb30);
const uint64_t nb31 = src3 ? src3->nb[1] : 0;
const uint64_t nb32 = src3 ? src3->nb[2] : 0; GGML_UNUSED(nb32);
const uint64_t nb33 = src3 ? src3->nb[3] : 0; GGML_UNUSED(nb33);
const enum ggml_type src2t = src2 ? src2->type : GGML_TYPE_COUNT; GGML_UNUSED(src2t);
float scale;
memcpy(&scale, dst->op_params, sizeof(float));
id<MTLComputePipelineState> pipeline = nil;
bool use_vec_kernel = false;
if (ne01 >= 4 || (ne00%128 != 0)) {
switch (ne00) {
case 64: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H64 ].pipeline; break;
case 80: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H80 ].pipeline; break;
case 96: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H96 ].pipeline; break;
case 112: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H112].pipeline; break;
case 128: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H128].pipeline; break;
case 256: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H256].pipeline; break;
default:
{
GGML_METAL_LOG_ERROR("unsupported size: %lld\n", ne00);
GGML_METAL_LOG_ERROR("add template specialization for this size\n");
GGML_ASSERT(false && "add template specialization for this size");
}
}
} else {
use_vec_kernel = true;
switch (ne00) {
case 128: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H128].pipeline; break;
case 256: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H256].pipeline; break;
default:
{
GGML_METAL_LOG_ERROR("unsupported size: %lld\n", ne00);
GGML_METAL_LOG_ERROR("add template specialization for this size\n");
GGML_ASSERT(false && "add template specialization for this size");
}
}
}
[encoder setComputePipelineState:pipeline];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
[encoder setBuffer:id_src2 offset:offs_src2 atIndex:2];
[encoder setBuffer:id_src3 offset:offs_src3 atIndex:3];
[encoder setBuffer:id_dst offset:offs_dst atIndex:4];
[encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:5];
[encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:6];
[encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:7];
[encoder setBytes:&ne03 length:sizeof( int64_t) atIndex:8];
[encoder setBytes:&nb00 length:sizeof(uint64_t) atIndex:9];
[encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:10];
[encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:11];
[encoder setBytes:&nb03 length:sizeof(uint64_t) atIndex:12];
[encoder setBytes:&ne10 length:sizeof( int64_t) atIndex:13];
[encoder setBytes:&ne11 length:sizeof( int64_t) atIndex:14];
[encoder setBytes:&ne12 length:sizeof( int64_t) atIndex:15];
[encoder setBytes:&ne13 length:sizeof( int64_t) atIndex:16];
[encoder setBytes:&nb10 length:sizeof(uint64_t) atIndex:17];
[encoder setBytes:&nb11 length:sizeof(uint64_t) atIndex:18];
[encoder setBytes:&nb12 length:sizeof(uint64_t) atIndex:19];
[encoder setBytes:&nb13 length:sizeof(uint64_t) atIndex:20];
[encoder setBytes:&ne31 length:sizeof( int64_t) atIndex:21];
[encoder setBytes:&nb31 length:sizeof(uint64_t) atIndex:22];
[encoder setBytes:&ne0 length:sizeof( int64_t) atIndex:23];
[encoder setBytes:&ne1 length:sizeof( int64_t) atIndex:24];
[encoder setBytes:&ne2 length:sizeof( int64_t) atIndex:25];
[encoder setBytes:&ne3 length:sizeof( int64_t) atIndex:26];
[encoder setBytes:&scale length:sizeof( float) atIndex:27];
if (!use_vec_kernel) {
// half8x8 kernel
const int64_t nqptg = 8; // queries per threadgroup !! sync with kernel template arguments !!
const int64_t ncpsg = 32; // cache values per simdgroup !! sync with kernel template arguments !!
GGML_ASSERT(nqptg <= 32);
GGML_ASSERT(nqptg % 8 == 0);
GGML_ASSERT(ncpsg % 32 == 0);
int64_t nsgmax = 2;
while (true) {
const size_t smem = nqptg*(ne00 + 2*nsgmax*(ncpsg + nqptg))*(sizeof(float)/2);
if (smem > ctx->device.maxThreadgroupMemoryLength) {
break;
}
nsgmax *= 2;
}
nsgmax /= 2;
// simdgroups per threadgroup (a.k.a. warps)
const int64_t nsg = ne01 <= nqptg ? MAX(4, MIN(nsgmax, MIN(ne11/ncpsg, (int64_t) pipeline.maxTotalThreadsPerThreadgroup/32))) : 4;
const size_t smem = nqptg*(ne00 + 2*nsg*(ncpsg + nqptg))*(sizeof(float)/2);
//printf("smem: %zu, max: %zu\n", smem, ctx->device.maxThreadgroupMemoryLength);
GGML_ASSERT(smem <= ctx->device.maxThreadgroupMemoryLength);
[encoder setThreadgroupMemoryLength:GGML_PAD(smem, 16) atIndex:0];
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + nqptg - 1)/nqptg, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(32, nsg, 1)];
} else {
// half1x4 kernel
const int64_t nqptg = 1; // queries per threadgroup !! sync with kernel template arguments !!
const int64_t ncpsg = 32; // cache values per simdgroup !! sync with kernel template arguments !!
GGML_ASSERT(nqptg <= 32);
GGML_ASSERT(nqptg % 1 == 0);
GGML_ASSERT(ncpsg % 32 == 0);
// simdgroups per threadgroup (a.k.a. warps)
const int64_t nsgt = MAX(2, MIN(ne11/ncpsg, (int64_t) pipeline.maxTotalThreadsPerThreadgroup/32));
int64_t nsg = 1;
while (nsg <= nsgt) {
nsg *= 2;
}
nsg /= 2;
const size_t smem = (nqptg*(ne00 + 2*nsg*(ncpsg + nqptg)) + nsg*ne00)*(sizeof(float)/2);
//printf("smem: %zu, max: %zu\n", smem, ctx->device.maxThreadgroupMemoryLength);
GGML_ASSERT(smem <= ctx->device.maxThreadgroupMemoryLength);
[encoder setThreadgroupMemoryLength:GGML_PAD(smem, 16) atIndex:0];
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + nqptg - 1)/nqptg, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(32, nsg, 1)];
}
} break;
case GGML_OP_DUP: case GGML_OP_DUP:
case GGML_OP_CPY: case GGML_OP_CPY:
case GGML_OP_CONT: case GGML_OP_CONT:
@ -2706,10 +2895,13 @@ GGML_CALL static const char * ggml_backend_metal_buffer_type_get_name(ggml_backe
UNUSED(buft); UNUSED(buft);
} }
static void ggml_backend_metal_log_allocated_size(id<MTLDevice> device) { static void ggml_backend_metal_log_allocated_size(id<MTLDevice> device, size_t size_aligned) {
#ifndef GGML_METAL_NDEBUG
#if TARGET_OS_OSX || (TARGET_OS_IOS && __clang_major__ >= 15) #if TARGET_OS_OSX || (TARGET_OS_IOS && __clang_major__ >= 15)
if (@available(macOS 10.12, iOS 16.0, *)) { if (@available(macOS 10.12, iOS 16.0, *)) {
GGML_METAL_LOG_INFO(", (%8.2f / %8.2f)", GGML_METAL_LOG_INFO("%s: allocated buffer, size = %8.2f MiB, (%8.2f / %8.2f)",
__func__,
size_aligned / 1024.0 / 1024.0,
device.currentAllocatedSize / 1024.0 / 1024.0, device.currentAllocatedSize / 1024.0 / 1024.0,
device.recommendedMaxWorkingSetSize / 1024.0 / 1024.0); device.recommendedMaxWorkingSetSize / 1024.0 / 1024.0);
@ -2719,10 +2911,15 @@ static void ggml_backend_metal_log_allocated_size(id<MTLDevice> device) {
GGML_METAL_LOG_INFO("\n"); GGML_METAL_LOG_INFO("\n");
} }
} else { } else {
GGML_METAL_LOG_INFO(", (%8.2f)\n", device.currentAllocatedSize / 1024.0 / 1024.0); GGML_METAL_LOG_INFO("%s: allocated buffer, size = %8.2f MiB, (%8.2f)\n",
__func__,
size_aligned / 1024.0 / 1024.0,
device.currentAllocatedSize / 1024.0 / 1024.0);
} }
#endif
#endif #endif
UNUSED(device); UNUSED(device);
UNUSED(size_aligned);
} }
GGML_CALL static ggml_backend_buffer_t ggml_backend_metal_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) { GGML_CALL static ggml_backend_buffer_t ggml_backend_metal_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
@ -2756,8 +2953,7 @@ GGML_CALL static ggml_backend_buffer_t ggml_backend_metal_buffer_type_alloc_buff
return NULL; return NULL;
} }
GGML_METAL_LOG_INFO("%s: allocated buffer, size = %8.2f MiB", __func__, size_aligned / 1024.0 / 1024.0); //ggml_backend_metal_log_allocated_size(device, size_aligned);
ggml_backend_metal_log_allocated_size(device);
return ggml_backend_buffer_init(buft, ggml_backend_metal_buffer_i, ctx, size); return ggml_backend_buffer_init(buft, ggml_backend_metal_buffer_i, ctx, size);
} }
@ -2844,7 +3040,7 @@ GGML_CALL ggml_backend_buffer_t ggml_backend_metal_buffer_from_ptr(void * data,
return false; return false;
} }
GGML_METAL_LOG_INFO("%s: allocated buffer, size = %8.2f MiB", __func__, size_aligned / 1024.0 / 1024.0); ggml_backend_metal_log_allocated_size(device, size_aligned);
++ctx->n_buffers; ++ctx->n_buffers;
} else { } else {
@ -2867,7 +3063,8 @@ GGML_CALL ggml_backend_buffer_t ggml_backend_metal_buffer_from_ptr(void * data,
return false; return false;
} }
GGML_METAL_LOG_INFO("%s: allocated buffer, size = %8.2f MiB, offs = %12ld", __func__, size_step_aligned / 1024.0 / 1024.0, i); ggml_backend_metal_log_allocated_size(device, size_step_aligned);
if (i + size_step < size) { if (i + size_step < size) {
GGML_METAL_LOG_INFO("\n"); GGML_METAL_LOG_INFO("\n");
} }
@ -2876,8 +3073,6 @@ GGML_CALL ggml_backend_buffer_t ggml_backend_metal_buffer_from_ptr(void * data,
} }
} }
ggml_backend_metal_log_allocated_size(device);
return ggml_backend_buffer_init(ggml_backend_metal_buffer_type(), ggml_backend_metal_buffer_i, ctx, size); return ggml_backend_buffer_init(ggml_backend_metal_buffer_type(), ggml_backend_metal_buffer_i, ctx, size);
} }

View File

@ -352,11 +352,12 @@ kernel void kernel_sum_rows(
dst_row[0] = row_sum; dst_row[0] = row_sum;
} }
template<typename T>
kernel void kernel_soft_max( kernel void kernel_soft_max(
device const float * src0, device const char * src0,
device const float * src1, device const char * src1,
device const float * src2, device const char * src2,
device float * dst, device char * dst,
constant int64_t & ne00, constant int64_t & ne00,
constant int64_t & ne01, constant int64_t & ne01,
constant int64_t & ne02, constant int64_t & ne02,
@ -375,10 +376,10 @@ kernel void kernel_soft_max(
const int64_t i02 = (tgpig - i03*ne02*ne01) / ne01; const int64_t i02 = (tgpig - i03*ne02*ne01) / ne01;
const int64_t i01 = (tgpig - i03*ne02*ne01 - i02*ne01); const int64_t i01 = (tgpig - i03*ne02*ne01 - i02*ne01);
device const float * psrc0 = src0 + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00; device const float * psrc0 = (device const float *) src0 + (i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00);
device const float * pmask = src1 != src0 ? src1 + i01*ne00 : nullptr; device const T * pmask = src1 != src0 ? (device const T *) src1 + i01*ne00 : nullptr;
device const float * ppos = src2 != src0 ? src2 : nullptr; device const T * ppos = src2 != src0 ? (device const T *) src2 : nullptr;
device float * pdst = dst + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00; device float * pdst = (device float *) dst + (i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00);
float slope = 0.0f; float slope = 0.0f;
@ -456,11 +457,12 @@ kernel void kernel_soft_max(
} }
} }
template<typename T>
kernel void kernel_soft_max_4( kernel void kernel_soft_max_4(
device const float * src0, device const char * src0,
device const float * src1, device const char * src1,
device const float * src2, device const char * src2,
device float * dst, device char * dst,
constant int64_t & ne00, constant int64_t & ne00,
constant int64_t & ne01, constant int64_t & ne01,
constant int64_t & ne02, constant int64_t & ne02,
@ -479,10 +481,10 @@ kernel void kernel_soft_max_4(
const int64_t i02 = (tgpig - i03*ne02*ne01) / ne01; const int64_t i02 = (tgpig - i03*ne02*ne01) / ne01;
const int64_t i01 = (tgpig - i03*ne02*ne01 - i02*ne01); const int64_t i01 = (tgpig - i03*ne02*ne01 - i02*ne01);
device const float4 * psrc4 = (device const float4 *)(src0 + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00); device const float4 * psrc4 = (device const float4 *) src0 + (i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00)/4;
device const float4 * pmask = src1 != src0 ? (device const float4 *)(src1 + i01*ne00) : nullptr; device const T * pmask = src1 != src0 ? (device const T *) src1 + i01*ne00/4 : nullptr;
device const float4 * ppos = src2 != src0 ? (device const float4 *)(src2) : nullptr; device const T * ppos = src2 != src0 ? (device const T *) src2 : nullptr;
device float4 * pdst4 = (device float4 *)(dst + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00); device float4 * pdst4 = (device float4 *) dst + (i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00)/4;
float slope = 0.0f; float slope = 0.0f;
@ -499,7 +501,7 @@ kernel void kernel_soft_max_4(
float4 lmax4 = -INFINITY; float4 lmax4 = -INFINITY;
for (int i00 = tpitg; i00 < ne00/4; i00 += ntg) { for (int i00 = tpitg; i00 < ne00/4; i00 += ntg) {
lmax4 = fmax(lmax4, psrc4[i00]*scale + (pmask ? pmask[i00] : 0.0f) + (ppos ? slope*ppos[i00] : 0.0f)); lmax4 = fmax(lmax4, psrc4[i00]*scale + (float4)((pmask ? pmask[i00] : 0.0f) + (ppos ? slope*ppos[i00] : 0.0f)));
} }
const float lmax = MAX(MAX(lmax4[0], lmax4[1]), MAX(lmax4[2], lmax4[3])); const float lmax = MAX(MAX(lmax4[0], lmax4[1]), MAX(lmax4[2], lmax4[3]));
@ -525,7 +527,7 @@ kernel void kernel_soft_max_4(
// parallel sum // parallel sum
float4 lsum4 = 0.0f; float4 lsum4 = 0.0f;
for (int i00 = tpitg; i00 < ne00/4; i00 += ntg) { for (int i00 = tpitg; i00 < ne00/4; i00 += ntg) {
const float4 exp_psrc4 = exp((psrc4[i00]*scale + (pmask ? pmask[i00] : 0.0f) + (ppos ? slope*ppos[i00] : 0.0f)) - max_val); const float4 exp_psrc4 = exp((psrc4[i00]*scale + (float4)((pmask ? pmask[i00] : 0.0f) + (ppos ? slope*ppos[i00] : 0.0f))) - max_val);
lsum4 += exp_psrc4; lsum4 += exp_psrc4;
pdst4[i00] = exp_psrc4; pdst4[i00] = exp_psrc4;
} }
@ -562,6 +564,14 @@ kernel void kernel_soft_max_4(
} }
} }
typedef decltype(kernel_soft_max<float>) kernel_soft_max_t;
typedef decltype(kernel_soft_max_4<float4>) kernel_soft_max_4_t;
template [[host_name("kernel_soft_max_f16")]] kernel kernel_soft_max_t kernel_soft_max<half>;
template [[host_name("kernel_soft_max_f32")]] kernel kernel_soft_max_t kernel_soft_max<float>;
template [[host_name("kernel_soft_max_f16_4")]] kernel kernel_soft_max_4_t kernel_soft_max_4<half4>;
template [[host_name("kernel_soft_max_f32_4")]] kernel kernel_soft_max_4_t kernel_soft_max_4<float4>;
kernel void kernel_diag_mask_inf( kernel void kernel_diag_mask_inf(
device const float * src0, device const float * src0,
device float * dst, device float * dst,
@ -2084,6 +2094,632 @@ kernel void kernel_leaky_relu_f32(
dst[tpig] = src0[tpig] > 0.0f ? src0[tpig] : src0[tpig] * slope; dst[tpig] = src0[tpig] > 0.0f ? src0[tpig] : src0[tpig] * slope;
} }
typedef void (flash_attn_ext_f16_t)(
device const char * q,
device const char * k,
device const char * v,
device const char * mask,
device float * dst,
constant int64_t & ne00,
constant int64_t & ne01,
constant int64_t & ne02,
constant int64_t & ne03,
constant uint64_t & nb00,
constant uint64_t & nb01,
constant uint64_t & nb02,
constant uint64_t & nb03,
constant int64_t & ne10,
constant int64_t & ne11,
constant int64_t & ne12,
constant int64_t & ne13,
constant uint64_t & nb10,
constant uint64_t & nb11,
constant uint64_t & nb12,
constant uint64_t & nb13,
constant int64_t & ne31,
constant uint64_t & nb31,
constant int64_t & ne0,
constant int64_t & ne1,
constant int64_t & ne2,
constant int64_t & ne3,
constant float & scale,
threadgroup half * shared,
uint3 tgpig[[threadgroup_position_in_grid]],
uint3 tpitg[[thread_position_in_threadgroup]],
uint3 ntg[[threads_per_threadgroup]],
ushort tiisg[[thread_index_in_simdgroup]],
ushort sgitg[[simdgroup_index_in_threadgroup]]);
// ref: https://arxiv.org/pdf/2307.08691.pdf
template<int64_t D, int64_t Q = 8, int64_t C = 32> // head size, queries per threadgroup, cache items per threadgroup
kernel void kernel_flash_attn_ext_f16(
device const char * q,
device const char * k,
device const char * v,
device const char * mask,
device float * dst,
constant int64_t & ne00,
constant int64_t & ne01,
constant int64_t & ne02,
constant int64_t & ne03,
constant uint64_t & nb00,
constant uint64_t & nb01,
constant uint64_t & nb02,
constant uint64_t & nb03,
constant int64_t & ne10,
constant int64_t & ne11,
constant int64_t & ne12,
constant int64_t & ne13,
constant uint64_t & nb10,
constant uint64_t & nb11,
constant uint64_t & nb12,
constant uint64_t & nb13,
constant int64_t & ne31,
constant uint64_t & nb31,
constant int64_t & ne0,
constant int64_t & ne1,
constant int64_t & ne2,
constant int64_t & ne3,
constant float & scale,
threadgroup half * shared [[threadgroup(0)]],
uint3 tgpig[[threadgroup_position_in_grid]],
uint3 tpitg[[thread_position_in_threadgroup]],
uint3 ntg[[threads_per_threadgroup]],
ushort tiisg[[thread_index_in_simdgroup]],
ushort sgitg[[simdgroup_index_in_threadgroup]]) {
const short nsg = ntg.y; // number of simdgroups
const short iq3 = tgpig[2];
const short iq2 = tgpig[1];
const short iq1 = tgpig[0]*Q;
const short D4 = D/4;
const short D8 = D/8;
const short Q8 = Q/8;
const short NW = N_SIMDWIDTH;
const short SH = (C + Q); // shared memory per simdgroup in (half)
const short T = D + 2*nsg*SH; // shared memory size per query in (half)
const short TF = T/2; // shared memory size per query in (float)
const short T4 = T/4; // shared memory size per query in (half4)
threadgroup half * sq = (threadgroup half *) (shared + 0*D); // holds the query data
threadgroup half4 * sq4 = (threadgroup half4 *) (shared + 0*D); // same as above but in half4
threadgroup float * ss = (threadgroup float *) (shared + 2*sgitg*SH + 1*D); // scratch buffer for attention and diagonal matrix
// store the result for all queries in local memory in 8x8 matrices (the O matrix from the paper)
simdgroup_half8x8 lo[D8];
// load heads from Q to shared memory
for (short j = sgitg; j < Q; j += nsg) {
device const float4 * q4 = (device const float4 *) ((device const char *) q + ((iq1 + j)*nb01 + iq2*nb02 + iq3*nb03));
for (short i = tiisg; i < D4; i += NW) {
if (iq1 + j < ne01) {
sq4[j*T4 + i] = (half4) q4[i];
} else {
sq4[j*T4 + i] = 0.0h;
}
}
}
// zero out lo
for (short i = 0; i < D8; ++i) {
lo[i] = make_filled_simdgroup_matrix<half, 8>(0.0h);
}
// zero out shared memory SH
for (short j = 0; j < Q; ++j) {
for (short i = tiisg; i < SH; i += NW) {
ss[j*TF + i] = 0.0f;
}
}
threadgroup_barrier(mem_flags::mem_threadgroup);
{
float S[Q] = { [0 ... Q-1] = 0.0h };
float M[Q] = { [0 ... Q-1] = -FLT_MAX/2 };
// assume K and V are same shape
const short ne22 = ne12;
const short ne23 = ne13;
const uint nb21 = nb11;
const uint nb22 = nb12;
const uint nb23 = nb13;
// broadcast
const short rk2 = ne02/ne12;
const short rk3 = ne03/ne13;
const short rv2 = ne02/ne22;
const short rv3 = ne03/ne23;
// k indices
const short ik2 = iq2/rk2;
const short ik3 = iq3/rk3;
// v indices
const short iv2 = iq2/rv2;
const short iv3 = iq3/rv3;
// load the queries from shared memory into local memory
simdgroup_half8x8 mq[D8];
for (short i = 0; i < D8; ++i) {
simdgroup_load(mq[i], sq + i*8, T);
}
// pointer to the mask
device const half * mp = (device const half *) (mask + iq1*nb31);
// prepare diagonal scale matrix
simdgroup_float8x8 mscale(scale);
// loop over the KV cache
// each simdgroup handles blocks of Q rows and C columns
for (int ic0 = 0; ic0 < ne11; ic0 += C*nsg) {
const int ic = ic0 + C*sgitg;
if (ic >= ne11) {
break;
}
// Q*K^T
{
for (short cc = 0; cc < C/8; ++cc) {
simdgroup_float8x8 mqk = make_filled_simdgroup_matrix<float, 8>(0.h);
device const half * pk = (device const half *) ((device const char *) k + ((ic + 8*cc)*nb11 + ik2*nb12 + ik3*nb13));
for (short i = 0; i < D8; ++i) {
simdgroup_half8x8 mk;
simdgroup_load(mk, pk + i*8, nb11/sizeof(half), 0, true); // transpose
simdgroup_multiply_accumulate(mqk, mq[i], mk, mqk);
}
// mqk = mqk*scale + mask
simdgroup_half8x8 mm;
simdgroup_load(mm, mp + ic + 8*cc, nb31/sizeof(half), 0, false);
simdgroup_multiply_accumulate(mqk, mqk, mscale, mm);
simdgroup_store(mqk, ss + 8*cc, TF, 0, false);
}
}
// used to detect blocks full of -INF
float smax = -INFINITY;
// online softmax
{
float ms[Q];
for (short j = 0; j < Q; ++j) {
const short p = tiisg;
const float m = M[j];
const float s = ss[j*TF + p];
smax = simd_max(max(smax, s));
M[j] = simd_max(max(M[j], s));
ms[j] = exp(m - M[j]);
const float vs = exp(s - M[j]);
S[j] = S[j]*ms[j] + simd_sum(vs);
// the P matrix from the paper (Q rows, C columns)
ss[j*TF + p] = vs;
}
// create a QxQ diagonal matrix for rescaling the output
if (tiisg < Q) {
ss[tiisg*TF + C + tiisg] = ms[tiisg];
}
}
// skip -INF blocks
if (smax == -INFINITY) {
continue;
}
// O = diag(ms)*O
{
simdgroup_float8x8 mm;
simdgroup_load(mm, ss + C, TF, 0, false);
for (short i = 0; i < D8; ++i) {
simdgroup_multiply(lo[i], mm, lo[i]);
}
}
// O = O + (Q*K^T)*V
{
for (short cc = 0; cc < C/8; ++cc) {
device const half * pv = (device const half *) ((device const char *) v + ((ic + 8*cc)*nb21 + iv2*nb22 + iv3*nb23));
for (short i = 0; i < D8; ++i) {
simdgroup_half8x8 mk;
simdgroup_load(mk, pv + i*8, nb21/sizeof(half), 0, false);
simdgroup_float8x8 mv;
simdgroup_load(mv, ss + 8*cc, TF, 0, false);
simdgroup_multiply_accumulate(lo[i], mv, mk, lo[i]);
}
}
}
}
// these are needed for reducing the results from the simdgroups (reuse the ss buffer)
for (short j = 0; j < Q; ++j) {
if (tiisg == 0) {
ss[j*TF + 0] = S[j];
ss[j*TF + 1] = M[j];
}
}
}
// reduce the warps sequentially
for (short sg = 1; sg < nsg; ++sg) {
float S = { 0.0h };
float M = { -FLT_MAX/2 };
threadgroup_barrier(mem_flags::mem_threadgroup);
// each simdgroup stores its output to shared memory, reusing sq
if (sgitg == sg) {
for (short i = 0; i < D8; ++i) {
simdgroup_store(lo[i], sq + i*8, T, 0, false);
}
}
threadgroup_barrier(mem_flags::mem_threadgroup);
// the first simdgroup accumulates the results from the other simdgroups
if (sgitg == 0) {
for (short j = 0; j < Q; ++j) {
const float S0 = ss[j*TF + 0];
const float S1 = ss[j*TF + sg*SH + 0];
const float M0 = ss[j*TF + 1];
const float M1 = ss[j*TF + sg*SH + 1];
M = max(M0, M1);
const float ms0 = exp(M0 - M);
const float ms1 = exp(M1 - M);
S = S0*ms0 + S1*ms1;
if (tiisg == 0) {
ss[j*TF + 0] = S;
ss[j*TF + 1] = M;
ss[j*TF + C + j ] = ms0;
ss[j*TF + C + j + sg*SH] = ms1;
}
}
// O_0 = diag(ms0)*O_0 + diag(ms1)*O_1
{
simdgroup_half8x8 t;
simdgroup_float8x8 ms0;
simdgroup_float8x8 ms1;
simdgroup_load(ms0, ss + C, TF, 0, false);
simdgroup_load(ms1, ss + C + sg*SH, TF, 0, false);
for (short i = 0; i < D8; ++i) {
simdgroup_load (t, sq + i*8, T, 0, false);
simdgroup_multiply(t, ms1, t);
simdgroup_multiply_accumulate(lo[i], ms0, lo[i], t);
}
}
}
}
// store result to shared memory (reuse sq)
if (sgitg == 0) {
for (short i = 0; i < D8; ++i) {
simdgroup_store(lo[i], sq + i*8, T, 0, false);
}
}
device float4 * dst4 = (device float4 *) dst;
// final rescale with 1/S and store to global memory
if (sgitg == 0) {
for (short j = 0; j < Q && iq1 + j < ne01; ++j) {
const float S = ss[j*TF + 0];
for (short i = tiisg; i < D4; i += NW) {
dst4[(iq3*ne2*ne1 + iq2 + (iq1 + j)*ne1)*D4 + i] = (float4) sq4[j*T4 + i]/S;
}
}
}
}
template [[host_name("kernel_flash_attn_ext_f16_h64" )]] kernel flash_attn_ext_f16_t kernel_flash_attn_ext_f16<64>;
template [[host_name("kernel_flash_attn_ext_f16_h80" )]] kernel flash_attn_ext_f16_t kernel_flash_attn_ext_f16<80>;
template [[host_name("kernel_flash_attn_ext_f16_h96" )]] kernel flash_attn_ext_f16_t kernel_flash_attn_ext_f16<96>;
template [[host_name("kernel_flash_attn_ext_f16_h112")]] kernel flash_attn_ext_f16_t kernel_flash_attn_ext_f16<112>;
template [[host_name("kernel_flash_attn_ext_f16_h128")]] kernel flash_attn_ext_f16_t kernel_flash_attn_ext_f16<128>;
template [[host_name("kernel_flash_attn_ext_f16_h256")]] kernel flash_attn_ext_f16_t kernel_flash_attn_ext_f16<256>;
template<int64_t D, int64_t Q = 1, int64_t C = 32> // head size, queries per threadgroup, cache items per threadgroup
kernel void kernel_flash_attn_ext_vec_f16(
device const char * q,
device const char * k,
device const char * v,
device const char * mask,
device float * dst,
constant int64_t & ne00,
constant int64_t & ne01,
constant int64_t & ne02,
constant int64_t & ne03,
constant uint64_t & nb00,
constant uint64_t & nb01,
constant uint64_t & nb02,
constant uint64_t & nb03,
constant int64_t & ne10,
constant int64_t & ne11,
constant int64_t & ne12,
constant int64_t & ne13,
constant uint64_t & nb10,
constant uint64_t & nb11,
constant uint64_t & nb12,
constant uint64_t & nb13,
constant int64_t & ne31,
constant uint64_t & nb31,
constant int64_t & ne0,
constant int64_t & ne1,
constant int64_t & ne2,
constant int64_t & ne3,
constant float & scale,
threadgroup half * shared [[threadgroup(0)]],
uint3 tgpig[[threadgroup_position_in_grid]],
uint3 tpitg[[thread_position_in_threadgroup]],
uint3 ntg[[threads_per_threadgroup]],
ushort tiisg[[thread_index_in_simdgroup]],
ushort sgitg[[simdgroup_index_in_threadgroup]]) {
const short nsg = ntg.y; // number of simdgroups
const short iq3 = tgpig[2];
const short iq2 = tgpig[1];
const short iq1 = tgpig[0];
const short D4 = D/4;
const short NW = N_SIMDWIDTH;
const short SH = (C + Q); // shared memory per simdgroup in (half)
const short T = D + 2*nsg*SH; // shared memory size per query in (half)
//threadgroup half * sq = (threadgroup half *) (shared + 0*D); // holds the query data
threadgroup half4 * sq4 = (threadgroup half4 *) (shared + 0*D); // same as above but in half4
threadgroup float * ss = (threadgroup float *) (shared + 2*sgitg*SH + 1*D); // scratch buffer for attention and diagonal matrix
threadgroup float4 * ss4 = (threadgroup float4 *) (shared + 2*sgitg*SH + 1*D); // same as above but in half4
threadgroup half4 * sr4 = (threadgroup half4 *) (shared + sgitg*D + 1*T); // scratch buffer for the results
// store the result for all queries in local memory in 8x8 matrices (the O matrix from the paper)
half4 lo[D4/NW];
// load heads from Q to shared memory
device const float4 * q4 = (device const float4 *) ((device const char *) q + (iq1*nb01 + iq2*nb02 + iq3*nb03));
for (short i = tiisg; i < D4; i += NW) {
if (iq1 < ne01) {
sq4[i] = (half4) q4[i];
} else {
sq4[i] = 0.0h;
}
}
// zero out lo
for (short i = tiisg; i < D4; i += NW) {
lo[i/NW] = 0.0h;
}
// zero out shared memory SH
for (short i = tiisg; i < SH/4; i += NW) {
ss4[i] = 0.0h;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
{
float S = { 0.0h };
float M = { -FLT_MAX/2 };
// assume K and V are same shape
const short ne22 = ne12;
const short ne23 = ne13;
const uint nb21 = nb11;
const uint nb22 = nb12;
const uint nb23 = nb13;
// broadcast
const short rk2 = ne02/ne12;
const short rk3 = ne03/ne13;
const short rv2 = ne02/ne22;
const short rv3 = ne03/ne23;
// k indices
const short ik2 = iq2 / rk2;
const short ik3 = iq3 / rk3;
// v indices
const short iv2 = iq2 / rv2;
const short iv3 = iq3 / rv3;
// load the queries from shared memory into local memory
half4 mq[D4];
for (short ii = 0; ii < D4; ii += NW) {
short i = ii + tiisg;
mq[i] = sq4[i];
}
// pointer to the mask
device const half4 * mp4 = (device const half4 *) (mask + iq1*nb31);
// loop over the KV cache
// each simdgroup handles blocks of Q rows and C columns
for (int ic0 = 0; ic0 < ne11; ic0 += C*nsg) {
const int ic = ic0 + C*sgitg;
if (ic >= ne11) {
break;
}
// Q*K^T
{
#pragma unroll
for (short cc = 0; cc < C/4; ++cc) {
float4 mqk = { 0.0h };
device const half4 * pk4 = (device const half4 *) ((device const char *) k + ((ic + 4*cc)*nb11 + ik2*nb12 + ik3*nb13));
#pragma unroll
for (short ii = 0; ii < D4; ii += NW) {
const short i = ii + tiisg;
half4x4 mk;
mk[0] = pk4[i + 0*(nb11/8)];
mk[1] = pk4[i + 1*(nb11/8)];
mk[2] = pk4[i + 2*(nb11/8)];
mk[3] = pk4[i + 3*(nb11/8)];
mqk += (float4) (mq[i] * mk);
}
// reduce the results from the threads in the simdgroup
mqk += simd_shuffle_down(mqk, 16);
mqk += simd_shuffle_down(mqk, 8);
mqk += simd_shuffle_down(mqk, 4);
mqk += simd_shuffle_down(mqk, 2);
mqk += simd_shuffle_down(mqk, 1);
// mqk = mqk*scale + mask
if (tiisg == 0) {
float4 mm = (float4) mp4[ic/4 + cc];
mqk = mqk*scale + mm;
ss4[cc] = mqk;
}
}
}
// online softmax
{
const short p = tiisg;
const float m = M;
const float s = ss[p];
M = simd_max(max(M, s));
const float ms = exp(m - M);
const float vs = exp(s - M);
S = S*ms + simd_sum(vs);
// the P matrix from the paper (Q rows, C columns)
ss[p] = vs;
// O = diag(ms)*O
#pragma unroll
for (short ii = 0; ii < D4; ii += NW) {
const short i = ii + tiisg;
lo[i/NW] *= ms;
}
}
// O = O + (Q*K^T)*V
{
#pragma unroll
for (short cc = 0; cc < C/4; ++cc) {
device const half4 * pv4 = (device const half4 *) ((device const char *) v + ((ic + 4*cc)*nb21 + iv2*nb22 + iv3*nb23));
#pragma unroll
for (short ii = 0; ii < D4; ii += NW) {
const short i = ii + tiisg;
lo[i/NW] += pv4[i + 0*(nb21/8)] * ss[4*cc + 0];
lo[i/NW] += pv4[i + 1*(nb21/8)] * ss[4*cc + 1];
lo[i/NW] += pv4[i + 2*(nb21/8)] * ss[4*cc + 2];
lo[i/NW] += pv4[i + 3*(nb21/8)] * ss[4*cc + 3];
}
}
}
}
// these are needed for reducing the results from the simdgroups (reuse the ss buffer)
if (tiisg == 0) {
ss[0] = S;
ss[1] = M;
}
}
// store results to shared memory
for (short ii = 0; ii < D4; ii += NW) {
short i = ii + tiisg;
sr4[i] = lo[ii/NW];
}
threadgroup_barrier(mem_flags::mem_threadgroup);
// parallel reduce
for (short r = nsg/2; r > 0; r >>= 1) {
if (sgitg < r) {
const float S0 = ss[ 0];
const float S1 = ss[r*SH + 0];
const float M0 = ss[ 1];
const float M1 = ss[r*SH + 1];
const float M = max(M0, M1);
const float ms0 = exp(M0 - M);
const float ms1 = exp(M1 - M);
const float S = S0*ms0 + S1*ms1;
if (tiisg == 0) {
ss[0] = S;
ss[1] = M;
}
// O_0 = diag(ms0)*O_0 + diag(ms1)*O_1
for (short ii = 0; ii < D4; ii += NW) {
short i = ii + tiisg;
sr4[i] = sr4[i]*ms0 + sr4[i + r*D4]*ms1;
}
}
threadgroup_barrier(mem_flags::mem_threadgroup);
}
device float4 * dst4 = (device float4 *) dst;
// final rescale with 1/S and store to global memory
if (sgitg == 0) {
const float S = ss[0];
for (short ii = 0; ii < D4; ii += NW) {
short i = ii + tiisg;
dst4[(iq3*ne2*ne1 + iq2 + (iq1)*ne1)*D4 + i] = (float4) sr4[i]/S;
}
}
}
template [[host_name("kernel_flash_attn_ext_vec_f16_h128")]] kernel flash_attn_ext_f16_t kernel_flash_attn_ext_vec_f16<128>;
template [[host_name("kernel_flash_attn_ext_vec_f16_h256")]] kernel flash_attn_ext_f16_t kernel_flash_attn_ext_vec_f16<256>;
kernel void kernel_cpy_f16_f16( kernel void kernel_cpy_f16_f16(
device const half * src0, device const half * src0,
device half * dst, device half * dst,

View File

@ -14744,7 +14744,12 @@ inline void ggml_sycl_op_soft_max(const ggml_tensor *src0,
GGML_ASSERT(src0->type == GGML_TYPE_F32); GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32); GGML_ASSERT( dst->type == GGML_TYPE_F32);
const ggml_tensor * src2 = dst->src[2];
#pragma message("TODO: add ggml_sycl_op_soft_max() F16 src1 and src2 support")
#pragma message("ref: https://github.com/ggerganov/llama.cpp/pull/5021")
GGML_ASSERT(!src1 || src1->type == GGML_TYPE_F32); // src1 contains mask and it is optional GGML_ASSERT(!src1 || src1->type == GGML_TYPE_F32); // src1 contains mask and it is optional
GGML_ASSERT(!src2 || src2->type == GGML_TYPE_F32); // src2 contains positions and it is optional
const int64_t ne00 = src0->ne[0]; const int64_t ne00 = src0->ne[0];
const int64_t nrows_x = ggml_nrows(src0); const int64_t nrows_x = ggml_nrows(src0);
@ -14760,7 +14765,6 @@ inline void ggml_sycl_op_soft_max(const ggml_tensor *src0,
float * src2_dd = nullptr; float * src2_dd = nullptr;
sycl_pool_alloc<float> src2_f; sycl_pool_alloc<float> src2_f;
ggml_tensor * src2 = dst->src[2];
const bool use_src2 = src2 != nullptr; const bool use_src2 = src2 != nullptr;
if (use_src2) { if (use_src2) {

View File

@ -3178,6 +3178,11 @@ static vk_pipeline ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const
} }
return nullptr; return nullptr;
case GGML_OP_SOFT_MAX: case GGML_OP_SOFT_MAX:
#pragma message("TODO: add ggml_vk_soft_max() F16 src1 and src2 support")
#pragma message("ref: https://github.com/ggerganov/llama.cpp/pull/5021")
GGML_ASSERT(!src1 || src1->type == GGML_TYPE_F32);
GGML_ASSERT(!src2 || src2->type == GGML_TYPE_F32);
if (src0->type == GGML_TYPE_F32 && (src1 == nullptr || src1->type == GGML_TYPE_F32) && (src2 == nullptr || src2->type == GGML_TYPE_F32) && dst->type == GGML_TYPE_F32) { if (src0->type == GGML_TYPE_F32 && (src1 == nullptr || src1->type == GGML_TYPE_F32) && (src2 == nullptr || src2->type == GGML_TYPE_F32) && dst->type == GGML_TYPE_F32) {
return ctx->device->pipeline_soft_max_f32; return ctx->device->pipeline_soft_max_f32;
} }

375
ggml.c
View File

@ -951,7 +951,7 @@ ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) {
#define GGML_F16_VEC_ZERO GGML_F16x8_ZERO #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
#define GGML_F16_VEC_SET1 GGML_F16x8_SET1 #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
#define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p) #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
#define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i]) #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE((ggml_fp16_internal_t *)(p), r[i])
#define GGML_F16_VEC_FMA GGML_F16x8_FMA #define GGML_F16_VEC_FMA GGML_F16x8_FMA
#define GGML_F16_VEC_ADD GGML_F16x8_ADD #define GGML_F16_VEC_ADD GGML_F16x8_ADD
#define GGML_F16_VEC_MUL GGML_F16x8_MUL #define GGML_F16_VEC_MUL GGML_F16x8_MUL
@ -977,7 +977,7 @@ ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) {
#define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
#define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1 #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
#define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p) #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
#define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i]) #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE((ggml_fp16_internal_t *)(p), r[i])
#define GGML_F16_VEC_FMA GGML_F32Cx4_FMA #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
#define GGML_F16_VEC_ADD GGML_F32Cx4_ADD #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
#define GGML_F16_VEC_MUL GGML_F32Cx4_MUL #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
@ -1046,7 +1046,7 @@ do { \
// unlike _mm256_cvt intrinsics that require F16C, _mm512_cvt is defined in AVX512F // unlike _mm256_cvt intrinsics that require F16C, _mm512_cvt is defined in AVX512F
// so F16C guard isn't required // so F16C guard isn't required
#define GGML_F32Cx16_LOAD(x) _mm512_cvtph_ps(_mm256_loadu_si256((__m256i *)(x))) #define GGML_F32Cx16_LOAD(x) _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)(x)))
#define GGML_F32Cx16_STORE(x, y) _mm256_storeu_si256((__m256i *)(x), _mm512_cvtps_ph(y, 0)) #define GGML_F32Cx16_STORE(x, y) _mm256_storeu_si256((__m256i *)(x), _mm512_cvtps_ph(y, 0))
#define GGML_F32Cx16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a) #define GGML_F32Cx16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a)
@ -1144,7 +1144,7 @@ do { \
#if defined(__F16C__) #if defined(__F16C__)
// the _mm256_cvt intrinsics require F16C // the _mm256_cvt intrinsics require F16C
#define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x))) #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((const __m128i *)(x)))
#define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0)) #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
#else #else
static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) { static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
@ -1662,6 +1662,37 @@ inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float
#endif #endif
} }
inline static void ggml_vec_mad_f16(const int n, ggml_fp16_t * restrict y, const ggml_fp16_t * restrict x, const float v) {
#if defined(GGML_SIMD)
const int np = (n & ~(GGML_F16_STEP - 1));
GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
GGML_F16_VEC ax[GGML_F16_ARR];
GGML_F16_VEC ay[GGML_F16_ARR];
for (int i = 0; i < np; i += GGML_F16_STEP) {
for (int j = 0; j < GGML_F16_ARR; j++) {
ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
ay[j] = GGML_F16_VEC_FMA(ay[j], ax[j], vx);
GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j);
}
}
// leftovers
for (int i = np; i < n; ++i) {
y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i]) + GGML_FP16_TO_FP32(x[i])*v);
}
#else
// scalar
for (int i = 0; i < n; ++i) {
y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i]) + GGML_FP16_TO_FP32(x[i])*v);
}
#endif
}
// xs and vs are byte strides of x and v // xs and vs are byte strides of x and v
inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int vs, float * restrict y, const float * restrict xv, const float * restrict vv) { inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int vs, float * restrict y, const float * restrict xv, const float * restrict vv) {
@ -1746,6 +1777,35 @@ inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
#endif #endif
} }
inline static void ggml_vec_scale_f16(const int n, ggml_fp16_t * y, const float v) {
#if defined(GGML_SIMD)
const int np = (n & ~(GGML_F16_STEP - 1));
GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
GGML_F16_VEC ay[GGML_F16_ARR];
for (int i = 0; i < np; i += GGML_F16_STEP) {
for (int j = 0; j < GGML_F16_ARR; j++) {
ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
ay[j] = GGML_F16_VEC_MUL(ay[j], vx);
GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j);
}
}
// leftovers
for (int i = np; i < n; ++i) {
y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i])*v);
}
#else
// scalar
for (int i = 0; i < n; ++i) {
y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i])*v);
}
#endif
}
inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, 0, x, 0, x, 0, 1); *s = sqrtf(*s); } inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, 0, x, 0, x, 0, 1); *s = sqrtf(*s); }
inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; } inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); } inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
@ -2000,6 +2060,7 @@ static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
"LEAKY_RELU", "LEAKY_RELU",
"FLASH_ATTN", "FLASH_ATTN",
"FLASH_ATTN_EXT",
"FLASH_FF", "FLASH_FF",
"FLASH_ATTN_BACK", "FLASH_ATTN_BACK",
"SSM_CONV", "SSM_CONV",
@ -2026,7 +2087,7 @@ static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
"CROSS_ENTROPY_LOSS_BACK", "CROSS_ENTROPY_LOSS_BACK",
}; };
static_assert(GGML_OP_COUNT == 76, "GGML_OP_COUNT != 76"); static_assert(GGML_OP_COUNT == 77, "GGML_OP_COUNT != 77");
static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = { static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
"none", "none",
@ -2090,6 +2151,7 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
"leaky_relu(x)", "leaky_relu(x)",
"flash_attn(x)", "flash_attn(x)",
"flash_attn_ext(x)",
"flash_ff(x)", "flash_ff(x)",
"flash_attn_back(x)", "flash_attn_back(x)",
"ssm_conv(x)", "ssm_conv(x)",
@ -2116,7 +2178,7 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
"cross_entropy_loss_back(x,y)", "cross_entropy_loss_back(x,y)",
}; };
static_assert(GGML_OP_COUNT == 76, "GGML_OP_COUNT != 76"); static_assert(GGML_OP_COUNT == 77, "GGML_OP_COUNT != 77");
static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2"); static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
@ -4559,6 +4621,8 @@ struct ggml_tensor * ggml_mul_mat(
void ggml_mul_mat_set_prec( void ggml_mul_mat_set_prec(
struct ggml_tensor * a, struct ggml_tensor * a,
enum ggml_prec prec) { enum ggml_prec prec) {
GGML_ASSERT(a->op == GGML_OP_MUL_MAT);
const int32_t prec_i32 = (int32_t) prec; const int32_t prec_i32 = (int32_t) prec;
ggml_set_op_params_i32(a, 0, prec_i32); ggml_set_op_params_i32(a, 0, prec_i32);
@ -5397,17 +5461,23 @@ static struct ggml_tensor * ggml_soft_max_impl(
GGML_ASSERT(ggml_is_contiguous(a)); GGML_ASSERT(ggml_is_contiguous(a));
if (mask) { if (mask) {
GGML_ASSERT(mask->type == GGML_TYPE_F16 || mask->type == GGML_TYPE_F32);
GGML_ASSERT(ggml_is_contiguous(mask)); GGML_ASSERT(ggml_is_contiguous(mask));
GGML_ASSERT(ggml_is_matrix(mask)); GGML_ASSERT(ggml_is_matrix(mask));
GGML_ASSERT(ggml_can_repeat_rows(mask, a)); GGML_ASSERT(mask->ne[0] == a->ne[0]);
GGML_ASSERT(mask->ne[1] >= a->ne[1]);
} }
if (pos) { if (pos) {
GGML_ASSERT(ggml_is_vector(pos)); GGML_ASSERT(ggml_is_vector(pos));
GGML_ASSERT(pos->type == GGML_TYPE_F32); GGML_ASSERT(pos->type == GGML_TYPE_F16 || pos->type == GGML_TYPE_F32);
GGML_ASSERT(pos->ne[0] == a->ne[0]); GGML_ASSERT(pos->ne[0] == a->ne[0]);
} }
if (pos && mask) {
GGML_ASSERT(pos->type == mask->type);
}
if (max_bias > 0.0f) { if (max_bias > 0.0f) {
GGML_ASSERT(pos); GGML_ASSERT(pos);
} }
@ -6216,6 +6286,59 @@ struct ggml_tensor * ggml_flash_attn(
return result; return result;
} }
// ggml_flash_attn_ext
struct ggml_tensor * ggml_flash_attn_ext(
struct ggml_context * ctx,
struct ggml_tensor * q,
struct ggml_tensor * k,
struct ggml_tensor * v,
struct ggml_tensor * mask,
float scale) {
GGML_ASSERT(ggml_can_mul_mat(k, q));
// TODO: check if vT can be multiplied by (k*qT)
if (mask) {
GGML_ASSERT(ggml_is_contiguous(mask));
GGML_ASSERT(mask->ne[2] == 1);
GGML_ASSERT(mask->ne[3] == 1);
GGML_ASSERT(mask->ne[1] >= GGML_PAD(q->ne[1], GGML_KQ_MASK_PAD) &&
"the Flash-Attention kernel requires the mask to be padded to GGML_KQ_MASK_PAD and at least n_queries big");
//GGML_ASSERT(ggml_can_repeat_rows(mask, qk));
}
bool is_node = false;
if (q->grad || k->grad || v->grad) {
is_node = true;
}
// permute(0, 2, 1, 3)
int64_t ne[4] = { q->ne[0], q->ne[2], q->ne[1], q->ne[3] };
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
float params[] = { scale };
ggml_set_op_params(result, params, sizeof(params));
result->op = GGML_OP_FLASH_ATTN_EXT;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = q;
result->src[1] = k;
result->src[2] = v;
result->src[3] = mask;
return result;
}
void ggml_flash_attn_ext_set_prec(
struct ggml_tensor * a,
enum ggml_prec prec) {
GGML_ASSERT(a->op == GGML_OP_FLASH_ATTN_EXT);
const int32_t prec_i32 = (int32_t) prec;
ggml_set_op_params_i32(a, 1, prec_i32); // scale is on first pos
}
// ggml_flash_ff // ggml_flash_ff
struct ggml_tensor * ggml_flash_ff( struct ggml_tensor * ggml_flash_ff(
@ -12255,7 +12378,7 @@ static void ggml_compute_forward_soft_max_f32(
GGML_TENSOR_UNARY_OP_LOCALS GGML_TENSOR_UNARY_OP_LOCALS
const int64_t ne11 = src1 ? src1->ne[1] : 1; //const int64_t ne11 = src1 ? src1->ne[1] : 1;
// TODO: is this supposed to be ceil instead of floor? // TODO: is this supposed to be ceil instead of floor?
// https://huggingface.co/mosaicml/mpt-7b/blob/main/attention.py#L370 // https://huggingface.co/mosaicml/mpt-7b/blob/main/attention.py#L370
@ -12278,19 +12401,31 @@ static void ggml_compute_forward_soft_max_f32(
float * wp = (float *) params->wdata + (nc + CACHE_LINE_SIZE_F32) * ith; float * wp = (float *) params->wdata + (nc + CACHE_LINE_SIZE_F32) * ith;
// when max_bias <= 0.0f, src2 is not used and we default it to src0 to avoid branching // when max_bias <= 0.0f, src2 is not used and we default it to src0 to avoid branching
float * pos = src2 ? (float *) src2->data : src0->data; ggml_fp16_t * pos_f16 = src2 ? (ggml_fp16_t *) src2->data : src0->data;
float * pos_f32 = src2 ? (float *) src2->data : src0->data;
const bool use_f16 = (src1 && src1->type == GGML_TYPE_F16) || (src2 && src2->type == GGML_TYPE_F16);
for (int i1 = ir0; i1 < ir1; i1++) { for (int i1 = ir0; i1 < ir1; i1++) {
float * sp = (float *)((char *) src0->data + i1*src0->nb[1]); float * sp = (float *)((char *) src0->data + i1*src0->nb[1]);
float * dp = (float *)((char *) dst->data + i1*dst->nb[1]); float * dp = (float *)((char *) dst->data + i1*dst->nb[1]);
// broadcast the mask across rows // broadcast the mask across rows
float * mp = src1 ? (float *)((char *) src1->data + (i1%ne11)*src1->nb[1]) : NULL; ggml_fp16_t * mp_f16 = src1 ? (ggml_fp16_t *)((char *) src1->data) + (i1%ne01)*ne00 : NULL;
float * mp_f32 = src1 ? (float *)((char *) src1->data) + (i1%ne01)*ne00 : NULL;
ggml_vec_cpy_f32 (nc, wp, sp); ggml_vec_cpy_f32 (nc, wp, sp);
ggml_vec_scale_f32(nc, wp, scale); ggml_vec_scale_f32(nc, wp, scale);
if (mp) { if (mp_f32) {
ggml_vec_acc_f32(nc, wp, mp); if (use_f16) {
for (int i = 0; i < nc; ++i) {
wp[i] += GGML_FP16_TO_FP32(mp_f16[i]);
}
} else {
for (int i = 0; i < nc; ++i) {
wp[i] += mp_f32[i];
}
}
} }
// ALiBi bias // ALiBi bias
@ -12298,8 +12433,14 @@ static void ggml_compute_forward_soft_max_f32(
const uint32_t h = (i1/ne01)%ne02; // head const uint32_t h = (i1/ne01)%ne02; // head
const float slope = h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1); const float slope = h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1);
for (int i = 0; i < nc; i++) { if (use_f16) {
wp[i] = wp[i] + slope*pos[i]; for (int i = 0; i < nc; ++i) {
wp[i] += slope*GGML_FP16_TO_FP32(pos_f16[i]);
}
} else {
for (int i = 0; i < nc; ++i) {
wp[i] += slope*pos_f32[i];
}
} }
} }
@ -14569,6 +14710,198 @@ static void ggml_compute_forward_flash_attn(
} }
} }
// ggml_compute_forward_flash_attn_ext
static void ggml_compute_forward_flash_attn_ext_f16(
const struct ggml_compute_params * params,
const struct ggml_tensor * q,
const struct ggml_tensor * k,
const struct ggml_tensor * v,
const struct ggml_tensor * mask,
struct ggml_tensor * dst) {
int64_t t0 = ggml_perf_time_us();
UNUSED(t0);
GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
const int ith = params->ith;
const int nth = params->nth;
const int64_t D = neq0;
const int64_t N = neq1;
GGML_ASSERT(ne0 == D);
GGML_ASSERT(ne2 == N);
GGML_ASSERT(nbq0 == sizeof(float));
GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
GGML_ASSERT(neq0 == D);
GGML_ASSERT(nek0 == D);
GGML_ASSERT(nev0 == D);
GGML_ASSERT(neq1 == N);
GGML_ASSERT(nev0 == D);
// dst cannot be transposed or permuted
GGML_ASSERT(nb0 == sizeof(float));
GGML_ASSERT(nb0 <= nb1);
GGML_ASSERT(nb1 <= nb2);
GGML_ASSERT(nb2 <= nb3);
// broadcast factors
const int64_t rk2 = neq2/nek2;
const int64_t rk3 = neq3/nek3;
const int64_t rv2 = neq2/nev2;
const int64_t rv3 = neq3/nev3;
if (params->type == GGML_TASK_TYPE_INIT) {
return;
}
if (params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
// parallelize by q rows using ggml_vec_dot_f32
// total rows in q
const int nr = neq1*neq2*neq3;
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
float scale = 1.0f;
memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
// loop over n_batch and n_head
for (int ir = ir0; ir < ir1; ++ir) {
// q indices
const int iq3 = ir/(neq2*neq1);
const int iq2 = (ir - iq3*neq2*neq1)/neq1;
const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
float S = 0.0f;
float M = -INFINITY;
float * V32 = (float *) params->wdata + ith*(2*D + CACHE_LINE_SIZE_F32);
ggml_fp16_t * Q16 = (ggml_fp16_t *) (V32); // reuse memory
ggml_fp16_t * V16 = (ggml_fp16_t *) (V32 + D);
memset(V16, 0, D*sizeof(ggml_fp16_t));
const ggml_fp16_t * mp = mask ? (ggml_fp16_t *)((char *) mask->data + iq1*mask->nb[1]) : NULL;
// k indices
const int ik3 = iq3 / rk3;
const int ik2 = iq2 / rk2;
// v indices
const int iv3 = iq3 / rv3;
const int iv2 = iq2 / rv2;
// online softmax / attention
// loop over n_kv and n_head_kv
// ref: https://arxiv.org/pdf/2112.05682.pdf
for (int64_t ic = 0; ic < nek1; ++ic) {
const float mv = mp ? GGML_FP16_TO_FP32(mp[ic]) : 0.0f;
if (mv == -INFINITY) {
continue;
}
float s;
// convert Q to F16 in V32
{
const float * pq = (const float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3));
for (int64_t d = 0; d < D; ++d) {
Q16[d] = GGML_FP32_TO_FP16(pq[d]);
}
}
ggml_vec_dot_f16(D,
&s, 0,
(ggml_fp16_t *) ((char *) k->data + ( ic*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
Q16, 0, 1);
s = s*scale + mv;
const float Mold = M;
float ms = 1.0f;
float vs = 1.0f;
if (s > M) {
M = s;
ms = expf(Mold - M);
// V = V*expf(Mold - M)
ggml_vec_scale_f16(D, V16, ms);
} else {
vs = expf(s - M);
}
const ggml_fp16_t * v16 = (const ggml_fp16_t *) ((char *) v->data + (ic*nbv1 + iv2*nbv2 + iv3*nbv3));
// V += v*expf(s - M)
ggml_vec_mad_f16(D, V16, v16, vs);
S = S*ms + vs;
}
// V /= S
for (int64_t d = 0; d < D; ++d) {
V32[d] = GGML_FP16_TO_FP32(V16[d])/S;
}
// dst indices
const int i1 = iq1;
const int i2 = iq2;
const int i3 = iq3;
// original
//memcpy((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3), V, nev0*sizeof(float));
// permute(0, 2, 1, 3)
memcpy((char *) dst->data + (i3*ne2*ne1 + i2 + i1*ne1)*nb1, V32, nb1);
}
}
static void ggml_compute_forward_flash_attn_ext(
const struct ggml_compute_params * params,
const struct ggml_tensor * q,
const struct ggml_tensor * k,
const struct ggml_tensor * v,
const struct ggml_tensor * mask,
struct ggml_tensor * dst) {
switch (dst->op_params[1]) {
case GGML_PREC_DEFAULT:
case GGML_PREC_F32:
{
// uses F32 accumulators
ggml_compute_forward_flash_attn_ext_f16(params, q, k, v, mask, dst);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
// ggml_compute_forward_flash_ff // ggml_compute_forward_flash_ff
static void ggml_compute_forward_flash_ff_f16( static void ggml_compute_forward_flash_ff_f16(
@ -16376,6 +16709,10 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm
const bool masked = t != 0; const bool masked = t != 0;
ggml_compute_forward_flash_attn(params, masked, tensor); ggml_compute_forward_flash_attn(params, masked, tensor);
} break; } break;
case GGML_OP_FLASH_ATTN_EXT:
{
ggml_compute_forward_flash_attn_ext(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor);
} break;
case GGML_OP_FLASH_FF: case GGML_OP_FLASH_FF:
{ {
ggml_compute_forward_flash_ff(params, tensor); ggml_compute_forward_flash_ff(params, tensor);
@ -17388,6 +17725,7 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor
GGML_ASSERT(false); // TODO: not implemented GGML_ASSERT(false); // TODO: not implemented
} break; } break;
case GGML_OP_FLASH_ATTN: case GGML_OP_FLASH_ATTN:
case GGML_OP_FLASH_ATTN_EXT:
{ {
struct ggml_tensor * flash_grad = NULL; struct ggml_tensor * flash_grad = NULL;
if (src0->grad || src1->grad || tensor->src[2]->grad) { if (src0->grad || src1->grad || tensor->src[2]->grad) {
@ -18160,6 +18498,7 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads, int n_cur_
n_tasks = n_threads; n_tasks = n_threads;
} break; } break;
case GGML_OP_FLASH_ATTN: case GGML_OP_FLASH_ATTN:
case GGML_OP_FLASH_ATTN_EXT:
{ {
n_tasks = n_threads; n_tasks = n_threads;
} break; } break;
@ -18563,6 +18902,12 @@ struct ggml_cplan ggml_graph_plan(const struct ggml_cgraph * cgraph, int n_threa
cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2 cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
} }
} break; } break;
case GGML_OP_FLASH_ATTN_EXT:
{
const int64_t ne00 = node->src[0]->ne[0]; // D
cur = 2*sizeof(float)*ne00*n_tasks; // 2x head size
} break;
case GGML_OP_FLASH_FF: case GGML_OP_FLASH_FF:
{ {
if (node->src[1]->type == GGML_TYPE_F32) { if (node->src[1]->type == GGML_TYPE_F32) {

20
ggml.h
View File

@ -475,6 +475,7 @@ extern "C" {
GGML_OP_LEAKY_RELU, GGML_OP_LEAKY_RELU,
GGML_OP_FLASH_ATTN, GGML_OP_FLASH_ATTN,
GGML_OP_FLASH_ATTN_EXT,
GGML_OP_FLASH_FF, GGML_OP_FLASH_FF,
GGML_OP_FLASH_ATTN_BACK, GGML_OP_FLASH_ATTN_BACK,
GGML_OP_SSM_CONV, GGML_OP_SSM_CONV,
@ -1722,6 +1723,25 @@ extern "C" {
struct ggml_tensor * v, struct ggml_tensor * v,
bool masked); bool masked);
#define GGML_KQ_MASK_PAD 32
// q: [n_embd, n_batch, n_head, 1]
// k: [n_embd, n_kv, n_head_kv, 1]
// v: [n_embd, n_kv, n_head_kv, 1] !! not transposed !!
// mask: [n_kv, n_batch_pad, 1, 1] !! n_batch_pad = GGML_PAD(n_batch, GGML_KQ_MASK_PAD) !!
// res: [n_embd, n_head, n_batch, 1] !! permuted !!
GGML_API struct ggml_tensor * ggml_flash_attn_ext(
struct ggml_context * ctx,
struct ggml_tensor * q,
struct ggml_tensor * k,
struct ggml_tensor * v,
struct ggml_tensor * mask,
float scale);
GGML_API void ggml_flash_attn_ext_set_prec(
struct ggml_tensor * a,
enum ggml_prec prec);
GGML_API struct ggml_tensor * ggml_flash_attn_back( GGML_API struct ggml_tensor * ggml_flash_attn_back(
struct ggml_context * ctx, struct ggml_context * ctx,
struct ggml_tensor * q, struct ggml_tensor * q,

572
llama.cpp

File diff suppressed because it is too large Load Diff

View File

@ -40,7 +40,7 @@
#define LLAMA_FILE_MAGIC_GGSQ 0x67677371u // 'ggsq' #define LLAMA_FILE_MAGIC_GGSQ 0x67677371u // 'ggsq'
#define LLAMA_SESSION_MAGIC LLAMA_FILE_MAGIC_GGSN #define LLAMA_SESSION_MAGIC LLAMA_FILE_MAGIC_GGSN
#define LLAMA_SESSION_VERSION 5 #define LLAMA_SESSION_VERSION 6
#define LLAMA_STATE_SEQ_MAGIC LLAMA_FILE_MAGIC_GGSQ #define LLAMA_STATE_SEQ_MAGIC LLAMA_FILE_MAGIC_GGSQ
#define LLAMA_STATE_SEQ_VERSION 1 #define LLAMA_STATE_SEQ_VERSION 1
@ -287,6 +287,7 @@ extern "C" {
bool logits_all; // the llama_decode() call computes all logits, not just the last one (DEPRECATED - set llama_batch.logits instead) bool logits_all; // the llama_decode() call computes all logits, not just the last one (DEPRECATED - set llama_batch.logits instead)
bool embeddings; // if true, extract embeddings (together with logits) bool embeddings; // if true, extract embeddings (together with logits)
bool offload_kqv; // whether to offload the KQV ops (including the KV cache) to GPU bool offload_kqv; // whether to offload the KQV ops (including the KV cache) to GPU
bool flash_attn; // whether to use flash attention
// Abort callback // Abort callback
// if it returns true, execution of llama_decode() will be aborted // if it returns true, execution of llama_decode() will be aborted
@ -542,7 +543,7 @@ extern "C" {
// Returns the number of used KV cells (i.e. have at least one sequence assigned to them) // Returns the number of used KV cells (i.e. have at least one sequence assigned to them)
LLAMA_API int32_t llama_get_kv_cache_used_cells(const struct llama_context * ctx); LLAMA_API int32_t llama_get_kv_cache_used_cells(const struct llama_context * ctx);
// Clear the KV cache // Clear the KV cache - both cell info is erased and KV data is zeroed
LLAMA_API void llama_kv_cache_clear( LLAMA_API void llama_kv_cache_clear(
struct llama_context * ctx); struct llama_context * ctx);

View File

@ -1090,6 +1090,12 @@ struct test_soft_max : public test_case {
return VARS_TO_STR5(type, ne, mask, scale, max_bias); return VARS_TO_STR5(type, ne, mask, scale, max_bias);
} }
// the 1024 test with bias occasionally fails:
// SOFT_MAX(type=f32,ne=[1024,16,1,1],mask=1,scale=1.000000,max_bias=8.000000): [SOFT_MAX] NMSE = 0.000000103 > 0.000000100 FAIL
virtual double max_nmse_err() override {
return 1e-6;
}
test_soft_max(ggml_type type = GGML_TYPE_F32, test_soft_max(ggml_type type = GGML_TYPE_F32,
std::array<int64_t, 4> ne = {10, 10, 10, 10}, std::array<int64_t, 4> ne = {10, 10, 10, 10},
bool mask = false, bool mask = false,
@ -1101,7 +1107,7 @@ struct test_soft_max : public test_case {
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data()); ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
ggml_tensor * mask = nullptr; ggml_tensor * mask = nullptr;
if (this->mask) { if (this->mask) {
mask = ggml_new_tensor_2d(ctx, type, ne[0], ne[1]); mask = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, ne[0], ne[1]);
} }
ggml_tensor * pos = nullptr; ggml_tensor * pos = nullptr;
if (max_bias > 0.0f) { if (max_bias > 0.0f) {
@ -1475,6 +1481,34 @@ struct test_leaky_relu : public test_case {
} }
}; };
// GGML_OP_FLASH_ATTN_EXT
struct test_flash_attn_ext : public test_case {
const int64_t hs; // head size
const int64_t nh; // num heads
const int64_t kv; // kv size
const int64_t nb; // batch size
std::string vars() override {
return VARS_TO_STR4(hs, nh, kv, nb);
}
double max_nmse_err() override {
return 5e-4;
}
test_flash_attn_ext(int64_t hs = 128, int64_t nh = 32, int64_t kv = 96, int64_t nb = 8)
: hs(hs), nh(nh), kv(kv), nb(nb) {}
ggml_tensor * build_graph(ggml_context * ctx) override {
ggml_tensor * q = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, hs, nb, nh, 1);
ggml_tensor * k = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, hs, kv, nh, 1);
ggml_tensor * v = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, hs, kv, nh, 1);
ggml_tensor * mask = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, kv, GGML_PAD(nb, GGML_KQ_MASK_PAD), 1, 1);
ggml_tensor * out = ggml_flash_attn_ext(ctx, q, k, v, mask, 1.0f/sqrtf(hs));
return out;
}
};
enum llm_norm_type { enum llm_norm_type {
LLM_NORM, LLM_NORM,
LLM_NORM_RMS, LLM_NORM_RMS,
@ -1661,7 +1695,7 @@ struct test_llama : public test_llm {
struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, hp.n_tokens); struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, hp.n_tokens);
// KQ_mask (mask for 1 head, it will be broadcasted to all heads) // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, hp.n_kv, hp.n_tokens, 1); struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx, GGML_TYPE_F16, hp.n_kv, hp.n_tokens, 1);
ggml_tensor * k_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400); ggml_tensor * k_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
ggml_tensor * v_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400); ggml_tensor * v_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
@ -1783,7 +1817,7 @@ struct test_falcon : public test_llm {
struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, hp.n_tokens); struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, hp.n_tokens);
// KQ_mask (mask for 1 head, it will be broadcasted to all heads) // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, hp.n_kv, hp.n_tokens, 1); struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx, GGML_TYPE_F16, hp.n_kv, hp.n_tokens, 1);
ggml_tensor * k_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400); ggml_tensor * k_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
ggml_tensor * v_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400); ggml_tensor * v_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
@ -2095,7 +2129,7 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op
for (float scale : {1.0f, 0.1f}) { for (float scale : {1.0f, 0.1f}) {
for (int64_t ne0 : {16, 1024}) { for (int64_t ne0 : {16, 1024}) {
for (int64_t ne1 : {16, 1024}) { for (int64_t ne1 : {16, 1024}) {
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0, ne1, 1, 1}, mask, scale, max_bias)); test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0, ne1, 1, 1}, mask, scale, max_bias));
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, mask, scale, max_bias)); test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, mask, scale, max_bias));
} }
} }
@ -2139,6 +2173,16 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op
test_cases.emplace_back(new test_timestep_embedding()); test_cases.emplace_back(new test_timestep_embedding());
test_cases.emplace_back(new test_leaky_relu()); test_cases.emplace_back(new test_leaky_relu());
for (int hs : { 64, 80, 128, 256, }) {
for (int nh : { 32, }) {
for (int kv : { 512, 1024, }) {
for (int nb : { 1, 2, 4, 8, }) {
test_cases.emplace_back(new test_flash_attn_ext(hs, nh, kv, nb));
}
}
}
}
// these tests are disabled to save execution time, but they can be handy for debugging // these tests are disabled to save execution time, but they can be handy for debugging
#if 0 #if 0
test_cases.emplace_back(new test_llama(1)); test_cases.emplace_back(new test_llama(1));