examples : do not use common library in simple example (#9803)

* examples : do not use common library in simple example

* add command line parser, simplify code
This commit is contained in:
Diego Devesa 2024-10-10 19:50:49 +02:00 committed by GitHub
parent c81f3bbb05
commit c7499c557c
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
2 changed files with 128 additions and 96 deletions

View File

@ -1,5 +1,5 @@
set(TARGET llama-simple) set(TARGET llama-simple)
add_executable(${TARGET} simple.cpp) add_executable(${TARGET} simple.cpp)
install(TARGETS ${TARGET} RUNTIME) install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT}) target_link_libraries(${TARGET} PRIVATE llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11) target_compile_features(${TARGET} PRIVATE cxx_std_11)

View File

@ -1,50 +1,112 @@
#include "arg.h"
#include "common.h"
#include "log.h"
#include "llama.h" #include "llama.h"
#include <cstdio>
#include <cstring>
#include <string>
#include <vector> #include <vector>
static void print_usage(int, char ** argv) { static void print_usage(int, char ** argv) {
LOG("\nexample usage:\n"); printf("\nexample usage:\n");
LOG("\n %s -m model.gguf -p \"Hello my name is\" -n 32\n", argv[0]); printf("\n %s -m model.gguf [-n n_predict] [-ngl n_gpu_layers] [prompt]\n", argv[0]);
LOG("\n"); printf("\n");
} }
int main(int argc, char ** argv) { int main(int argc, char ** argv) {
gpt_params params; // path to the model gguf file
std::string model_path;
// prompt to generate text from
std::string prompt = "Hello my name is";
// number of layers to offload to the GPU
int ngl = 99;
// number of tokens to predict
int n_predict = 32;
params.prompt = "Hello my name is"; // parse command line arguments
params.n_predict = 32;
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_COMMON, print_usage)) { {
return 1; int i = 1;
for (; i < argc; i++) {
if (strcmp(argv[i], "-m") == 0) {
if (i + 1 < argc) {
model_path = argv[++i];
} else {
print_usage(argc, argv);
return 1;
}
} else if (strcmp(argv[i], "-n") == 0) {
if (i + 1 < argc) {
try {
n_predict = std::stoi(argv[++i]);
} catch (...) {
print_usage(argc, argv);
return 1;
}
} else {
print_usage(argc, argv);
return 1;
}
} else if (strcmp(argv[i], "-ngl") == 0) {
if (i + 1 < argc) {
try {
ngl = std::stoi(argv[++i]);
} catch (...) {
print_usage(argc, argv);
return 1;
}
} else {
print_usage(argc, argv);
return 1;
}
} else {
// prompt starts here
break;
}
}
if (model_path.empty()) {
print_usage(argc, argv);
return 1;
}
if (i < argc) {
prompt = argv[i++];
for (; i < argc; i++) {
prompt += " ";
prompt += argv[i];
}
}
} }
gpt_init();
// total length of the sequence including the prompt
const int n_predict = params.n_predict;
// init LLM
llama_backend_init();
llama_numa_init(params.numa);
// initialize the model // initialize the model
llama_model_params model_params = llama_model_params_from_gpt_params(params); llama_model_params model_params = llama_model_default_params();
model_params.n_gpu_layers = ngl;
llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params); llama_model * model = llama_load_model_from_file(model_path.c_str(), model_params);
if (model == NULL) { if (model == NULL) {
fprintf(stderr , "%s: error: unable to load model\n" , __func__); fprintf(stderr , "%s: error: unable to load model\n" , __func__);
return 1; return 1;
} }
// tokenize the prompt
// find the number of tokens in the prompt
const int n_prompt = -llama_tokenize(model, prompt.c_str(), prompt.size(), NULL, 0, true, true);
// allocate space for the tokens and tokenize the prompt
std::vector<llama_token> prompt_tokens(n_prompt);
if (llama_tokenize(model, prompt.c_str(), prompt.size(), prompt_tokens.data(), prompt_tokens.size(), true, true) < 0) {
fprintf(stderr, "%s: error: failed to tokenize the prompt\n", __func__);
return 1;
}
// initialize the context // initialize the context
llama_context_params ctx_params = llama_context_params_from_gpt_params(params); llama_context_params ctx_params = llama_context_default_params();
// n_ctx is the context size
ctx_params.n_ctx = n_prompt + n_predict - 1;
// n_batch is the maximum number of tokens that can be processed in a single call to llama_decode
ctx_params.n_batch = n_prompt;
// enable performance counters
ctx_params.no_perf = false;
llama_context * ctx = llama_new_context_with_model(model, ctx_params); llama_context * ctx = llama_new_context_with_model(model, ctx_params);
@ -53,117 +115,87 @@ int main(int argc, char ** argv) {
return 1; return 1;
} }
// initialize the sampler
auto sparams = llama_sampler_chain_default_params(); auto sparams = llama_sampler_chain_default_params();
sparams.no_perf = false; sparams.no_perf = false;
llama_sampler * smpl = llama_sampler_chain_init(sparams); llama_sampler * smpl = llama_sampler_chain_init(sparams);
llama_sampler_chain_add(smpl, llama_sampler_init_greedy()); llama_sampler_chain_add(smpl, llama_sampler_init_greedy());
// tokenize the prompt
std::vector<llama_token> tokens_list;
tokens_list = ::llama_tokenize(ctx, params.prompt, true);
const int n_ctx = llama_n_ctx(ctx);
const int n_kv_req = tokens_list.size() + (n_predict - tokens_list.size());
LOG("\n");
LOG_INF("%s: n_predict = %d, n_ctx = %d, n_kv_req = %d\n", __func__, n_predict, n_ctx, n_kv_req);
// make sure the KV cache is big enough to hold all the prompt and generated tokens
if (n_kv_req > n_ctx) {
LOG_ERR("%s: error: n_kv_req > n_ctx, the required KV cache size is not big enough\n", __func__);
LOG_ERR("%s: either reduce n_predict or increase n_ctx\n", __func__);
return 1;
}
// print the prompt token-by-token // print the prompt token-by-token
LOG("\n"); for (auto id : prompt_tokens) {
char buf[128];
for (auto id : tokens_list) { int n = llama_token_to_piece(model, id, buf, sizeof(buf), 0, true);
LOG("%s", llama_token_to_piece(ctx, id).c_str()); if (n < 0) {
fprintf(stderr, "%s: error: failed to convert token to piece\n", __func__);
return 1;
}
std::string s(buf, n);
printf("%s", s.c_str());
} }
// create a llama_batch with size 512 // prepare a batch for the prompt
// we use this object to submit token data for decoding
llama_batch batch = llama_batch_init(512, 0, 1); llama_batch batch = llama_batch_get_one(prompt_tokens.data(), prompt_tokens.size(), 0, 0);
// evaluate the initial prompt
for (size_t i = 0; i < tokens_list.size(); i++) {
llama_batch_add(batch, tokens_list[i], i, { 0 }, false);
}
// llama_decode will output logits only for the last token of the prompt
batch.logits[batch.n_tokens - 1] = true;
if (llama_decode(ctx, batch) != 0) {
LOG("%s: llama_decode() failed\n", __func__);
return 1;
}
// main loop // main loop
int n_cur = batch.n_tokens;
int n_decode = 0;
const auto t_main_start = ggml_time_us(); const auto t_main_start = ggml_time_us();
int n_decode = 0;
llama_token new_token_id;
for (int n_pos = 0; n_pos + batch.n_tokens < n_prompt + n_predict; ) {
// evaluate the current batch with the transformer model
if (llama_decode(ctx, batch)) {
fprintf(stderr, "%s : failed to eval, return code %d\n", __func__, 1);
return 1;
}
n_pos += batch.n_tokens;
while (n_cur <= n_predict) {
// sample the next token // sample the next token
{ {
const llama_token new_token_id = llama_sampler_sample(smpl, ctx, -1); new_token_id = llama_sampler_sample(smpl, ctx, -1);
// is it an end of generation? // is it an end of generation?
if (llama_token_is_eog(model, new_token_id) || n_cur == n_predict) { if (llama_token_is_eog(model, new_token_id)) {
LOG("\n");
break; break;
} }
LOG("%s", llama_token_to_piece(ctx, new_token_id).c_str()); char buf[128];
int n = llama_token_to_piece(model, new_token_id, buf, sizeof(buf), 0, true);
if (n < 0) {
fprintf(stderr, "%s: error: failed to convert token to piece\n", __func__);
return 1;
}
std::string s(buf, n);
printf("%s", s.c_str());
fflush(stdout); fflush(stdout);
// prepare the next batch // prepare the next batch with the sampled token
llama_batch_clear(batch); batch = llama_batch_get_one(&new_token_id, 1, n_pos, 0);
// push this new token for next evaluation
llama_batch_add(batch, new_token_id, n_cur, { 0 }, true);
n_decode += 1; n_decode += 1;
} }
n_cur += 1;
// evaluate the current batch with the transformer model
if (llama_decode(ctx, batch)) {
LOG_ERR("%s : failed to eval, return code %d\n", __func__, 1);
return 1;
}
} }
LOG("\n"); printf("\n");
const auto t_main_end = ggml_time_us(); const auto t_main_end = ggml_time_us();
LOG_INF("%s: decoded %d tokens in %.2f s, speed: %.2f t/s\n", fprintf(stderr, "%s: decoded %d tokens in %.2f s, speed: %.2f t/s\n",
__func__, n_decode, (t_main_end - t_main_start) / 1000000.0f, n_decode / ((t_main_end - t_main_start) / 1000000.0f)); __func__, n_decode, (t_main_end - t_main_start) / 1000000.0f, n_decode / ((t_main_end - t_main_start) / 1000000.0f));
LOG("\n"); fprintf(stderr, "\n");
llama_perf_sampler_print(smpl); llama_perf_sampler_print(smpl);
llama_perf_context_print(ctx); llama_perf_context_print(ctx);
fprintf(stderr, "\n");
LOG("\n");
llama_batch_free(batch);
llama_sampler_free(smpl); llama_sampler_free(smpl);
llama_free(ctx); llama_free(ctx);
llama_free_model(model); llama_free_model(model);
llama_backend_free();
return 0; return 0;
} }