mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-12 03:31:46 +00:00
convert : add support for XLMRoberta embedding models (#8658)
* add conversion for bge-m3; small fix in unigram tokenizer * clean up and simplify XLMRoberta conversion
This commit is contained in:
parent
c21a896405
commit
cdd1889de6
@ -2506,6 +2506,112 @@ class NomicBertModel(BertModel):
|
|||||||
self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
|
self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
|
||||||
|
|
||||||
|
|
||||||
|
@Model.register("XLMRobertaModel")
|
||||||
|
class XLMRobertaModel(BertModel):
|
||||||
|
model_arch = gguf.MODEL_ARCH.BERT
|
||||||
|
|
||||||
|
def __init__(self, *args, **kwargs):
|
||||||
|
super().__init__(*args, **kwargs)
|
||||||
|
|
||||||
|
# we need the pad_token_id to know how to chop down position_embd matrix
|
||||||
|
if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
|
||||||
|
self._position_offset = 1 + pad_token_id
|
||||||
|
if "max_position_embeddings" in self.hparams:
|
||||||
|
self.hparams["max_position_embeddings"] -= self._position_offset
|
||||||
|
else:
|
||||||
|
self._position_offset = None
|
||||||
|
|
||||||
|
def set_vocab(self):
|
||||||
|
# to avoid TypeError: Descriptors cannot be created directly
|
||||||
|
# exception when importing sentencepiece_model_pb2
|
||||||
|
os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
|
||||||
|
from sentencepiece import SentencePieceProcessor
|
||||||
|
from sentencepiece import sentencepiece_model_pb2 as model
|
||||||
|
|
||||||
|
tokenizer_path = self.dir_model / 'sentencepiece.bpe.model'
|
||||||
|
if not tokenizer_path.is_file():
|
||||||
|
raise FileNotFoundError(f"File not found: {tokenizer_path}")
|
||||||
|
|
||||||
|
sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
|
||||||
|
sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
|
||||||
|
assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
|
||||||
|
|
||||||
|
add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
|
||||||
|
remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
|
||||||
|
precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
|
||||||
|
|
||||||
|
tokenizer = SentencePieceProcessor()
|
||||||
|
tokenizer.LoadFromFile(str(tokenizer_path))
|
||||||
|
|
||||||
|
vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
|
||||||
|
|
||||||
|
tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
|
||||||
|
scores: list[float] = [-10000.0] * vocab_size
|
||||||
|
toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
|
||||||
|
|
||||||
|
for token_id in range(tokenizer.vocab_size()):
|
||||||
|
piece = tokenizer.IdToPiece(token_id)
|
||||||
|
text = piece.encode("utf-8")
|
||||||
|
score = tokenizer.GetScore(token_id)
|
||||||
|
|
||||||
|
toktype = SentencePieceTokenTypes.NORMAL
|
||||||
|
if tokenizer.IsUnknown(token_id):
|
||||||
|
toktype = SentencePieceTokenTypes.UNKNOWN
|
||||||
|
elif tokenizer.IsControl(token_id):
|
||||||
|
toktype = SentencePieceTokenTypes.CONTROL
|
||||||
|
elif tokenizer.IsUnused(token_id):
|
||||||
|
toktype = SentencePieceTokenTypes.UNUSED
|
||||||
|
elif tokenizer.IsByte(token_id):
|
||||||
|
toktype = SentencePieceTokenTypes.BYTE
|
||||||
|
|
||||||
|
tokens[token_id] = text
|
||||||
|
scores[token_id] = score
|
||||||
|
toktypes[token_id] = toktype
|
||||||
|
|
||||||
|
if vocab_size > len(tokens):
|
||||||
|
pad_count = vocab_size - len(tokens)
|
||||||
|
logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
|
||||||
|
for i in range(1, pad_count + 1):
|
||||||
|
tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
|
||||||
|
scores.append(-1000.0)
|
||||||
|
toktypes.append(SentencePieceTokenTypes.UNUSED)
|
||||||
|
|
||||||
|
# realign tokens (see HF tokenizer code)
|
||||||
|
tokens = [b'<s>', b'<pad>', b'</s>', b'<unk>'] + tokens[3:-1]
|
||||||
|
scores = [0.0, 0.0, 0.0, 0.0] + scores[3:-1]
|
||||||
|
toktypes = [
|
||||||
|
SentencePieceTokenTypes.CONTROL,
|
||||||
|
SentencePieceTokenTypes.CONTROL,
|
||||||
|
SentencePieceTokenTypes.CONTROL,
|
||||||
|
SentencePieceTokenTypes.UNKNOWN,
|
||||||
|
] + toktypes[3:-1]
|
||||||
|
|
||||||
|
self.gguf_writer.add_tokenizer_model("t5")
|
||||||
|
self.gguf_writer.add_tokenizer_pre("default")
|
||||||
|
self.gguf_writer.add_token_list(tokens)
|
||||||
|
self.gguf_writer.add_token_scores(scores)
|
||||||
|
self.gguf_writer.add_token_types(toktypes)
|
||||||
|
self.gguf_writer.add_add_space_prefix(add_prefix)
|
||||||
|
self.gguf_writer.add_token_type_count(1)
|
||||||
|
self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
|
||||||
|
if precompiled_charsmap:
|
||||||
|
self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
|
||||||
|
|
||||||
|
special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
|
||||||
|
special_vocab.add_to_gguf(self.gguf_writer)
|
||||||
|
|
||||||
|
self.gguf_writer.add_add_bos_token(True)
|
||||||
|
self.gguf_writer.add_add_eos_token(True)
|
||||||
|
|
||||||
|
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||||
|
# position embeddings start at pad_token_id + 1, so just chop down the weight tensor
|
||||||
|
if name == "embeddings.position_embeddings.weight":
|
||||||
|
if self._position_offset is not None:
|
||||||
|
data_torch = data_torch[self._position_offset:,:]
|
||||||
|
|
||||||
|
return super().modify_tensors(data_torch, name, bid)
|
||||||
|
|
||||||
|
|
||||||
@Model.register("GemmaForCausalLM")
|
@Model.register("GemmaForCausalLM")
|
||||||
class GemmaModel(Model):
|
class GemmaModel(Model):
|
||||||
model_arch = gguf.MODEL_ARCH.GEMMA
|
model_arch = gguf.MODEL_ARCH.GEMMA
|
||||||
|
@ -816,6 +816,9 @@ struct llm_tokenizer_ugm {
|
|||||||
* the best tokenization.
|
* the best tokenization.
|
||||||
*/
|
*/
|
||||||
void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
|
void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
|
||||||
|
// get current size of output (for reversal later)
|
||||||
|
size_t output_size = output.size();
|
||||||
|
|
||||||
// normalize the input first
|
// normalize the input first
|
||||||
std::string normalized;
|
std::string normalized;
|
||||||
normalize(text, &normalized);
|
normalize(text, &normalized);
|
||||||
@ -895,7 +898,7 @@ struct llm_tokenizer_ugm {
|
|||||||
}
|
}
|
||||||
|
|
||||||
// reverse the output since we added tokens starting from the end of the input
|
// reverse the output since we added tokens starting from the end of the input
|
||||||
std::reverse(output.begin(), output.end());
|
std::reverse(output.begin() + output_size, output.end());
|
||||||
}
|
}
|
||||||
|
|
||||||
private:
|
private:
|
||||||
|
Loading…
Reference in New Issue
Block a user